EFECTO DEL NANOPRIMING CON ÓXIDO DE MAGNESIO SOBRE EL DESARROLLO DE Vigna unguiculata (FABACEAE) BAJO CONDICIONES DE INVERNADERO
DOI:
https://doi.org/10.15446/abc.v30n1.113233Keywords:
Vigna unguiculata, nanoprimming, desarrollo, óxido de magnesio (es)Vigna unguiculata, nanopriming, development, magnesium oxide (en)
Downloads
En este trabajo se evalúa el efecto de las nanopartículas de óxido de magnesio (MgO-NPs) sobre el desarrollo reproductivo de Vigna unguiculata. Para ello se sintetizaron, por una ruta química, MgO-NPs que se caracterizaron utilizando técnicas convencionales: espectroscopía IR, difracción de rayos x (DRX), microscopía electrónica de barrido (MEB) y espectroscoía EDAX. Los resultados indicaron que la única fase cristalina presente en el sólido sintetizado era MgO tipo periclasa, con alta pureza química, y tamaño nanométrico
(< 100 nm). Al evaluar el efecto de estas MgO-NPs sobre el V. unguiculata, se encontró que estas propiciaron la precocidad en la floración y mayor número acumulado de vainas. No obstante, los tratamientos con MgO-NPs provocaron la disminución del peso seco del tallo.
This study evaluates the effect of magnesium oxide nanoparticles (MgO-NPs) on the reproductive development of Vigna unguiculata. MgO-NPs were synthesized using a chemical route and characterized using conventional techniques: IR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and EDAX spectroscopy. The results indicated that the only crystalline phase present in the synthesized solid was periclase-type MgO with high chemical purity and nanometric size (<100 nm). When the effect of these MgO-NPs on V. unguiculata was evaluated, they promoted precocity in flowering and a higher cumulative number of pods. However, MgO-NP treatments caused a decrease in stem dry weight.
References
Antova, G. A., Stoilova, T. D., & Ivanova, M. M. (2014). Proximate and lipid composition of cowpea (Vigna unguiculata L.) cultivated in Bulgaria. Journal of Food Composition and Analysis, 33(2), 146–152. https://doi.org/10.1016/j.jfca.2013.12.005
Arun, M. N., Hebbar, S. S., Bhanuprakash, K., Senthivel, T., Nair, A. K., & Pandey, D. P. (2020). Influence of seed priming and different irrigation levels on growth parameters of cowpea [vigna unguiculata (L.) walp]. Legume Research, 43(1), 99–104. https://doi.org/10.18805/LR-3945
Belay, F., Gebreslasie, A., & Meresa, H. (2017). Agronomic performance evaluation of cowpea [Vigna unguiculata (L.) Walp] varieties in Abergelle District, Northern Ethiopia. Journal of Plant Breeding and Crop Science, 9(8), 139–143. https://doi.org/10.5897/JPBCS2017.0640
Boukar, O., Togola, A., Chamarthi, S., Belko, N., Ishikawa, H., Suzuki, K., & Fatokun, C. (2019). Cowpea [Vigna unguiculata (L.) Walp.] Breeding. In Advances in Plant Breeding Strategies: Legumes (pp. 201–243). Springer International Publishing. https://doi.org/10.1007/978-3-030-23400-3_6
Cakmak, I. (2013). Magnesium in crop production, food quality and human health. Plant and Soil, 368(1–2), 1–4. https://doi.org/10.1007/s11104-013-1781-2
Cowan, J. A. (2002). Structural and catalytic chemistry of magnesium-dependent enzymes. BioMetals, 15(3), 225–235. https://doi.org/10.1023/A:1016022730880
Farooq, M., Usman, M., Nadeem, F., Rehman, H. U., Wahid, A., Basra, S. M. A., & Siddique, K. H. M. (2019). Seed priming in field crops: Potential benefits, adoption and challenges. Crop and Pasture Science, 70(9), 731–771. https://doi.org/10.1071/CP18604
Fujikawa, I., Takehara, Y., Ota, M., Imada, K., Sasaki, K., Kajihara, H., Sakai, S., Jogaiah, S., & Ito, S. ichi. (2021). Magnesium oxide induces immunity against Fusarium wilt by triggering the jasmonic acid signaling pathway in tomato. Journal of Biotechnology, 325(September), 100–108. https://doi.org/10.1016/j.jbiotec.2020.11.012
Ghorbanian, A. R., Khoshgoftarmanesh, A. H., & Zahedi, M. (2019). The effect of foliar-applied magnesium on root cell membrane H+-ATPase activity and physiological characteristics of sugar beet. Physiology and Molecular Biology of Plants, 25(5), 1273. https://doi.org/10.1007/S12298-019-00695-Z
Granda-Ruiz, J. V., Cajas-Salazar, N., & Rodriguez-Paez, J. E. (2023). Magnesium oxyhydroxide nanoparticles: Synthesis, characterization and evaluation of their genotoxicity in Vicia faba L. Materials Science and Engineering: B, 298, 116896. https://doi.org/10.1016/j.mseb.2023.116896
Guo, W., Chen, S., Hussain, N., Cong, Y., Liang, Z., & Chen, K. (2015). Magnesium stress signaling in plant: Just a beginning. Plant Signaling & Behavior, 10(3). https://doi.org/10.4161/15592324.2014.992287
Havlin, J. L., Beaton, J. D., Tisdale, S. L., Nelson, W. R., & Nelson, W. L. (2017). Soil Fertility and Fertilizers: An Introduction to Nutrient Management Title Soil Fertility and Fertilizers. Pearson.
Hermans, C., Bourgis, F., Faucher, M., Strasser, R. J., Delrot, S., & Verbruggen, N. (2005). Magnesium deficiency in sugar beets alters sugar partitioning and phloem loading in young mature leaves. Planta, 220(4), 541–549. https://doi.org/10.1007/s00425-004-1376-5
Hussain, S., Hussain, S., Khaliq, A., Ali, S., & Khan, I. (2019). Physiological, Biochemical, and Molecular Aspects of Seed Priming. In Priming and Pretreatment of Seeds and Seedlings (pp. 43–62). Springer Singapore. https://doi.org/10.1007/978-981-13-8625-1_3
Instituto Geográfico Agustín Codazzi. (2006). Métodos analíticos del laboratorio de suelos. IGAC.
Iqbal, M., Ashraf, M., Jamil, A., & Ur‐Rehman, S. (2006). Does Seed Priming Induce Changes in the Levels of Some Endogenous Plant Hormones in Hexaploid Wheat Plants Under Salt Stress? Journal of Integrative Plant Biology, 48(2), 181–189. https://doi.org/10.1111/j.1744-7909.2006.00181.x
Jaghdani, S., Jahns, P., & Tränkner, M. (2021). Mg deficiency induces photo-oxidative stress primarily by limiting CO2 assimilation and not by limiting photosynthetic light utilization. Plant Science, 302, 110751. https://doi.org/10.1016/j.plantsci.2020.110751
Karimi, N., Goltapeh, E. M., Amini, J., Mehnaz, S., & Zarea, M. J. (2021). Effect of Azospirillum zeae and Seed Priming with Zinc, Manganese and Auxin on Growth and Yield Parameters of Wheat, under Dryland Farming. Agricultural Research, 10(1), 44–55. https://doi.org/10.1007/s40003-020-00480-5
Kebede, E., & Bekeko, Z. (2020). Expounding the production and importance of cowpea ( Vigna unguiculata (L.) Walp.) in Ethiopia. Cogent Food & Agriculture, 6(1), 1769805. https://doi.org/10.1080/23311932.2020.1769805
Maathuis, F. J. (2009). Physiological functions of mineral macronutrients. Current Opinion in Plant Biology, 12(3), 250–258. https://doi.org/10.1016/J.PBI.2009.04.003
Maroufpoor, N., Mousavi, M., Hatami, M., Rasoulnia, A., & Lajayer, B. A. (2019). Mechanisms Involved in Stimulatory and Toxicity Effects of Nanomaterials on Seed Germination and Early Seedling Growth. In Advances in Phytonanotechnology: From Synthesis to Application (pp. 153–181). Academic Press. https://doi.org/10.1016/B978-0-12-815322-2.00006-7
Moreira, W. R., da Silva Bispo, W. M., Rios, J. A., Debona, D., Nascimento, C. W. A., & Rodrigues, F. Á. (2015). Magnesium-induced alterations in the photosynthetic performance and resistance of rice plants infected with bipolaris oryzae. Scientia Agricola, 72(4), 328–333. https://doi.org/10.1590/0103-9016-2014-0312
Pathak, A., Kaur, R., & Thakur, N. (2021). Germination studies and biochemical profile in seeds of wheat exposed to magnesium nanoparticles. International Journal of Pharmaceutical Sciences and Research, 12(12), 6638–6641.
Salcido-Martínez, A., Sánchez, E., Licón-Trillo, L., Pérez-Álvarez, S., Palacio-Márquez, A., Amaya-olivas, N. I., & Preciado-Rangel, P. (2020). Impact of the foliar application of magnesium nanofertilizer on physiological and biochemical parameters and yield in green beans. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(4), 2167–2181. https://doi.org/10.15835/nbha48412090
Sharma, P., Kumar, V., & Guleria, P. (2022). In vitro exposure of magnesium oxide nanoparticles negatively regulate the growth of Vigna radiata. International Journal of Environmental Science and Technology, 19(11), 10679–10690. https://doi.org/10.1007/s13762-021-03738-9
Siddiqui, M. H., Alamri, S. A., Al-Khaishany, M. Y. Y., Al-Qutami, M. A., Ali, H. M., Al-Whaibi, M. H., Al-Wahibi, M. S., & Alharby, H. F. (2016). Mitigation of adverse effects of heat stress on Vicia faba by exogenous application of magnesium. Saudi Journal of Biological Sciences, 25(7), 1393–1401. https://doi.org/10.1016/j.sjbs.2016.09.022
Srinivasan, R., Maity, A., Singh, K. K., Ghosh, P. K., Kumar, S., Srivastava, M. K., Radhakrishna, A., Srivastava, R., & Kumari, B. (2017). Influence of copper oxide and zinc oxide nano-particles on growth of fodder cowpea and soil microbiological properties. Range Management and Agroforestry, 38(2), 208–214.
Tauseef, A., Hisamuddin, Khalilullah, A., & Uddin, I. (2021). Role of MgO nanoparticles in the suppression of Meloidogyne incognita, infecting cowpea and improvement in plant growth and physiology. Experimental Parasitology, 220, 108045. https://doi.org/10.1016/J.EXPPARA.2020.108045
Vijai, K., Anugraga, A. R., Kannan, M., Singaravelu, G., & Govindaraju, K. (2020). Bio-engineered magnesium oxide nanoparticles as nano-priming agent for enhancing seed germination and seedling vigour of green gram (Vigna radiata L.). Materials Letters, 271, 127792. https://doi.org/10.1016/j.matlet.2020.127792
Wojtyla, Ł., Lechowska, K., Kubala, S., & Garnczarska, M. (2016). Molecular processes induced in primed seeds-increasing the potential to stabilize crop yields under drought conditions. Journal of Plant Physiology, 203, 116–126. https://doi.org/10.1016/J.JPLPH.2016.04.008
Zirek, N. S., & Uzal, O. (2020). The developmental and metabolic effects of different magnesium dozes in pepper plants under salt stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 48(2), 967–977. https://doi.org/10.15835/nbha48211943
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The acceptance of manuscripts by the Journal implies its electronic edition of open Access under Creative Commons Attribution License 4.0, and the inclusion and diffusion of the complete text through the institutional repository of the Universidad Nacional de Colombia and in all the specialized data bases that the editor considers adequate for its indexation to increase Journal visibility.
Acta Biológica Colombiana allows authors to archive, download and distribute the final published version, as well as pre-print and post-print versions including a header with the bibliographic reference of published article. The journal encourages the authors to distribute the final versión through Internet, for example in their personal or institutional web pages, and scientific social networks.