Published
CONTROL DE Aedes aegypti (DIPTERA: CULICIDAE) MEDIANTE ACTINOBACTERIAS FORMADORAS DE BIOPELÍCULAS.
Control of Aedes aegypti (Diptera: Culicidae) by means of biofilm-forming actinobacteria.
DOI:
https://doi.org/10.15446/abc.v26n3.86966Keywords:
Bacterias entomopatógenicas, agentes de control biológico, insecticidas microbianos, fiebre del dengue, mosquitos vectores (es)Entomopathogenic bacteria, biological control agents, microbial insecticides, Dengue Fever, mosquito vectors (en)
Downloads
El phylum Actinobacteria incluye miembros productores de compuestos bioinsecticidas. No obstante, la sobreexplotacion de metabolitos derivados de Streptomyces ha conllevado a explorar nuevas moléculas provenientes de bacterias no estreptomicetos para contrarrestar la resistencia a insecticidas químicos en Aedes aegypti. Concordantes con el uso de bioagentes ecológicos, esta investigación caracterizó actinobacterias formadoras de biopelículas con el fin de evaluar su dinámica de crecimiento, actividad larvicida y efectos subletales. La identificación, crecimiento de biopelículas y bioactividades se realizaron por cultivos, análisis de imágenes por fotomicrografía y bioensayos. Los resultados mostraron que las biopelículas pertenecen a Pseudonocardiaceae (PsA1TA) y Corynebacteriaceae (CoA2CA) característicamente dependientes del revestimiento cuticular. PsA1TA coloniza estructuras membranosas de tórax y abdomen con microcolonias aleatoriamente distribuidas que desarrollan a extensas biopelículas mono y biestratificadas, al cubrir cuatro veces la amplitud toracoabdominal (envergadura infectiva entre 1010 µm a 1036 µm). En contraste, CoA2CA envuelve radialmente estructuras esclerotizadas cefálica y anal al triplicar la amplitud de tales órganos (1820 a 2030 µm y 1650 a 1860 µm, respectivamente). Las biopelículas ejercieron mortalidad diferenciada a todos los estadios larvales, no obstante, PsA1TA resultó más mortal y virulento en el segundo estadio larval (58 %-96 horas, TL50: 3,4 días), mientras que CoA2CA lo fue en el cuarto estadio larval (85 %-96 horas, TL50: 2,5 días). CoA2CA indujo emergencia incompleta de adultos farados y despliegue de tarsos curvos en emergentes, además de revestir con robustas biopelículas cadáveres larvarios. Las biopelículas actinobacterianas revelaron ejercer función larvicida y respuestas subletales en A. aegypti.
Actinobacteria are a group of widely known microorganisms used in the synthesis of insecticidal bioactive compounds. Nevertheless, over-exploitation of Streptomyces-derived metabolites has led to explore new bioactive molecules based on non-streptomycetes actinobacteria in order to minimize the development of insecticide resistance in Aedes aegypti. In accordance with to the use of eco-friendly bioagents, in this study biofilm-forming actinobacteria were characterized on the basis of assessment their growth dynamics, larvicidal mortality and sublethal effects. Actinobacteria identification, biofilm growth and larvicidal bioactivities were performed by employing bacterial cultures, photomicrograph-based image analysis and bioassays. Results indicated that bacterial morphotypes belong to Pseudonocardiaceae (PsA1TA) and Corynebacteriaceae (CoA2CA), which showed a distinctly substrate-dependent growth. PsA1TA microcolonies were randomly distributed on abdominal and thoracic membranous epicuticle. Afterwards, the thickness of mono- and bi-layered biofilms were increased fourfold the larval thoracoabdominal width (infectious breadth, 1010 µm - 1036 µm). In contrast, cephalic and anal sclerotized structures were radially encased by CoA2CA biofilms and increased threefold the size of both structures (infectious breadth, 1820 - 2030 µm y 1650 - 1860 µm, respectively). Although biofilms caused dissimilar mortality rates on the four larval instars, PsA1TA exerted highest larvicidal activity and virulence on second instar larvae (58 %-96 hours, LT50: 3.4 days) y CoA2CA on fourth instar larvae (85 %-96 hours, LT50: 2.5 days). CoA2CA also induced incomplete release of pharate individuals as well as buckled protruding tarsi in newly emergent adults, whilst larval cadavers were overwhelmingly encased within massive biofilm aggregates. Biofilm-forming actinobacteria performed biolarvicidal activity and sublethal responses in A. aegypti.
References
Abbott WS (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology, 18:265–266. https://doi.org/10.1093/jee/18.2.265a DOI: https://doi.org/10.1093/jee/18.2.265a
Alkhaibari, A. M., Maffeis, T., Bull, J. C., y Butt, T. M. (2018). Combined use of the entomopathogenic fungus, Metarhizium brunneum, y the mosquito predator, Toxorhynchites brevipalpis, for control of mosquito larvae: Is this a risky biocontrol strategy? Journal of Invertebrate Pathology, 153,38–50. https://doi.org/10.1016/j.jip.2018.02.003 DOI: https://doi.org/10.1016/j.jip.2018.02.003
Alto, B. W., y Lord, C. C. (2016). Transstadial Effects of Bti on Traits of Aedes aegypti y Infection with Dengue Virus. PLoS neglected tropical diseases, 10(2),e0004370. https://doi.org/10.1371/journal.pntd.0004370 DOI: https://doi.org/10.1371/journal.pntd.0004370
Amarasekare, K., y Shearer, P. (2013). Laboratory Bioassays to Estimate the Lethal y Sublethal Effects of Various Insecticides y Fungicides on Deraeocoris brevis (Hemiptera: Miridae). Journal of economic entomology, 106(2),776–785. Doi: https://doi.org/10.1603/EC12432 DOI: https://doi.org/10.1603/EC12432
Andersen, S. O. (2012). Cuticular Sclerotization y Tanning. In Insect Molecular Biology y Biochemistry (pp. 167–192). Elsevier. https://doi.org/10.1016/B978-0-12-384747-8.10006-6 DOI: https://doi.org/10.1016/B978-0-12-384747-8.10006-6
Aponte, A., Penilla, R. P., Rodríguez, A. D., y Ocampo, C. B. (2019). Mechanisms of pyrethroid resistance in Aedes (Stegomyia) aegypti from Colombia. Acta tropica, 191, 146–154. https://doi.org/10.1016/j.actatropica.2018.12.021 DOI: https://doi.org/10.1016/j.actatropica.2018.12.021
Ay, H., Nouioui, I., Del Carmen Montero-Calasanz, M., Carro, L., Klenk, H. P., Goodfellow, M., Igual, J. M., Çetin, D., Şahin, N., y Işık, K. (2017). Actinomadura alkaliterrae sp. nov., isolated from an alkaline soil. Antonie van Leeuwenhoek, 110(6), 787–794. https://doi.org/10.1007/s10482-017-0850-6 DOI: https://doi.org/10.1007/s10482-017-0850-6
Awad, T. I., y Mulla, M. S. (1984). Morphogenetic y histopathological effects of the insect growth regulator cyromazine in larvae of Culex quinquefasciatus (Diptera: Culicidae). Journal of medical entomology, 21(4), 427–431. https://doi.org/10.1093/jmedent/21.4.427 DOI: https://doi.org/10.1093/jmedent/21.4.427
Balakrishnan, S., Santhanam, P., y Srinivasan, M. (2017). Larvicidal potency of marine actinobacteria isolated from mangrove environment against Aedes aegypti y Anopheles stephensi. Journal of parasitic diseases: official organ of the Indian Society for Parasitology,41(2), 387–394. https://doi.org/10.1007/s12639-016-0812-3 DOI: https://doi.org/10.1007/s12639-016-0812-3
Barka, E. A., Vatsa, P., Sanchez, L., Gaveau-Vaillant, N., Jacquard, C., Meier-Kolthoff, J. P., Klenk, H. P., Clément, C., Ouhdouch, Y., y van Wezel, G. P. (2015). Taxonomy, Physiology, y Natural Products of Actinobacteria. Microbiology y molecular biology reviews: MMBR, 80(1), 1–43. https://doi.org/10.1128/MMBR.00019-15 DOI: https://doi.org/10.1128/MMBR.00044-16
Battin, T. J., Besemer, K., Bengtsson, M. M., Romani, A. M., y Packmann, A. I. (2016). The ecology y biogeochemistry of stream biofilms. Nature reviews. Microbiology, 14(4), 251–263. https://doi.org/10.1038/nrmicro.2016.15 DOI: https://doi.org/10.1038/nrmicro.2016.15
Beier, S., y Bertilsson, S. (2013). Bacterial chitin degradation-mechanisms y ecophysiological strategies. Frontiers in microbiology, 4,149. https://doi.org/10.3389/fmicb.2013.00149 DOI: https://doi.org/10.3389/fmicb.2013.00149
Benelli, G., Jeffries, C. L., y Walker, T. (2016). Biological Control of Mosquito Vectors: Past, Present, y Future. Insects, 7(4),52. https://doi.org/10.3390/insects7040052 DOI: https://doi.org/10.3390/insects7040052
Berlanga, M., y Guerrero, R. (2016). Living together in biofilms: the microbial cell factory y its biotechnological implications. Microbial cell factories, 15(1), 165. https://doi.org/10.1186/s12934-016-0569-5 DOI: https://doi.org/10.1186/s12934-016-0569-5
Boyce, R., Lenhart, A., Kroeger, A., Velayudhan, R., Roberts, B., y Horstick, O. (2013). Bacillus thuringiensis israelensis (Bti) for the control of dengue vectors: systematic literature review. Tropical medicine & international health: TM & IH, 18(5), 564–577. https://doi.org/10.1111/tmi.12087 DOI: https://doi.org/10.1111/tmi.12087
Box, S. J., Cole, M., y Yeoman, G. H. (1973). Prasinons A y B: potent insecticides from Streptomyces prasinus. Applied microbiology, 26(5), 699–704. DOI: https://doi.org/10.1128/AEM.26.5.699-704.1973
Brown, L. D., Thompson, G. A., & Hillyer, J. F. (2018). Transstadial transmission of larval hemocoelic infection negatively affects development y adult female longevity in the mosquito Anopheles gambiae. Journal of invertebrate pathology, 151, 21–31. https://doi.org/10.1016/j.jip.2017.10.008 DOI: https://doi.org/10.1016/j.jip.2017.10.008
Busula, A. O., Takken, W., DE Boer, J. G., Mukabana, W. R., y Verhulst, N. O. (2017). Variation in host preferences of malaria mosquitoes is mediated by skin bacterial volatiles. Medical y veterinary entomology, 31(3), 320–326. https://doi.org/10.1111/mve.12242 DOI: https://doi.org/10.1111/mve.12242
Cabezas, C., Fiestas, V., García-Mendoza, M., Palomino, M., Mamani, E. y Donaires, F. (2015). Dengue en el Perú: a un cuarto de siglo de su reemergencia. Revista peruana de medicina experimental y salud pública, 32(1),146-155. https://doi.org/10.17843/rpmesp.2015.321.1587 DOI: https://doi.org/10.17843/rpmesp.2015.321.1587
Chen, P., Zhang, L., Guo, X., Dai, X., Liu, L., Xi, L., Wang, J., Song, L., Wang, Y., Zhu, Y., Huang, L., y Huang, Y. (2016). Diversity, Biogeography, y Biodegradation Potential of Actinobacteria in the Deep-Sea Sediments along the Southwest Indian Ridge. Frontiers in microbiology, 7, 1340. https://doi.org/10.3389/fmicb.2016.01340 DOI: https://doi.org/10.3389/fmicb.2016.01340
Christophers, R. (1960). Aedes aegypti (L) the yellow fever mosquito. Its life history, bionomics y structure. Cambridge University Press.
Corbel, V., Fonseca, D. M., Weetman, D., Pinto, J., Achee, N. L., Chandre, F., Coulibaly, M. B., Dusfour, I., Grieco, J., Juntarajumnong, W., Lenhart, A., Martins, A. J., Moyes, C., Ng, L. C., Raghavendra, K., Vatandoost, H., Vontas, J., Muller, P., Kasai, S., Fouque, F., … David, J. P. (2017). International workshop on insecticide resistance in vectors of arboviruses, December 2016, Rio de Janeiro, Brazil. Parasites & vectors, 10(1), 278. https://doi.org/10.1186/s13071-017-2224-3 DOI: https://doi.org/10.1186/s13071-017-2327-x
Costa-Orlandi, C. B., Sardi, J., Pitangui, N. S., de Oliveira, H. C., Scorzoni, L., Galeane, M. C., Medina-Alarcón, K. P., Melo, W., Marcelino, M. Y., Braz, J. D., Fusco-Almeida, A. M., y Mendes-Giannini, M. (2017). Fungal Biofilms y Polymicrobial Diseases. Journal of fungi (Basel, Switzerland), 3(2), 22. https://doi.org/10.3390/jof3020022 DOI: https://doi.org/10.3390/jof3020022
Coyle, M. B., y Lipsky, B. A. (1990). Coryneform bacteria in infectious diseases: clinical y laboratory aspects. Clinical microbiology reviews, 3(3), 227–246. https://doi.org/10.1128/cmr.3.3.227 DOI: https://doi.org/10.1128/CMR.3.3.227-246.1990
Crawley, M. (2015). Statistics: An Introduction using R. (2nd ed.). John Wiley & Sons.
Cunningham, A. B., Sharp R. R., Hiebert R., y James G. (2003). Subsurface biofilm barriers for the containment y remediation of contaminated groundwater. Bioremediation Journal, 7:3-4,(151-164). https://doi.org/10.1080/713607982 DOI: https://doi.org/10.1080/713607982
Dang, H., y Lovell, C. R. (2015). Microbial Surface Colonization y Biofilm Development in Marine Environments. Microbiology y molecular biology reviews: MMBR, 80(1), 91–138. https://doi.org/10.1128/MMBR.00037-15 DOI: https://doi.org/10.1128/MMBR.00037-15
Dhakal, D., Pokhrel, A. R., Jha, A. K., Thuan, N. H., y Sohng, J. K. (2017). Saccharopolyspora Species: Laboratory Maintenance y Enhanced Production of Secondary Metabolites. Current protocols in microbiology, 44, 10H.1.1–10H.1.13. https://doi.org/10.1002/cpmc.21 DOI: https://doi.org/10.1002/cpmc.21
Du, M. H., Yan, Z. W., Hao, Y. J., Yan, Z. T., Si, F. L., Chen, B., y Qiao, L. (2017). Suppression of Laccase 2 severely impairs cuticle tanning y pathogen resistance during the pupal metamorphosis of Anopheles sinensis (Diptera: Culicidae). Parasites & vectors, 10(1), 171. https://doi.org/10.1186/s13071-017-2118-4 DOI: https://doi.org/10.1186/s13071-017-2118-4
Dy, R. L., Rigano, L. A., y Fineran, P. C. (2018). Phage-based biocontrol strategies y their application in agriculture y aquaculture. Biochemical Society transactions, 46(6), 1605–1613. https://doi.org/10.1042/BST20180178 DOI: https://doi.org/10.1042/BST20180178
Edwards, S. J., y Kjellerup, B. V. (2013). Applications of biofilms in bioremediation y biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, y heavy metals. Applied microbiology y biotechnology, 97(23), 9909–9921. https://doi.org/10.1007/s00253-013-5216-z DOI: https://doi.org/10.1007/s00253-013-5216-z
Ettoumi, B., Chouchane, H., Guesmi, A., Mahjoubi, M., Brusetti, L., Neifar, M., Borin, S., Daffonchio, D., y Cherif, A. (2016). Diversity, ecological distribution y biotechnological potential of Actinobacteria inhabiting seamounts y non-seamounts in the Tyrrhenian Sea. Microbiological research, 186-187, 71–80. https://doi.org/10.1016/j.micres.2016.03.006 DOI: https://doi.org/10.1016/j.micres.2016.03.006
Farnesi, L. C., Brito, J. M., Linss, J. G., Pelajo-Machado, M., Valle, D., y Rezende, G. L. (2012). Physiological y morphological aspects of Aedes aegypti developing larvae: effects of the chitin synthesis inhibitor novaluron. PloS one, 7(1), e30363. https://doi.org/10.1371/journal.pone.0030363 DOI: https://doi.org/10.1371/journal.pone.0030363
Flemming, H. C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S. A., y Kjelleberg, S. (2016). Biofilms: an emergent form of bacterial life. Nature reviews. Microbiology, 14(9), 563–575. https://doi.org/10.1038/nrmicro.2016.94 DOI: https://doi.org/10.1038/nrmicro.2016.94
Fontoura, N.G., Bellinato, D., Valle, D., y Lima, J.B. (2012). The efficacy of a chitin synthesis inhibitor against field populations of organophosphate-resistant Aedes aegypti in Brazil. Memorias do Instituto Oswaldo Cruz, 107 3, 387-95. https://doi.org/10.1590/s0074-02762012000300014 DOI: https://doi.org/10.1590/S0074-02762012000300014
Frantsevich, L., Kozeretska, I., Dubrovsky, Y., Markina, T., Shumakova, I., & Stukalyuk, S. (2017). Transient leg deformations during eclosion out of a tight confinement: A comparative study on seven species of flies, moths, ants y bees. Arthropod structure & development, 46(4), 483–495. https://doi.org/10.1016/j.asd.2017.05.002 DOI: https://doi.org/10.1016/j.asd.2017.05.002
Freimoser, F. M., Rueda-Mejia, M. P., Tilocca, B., y Migheli, Q. (2019). Biocontrol yeasts: mechanisms y applications. World journal of microbiology & biotechnology, 35(10), 154. https://doi.org/10.1007/s11274-019-2728-4 DOI: https://doi.org/10.1007/s11274-019-2728-4
Gerberg, E.J., Barnard, D.R., y Ward, R.A. (1994). Manual for mosquito rearing y experimental techniques. American Mosquito Control Association.
Hall-Stoodley, L., Costerton, J. W., y Stoodley, P. (2004). Bacterial biofilms: from the natural environment to infectious diseases. Nature reviews. Microbiology, 2(2), 95–108. https://doi.org/10.1038/nrmicro821 DOI: https://doi.org/10.1038/nrmicro821
Harding, M. W., Marques, L. L., Howard, R. J., y Olson, M. E. (2009). Can filamentous fungi form biofilms?. Trends in microbiology, 17(11), 475–480. https://doi.org/10.1016/j.tim.2009.08.007 DOI: https://doi.org/10.1016/j.tim.2009.08.007
Hibbing, M. E., Fuqua, C., Parsek, M. R., y Peterson, S. B. (2010). Bacterial competition: surviving y thriving in the microbial jungle. Nature Reviews Microbiology, 8, 15–25 (2010). https://doi.org/10.1038/nrmicro2259 DOI: https://doi.org/10.1038/nrmicro2259
Hothorn, L.A. (2014). Statistical evaluation of toxicological bioassays–a review. Toxicology Research, 3(6),418-432. Doi: https://doi.org/10.1039/c4tx00047a DOI: https://doi.org/10.1039/C4TX00047A
Hug, J. J., Bader, C. D., Remškar, M., Cirnski, K., y Müller, R. (2018). Concepts y Methods to Access Novel Antibiotics from Actinomycetes. Antibiotics (Basel, Switzerland), 7(2), 44. https://doi.org/10.3390/antibiotics7020044 DOI: https://doi.org/10.3390/antibiotics7020044
Huijben, S., y Paaijmans, K. P. (2017). Putting evolution in elimination: Winning our ongoing battle with evolving malaria mosquitoes y parasites. Evolutionary applications, 11(4), 415–430. https://doi.org/10.1111/eva.12530 DOI: https://doi.org/10.1111/eva.12530
Imam, H., Zarnigar, Sofi, G., y Seikh, A. (2014). The basic rules y methods of mosquito rearing (Aedes aegypti). Tropical parasitology, 4(1), 53–55. https://doi.org/10.4103/2229-5070.129167 DOI: https://doi.org/10.4103/2229-5070.129167
Inoue, D., Tsunoda, T., Sawada, K., Yamamoto, N., Saito, Y., Sei, K., y Ike, M. (2016). 1,4-Dioxane degradation potential of members of the genera Pseudonocardia y Rhodococcus. Biodegradation, 27(4-6), 277–286. https://doi.org/10.1007/s10532-016-9772-7 DOI: https://doi.org/10.1007/s10532-016-9772-7
Ishak, H. D., Miller, J. L., Sen, R., Dowd, S. E., Meyer, E., y Mueller, U. G. (2011). Microbiomes of ant castes implicate new microbial roles in the fungus-growing ant Trachymyrmex septentrionalis. Scientific reports, 1, 204. https://doi.org/10.1038/srep00204 DOI: https://doi.org/10.1038/srep00204
Ivshina, I., Kuyukina, M., y Krivoruchko, A. (2017). Hydrocarbon-Oxidizing Bacteria y Their Potential in Eco-Biotechnology y Bioremediation. In I. Kurtböke (Ed.), Microbial Resources(121-148). Elsevier Inc.; 2017. p. 121–148. https://doi.org/10.1016/b978-0-12-804765-1.00006-0 DOI: https://doi.org/10.1016/B978-0-12-804765-1.00006-0
Jaber, S., Mercier, A., Knio, K., Brun, S., y Kambris, Z. (2016). Isolation of fungi from dead arthropods y identification of a new mosquito natural pathogen. Parasites & vectors, 9(1), 491. https://doi.org/10.1186/s13071-016-1763-3 DOI: https://doi.org/10.1186/s13071-016-1763-3
Janaki, T. (2016). Larvicidal activity of Streptomyces cacaoi subsp. cacaoi-M20 against Culex quinquefasciatus (III Instar). International journal of mosquito research, 3(2), 47-51.
Karthik, L., Gaurav, K., Rao, K. V., Rajakumar, G., y Rahuman, A. A. (2011). Larvicidal, repellent, y ovicidal activity of marine actinobacteria extracts against Culex tritaeniorhynchus y Culex gelidus. Parasitology research, 108(6), 1447–1455. https://doi.org/10.1007/s00436-010-2193-3 DOI: https://doi.org/10.1007/s00436-010-2193-3
Kaya, H. K., y Vega F. E (2012). Scope y Basic Principles of Insect Pathology. In F. Vega y H. Kaya (Eds). Insect Pathology(1st ed., pp. 1–12). Academic Press. Elsevier. DOI: https://doi.org/10.1016/B978-0-12-384984-7.00001-4
Killiny, N., Prado, S. S., y Almeida, R. P. (2010). Chitin utilization by the insect-transmitted bacterium Xylella fastidiosa. Applied y environmental microbiology, 76(18), 6134–6140. https://doi.org/10.1128/AEM.01036-10 DOI: https://doi.org/10.1128/AEM.01036-10
Kirst, H. A. (2010). The spinosyn family of insecticides: Realizing the potential of natural products research. Journal of Antibiotics, 63(3),101–111. https://doi.org/10.1038/ja.2010.5 DOI: https://doi.org/10.1038/ja.2010.5
Kostakioti, M., Hadjifrangiskou, M., y Hultgren, S. J. (2013). Bacterial biofilms: development, dispersal, y therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harbor perspectives in medicine, 3(4), a010306. https://doi.org/10.1101/cshperspect.a010306 DOI: https://doi.org/10.1101/cshperspect.a010306
Kumari, R., Singh, P., y Lal, R. (2016). Genetics y Genomics of the Genus Amycolatopsis. Indian journal of microbiology, 56(3), 233–246. https://doi.org/10.1007/s12088-016-0590-8 DOI: https://doi.org/10.1007/s12088-016-0590-8
Küster, E., Williams, S.T. (1964). Selection of Media for Isolation of Streptomycetes. Nature, 202(4935):928–929. https://doi.org/10.1038/202928a0 DOI: https://doi.org/10.1038/202928a0
Lacombe-Harvey, M. È., Brzezinski, R., y Beaulieu, C. (2018). Chitinolytic functions in actinobacteria: ecology, enzymes, y evolution. Applied microbiology y biotechnology, 102(17), 7219–7230. https://doi.org/10.1007/s00253-018-9149-4 DOI: https://doi.org/10.1007/s00253-018-9149-4
León, J., Aponte, J. J., Cuadra, D. L., Galindo, N., Jaramillo, L., Vallejo M. y Marguet E. (2016). Actinomicetos aislados de Argopecten purpuratus productores de enzimas extracelulares y con actividad inhibitoria de patógenos marinos. Revista de Biologia Marina y Oceanografia, 51(1),69–80. https://doi.org/10.4067/s0718-19572016000100007 DOI: https://doi.org/10.4067/S0718-19572016000100007
Leger, R. J., Cooper, R. M., y Charnley, A. K. (1986). Cuticle-degrading enzymes of entomopathogenic fungi: Cuticle degradation in vitro by enzymes from entomopathogens. Journal of invertebr pathology, 47(2),167–177. https://doi.org/10.1016/0022-2011(86)90043-1 DOI: https://doi.org/10.1016/0022-2011(86)90043-1
Liu, W. T., Tu, W. C., Lin, C. H., Yang, U. C., y Chen, C. C. (2017). Involvement of cecropin B in the formation of the Aedes aegypti mosquito cuticle. Scientific reports, 7(1), 16395. https://doi.org/10.1038/s41598-017-16625-6 DOI: https://doi.org/10.1038/s41598-017-16625-6
Lopez, S., Guimarães-Ribeiro, V., Rodriguez, J., Dorand, F., Salles, T. S., Sá-Guimarães, T. E., Alvarenga, E., Melo, A., Almeida, R. V., y Moreira, M. F. (2019). RNAi-based bioinsecticide for Aedes mosquito control. Scientific reports, 9(1), 4038. https://doi.org/10.1038/s41598-019-39666-5 DOI: https://doi.org/10.1038/s41598-019-39666-5
Lloyd, P., y Allen, R. (2015). Competition for space during bacterial colonization of a surface. Journal of the royal society interface, 12(110),20150608. https://doi.org/10.1098/rsif.2015.0608 DOI: https://doi.org/10.1098/rsif.2015.0608
Manjarres, A., y Olivero, J. (2013). Chemical control of Aedes aegypti: a historical perspective. Revista costarricense de salud pública, 22(1), 68-75
Mishra, S. K., Keller, J. E., Miller, J. R., Heisey, R. M., Muraleedharan, G. N., y Putnam, A. R. (1987). Insecticidal y nematicidal properties of microbial metabolites. Journal of Industrial Microbiology, 2 (5),267–276. https://doi.org/10.1007/BF01569429 DOI: https://doi.org/10.1007/BF01569429
Nabar, B., y Lokegaonkar S. (2015). Larvicidal activity of microbial metabolites extracted from extremophiles against vector mosquitoes. International journal of mosquito research, 2(3): 61-65.
Nation, J. (2016). Insect Physiology y Biochemistry. (3rd ed.). CRC Press, Taylor & Francis Group.
Nozhevnikova, A. N., Botchkova, E.A., y Plakunov, V. K. (2015). Multi-species biofilms in ecology, medicine, y biotechnology. Microbiology, 84(6),731–750. https://doi.org/10.1134/S0026261715060107 DOI: https://doi.org/10.1134/S0026261715060107
Organización Mundial de la Salud (OMS). (2013). Aprendiendo juntos. Sistematización de experiencias sobre control vectorial del dengue en la Amazonía Peruana. Organización Panamericana de la Salud.
Orhan, W. N. y Orhan, D, D. (2018). Natural Weapons Used against Dengue Vector Mosquito, Aedes aegypti. In B. Tyagi y D. Dharumadurai (Eds). Microbial Control of Vector-Borne Diseases(pp 137-166). Taylor & Francis Group. DOI: https://doi.org/10.1201/b22203-8
Oyeleye, A., y Normi, Y. M. (2018). Chitinase: diversity, limitations, y trends in engineering for suitable applications. Bioscience reports, 38(4), BSR2018032300. https://doi.org/10.1042/BSR20180323 DOI: https://doi.org/10.1042/BSR20180323
Pang, S., Lin, Z., Zhang, W., Mishra, S., Bhatt, P., y Chen, S. (2020). Insights Into the Microbial Degradation y Biochemical Mechanisms of Neonicotinoids. Frontiers in microbiology, 11, 868. https://doi.org/10.3389/fmicb.2020.00868 DOI: https://doi.org/10.3389/fmicb.2020.00868
Parada, R. B, Marguet, E. R. y Vallejo, M. (2017). Aislamiento y caracterización parcial de actinomicetos de suelos con actividad antimicrobiana contra bacterias multidrogo-resistentes. Revista colomb de biotecnología, 19(2),7–23. https://doi.org/10.15446/rev.colomb.biote.v19n2.64098 DOI: https://doi.org/10.15446/rev.colomb.biote.v19n2.64098
Paulraj, M. G., Kumar, P. S., Ignacimuthu, S., y Sukumaran, D. (2016). Natural Insecticides from Actinomycetes y Other Microbes for Vector Mosquito Control. In R. Gopalakrishnan y V. Veer (Eds.), Herbal Insecticides, Repellents y Biomedicines: Effectiveness y Commercialization(pp. 86-99). Springer. DOI: https://doi.org/10.1007/978-81-322-2704-5_5
Preedy, E., Perni, S., Nipiĉ, D., Bohinc, K., y Prokopovich, P. (2014). Surface roughness mediated adhesion forces between borosilicate glass y gram-positive bacteria. Langmuir: the ACS journal of surfaces y colloids, 30(31), 9466–9476. https://doi.org/10.1021/la501711t DOI: https://doi.org/10.1021/la501711t
Ramey, B. E., Koutsoudis, M., von Bodman, S. B., y Fuqua, C. (2004). Biofilm formation in plant-microbe associations. Current opinion in microbiology, 7(6), 602–609. https://doi.org/10.1016/j.mib.2004.10.014 DOI: https://doi.org/10.1016/j.mib.2004.10.014
Ranjani, A., Dhanasekaran, D., y Gopinath, P. M. (2016). An Introduction to Actinobacteria. In D. Dharumadurai y J. Yi (Eds), Actinobacteria - Basics y Biotechnological Applications(pp. 3-36). IntechOpen Limited. https://doi.org/10.5772/62329 DOI: https://doi.org/10.5772/62329
Rendueles, O., y Ghigo, J. M. (2015). Mechanisms of Competition in Biofilm Communities. Microbiology spectrum, 3(3), 10.1128/microbiolspec.MB-0009-2014. https://doi.org/10.1128/microbiolspec.MB-0009-2014 DOI: https://doi.org/10.1128/microbiolspec.MB-0009-2014
Rueda, M. E., Tavares, I., López, C. C., & García, J. (2019). Biomedica: revista del Instituto Nacional de Salud, 39(4), 798–810. https://doi.org/10.7705/biomedica.4598. DOI: https://doi.org/10.7705/biomedica.4598
Ryan, S. J., Mundis, S. J., Aguirre, A., Lippi, C. A., Beltrán, E., Heras, F., Sanchez, V., Borbor-Cordova, M. J., Sippy, R., Stewart-Ibarra, A. M., y Neira, M. (2019). Seasonal y geographic variation in insecticide resistance in Aedes aegypti in southern Ecuador. PLoS neglected tropical diseases, 13(6), e0007448. https://doi.org/10.1371/journal.pntd.0007448 DOI: https://doi.org/10.1371/journal.pntd.0007448
Saha, N., Aditya, G., Banerjee, S., y Saha, G. K. (2012). Predation potential of odonates on mosquito larvae: Implications for biological control. Biological control, 63(1), 1–8. https://doi.org/10.1016/j.biocontrol.2012.05.004 DOI: https://doi.org/10.1016/j.biocontrol.2012.05.004
Sahin, N., Veyisoglu, A., Tatar, D., Spröer, C., Cetin, D., Guven, K., & Klenk, H. P. (2014). Pseudonocardia cypriaca sp. nov., Pseudonocardia salamisensis sp. nov., Pseudonocardia hierapolitana sp. nov. y Pseudonocardia kujensis sp. nov., isolated from soil. International journal of systematic y evolutionary microbiology, 64(Pt 5), 1703–1711. https://doi.org/10.1099/ijs.0.059824-0 DOI: https://doi.org/10.1099/ijs.0.059824-0
Sakuda, S., Isogai, A., Matsumoto, S., Suzuki, A., y Koseki. K. (1996). The structure of allosamidin, a novel insect chitinase inhibitor, produced by Streptomyces sp. Tetrahedron letters, 27(22), 2475–2478. https://doi.org/10.1016/S0040-4039(00)84560-8 DOI: https://doi.org/10.1016/S0040-4039(00)84560-8
Salokhe, S. G., Deshpande, S. G., y Mukherjee, S. N. (2012). Evaluation of the insect growth regulator Lufenuron (Match®) for control of Aedes aegypti by simulated field trials. Parasitology research, 111(3), 1325–1329. https://doi.org/10.1007/s00436-012-2968-9 DOI: https://doi.org/10.1007/s00436-012-2968-9
Samson, R. A., Evans, H. C., y Latgé, J. P. (1988). Atlas of Entomopathogenic Fungi. (1st ed.) Springer-Verlag. DOI: https://doi.org/10.1007/978-3-662-05890-9_1
Samuels, R. I., Mattoso, T. C., y Moreira, D. D. (2013). Chemical warfare: Leaf-cutting ants defend themselves y their gardens against parasite attack by deploying antibiotic secreting bacteria. Communicative & integrative biology, 6(2), e23095. https://doi.org/10.4161/cib.23095 DOI: https://doi.org/10.4161/cib.23095
Schneider, C. A., Rasband, W. S., y Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature methods, 9(7), 671–675. https://doi.org/10.1038/nmeth.2089 DOI: https://doi.org/10.1038/nmeth.2089
Sekurova, O. N., Schneider, O., & Zotchev, S. B. (2019). Novel bioactive natural products from bacteria via bioprospecting, genome mining y metabolic engineering. Microbial biotechnology, 12(5), 828–844. https://doi.org/10.1111/1751-7915.13398 DOI: https://doi.org/10.1111/1751-7915.13398
Shivlata, L., y Satyanarayana, T. (2015). Thermophilic y alkaliphilic Actinobacteria: biology y potential applications. Frontiers in microbiology, 6, 1014. https://doi.org/10.3389/fmicb.2015.01014 DOI: https://doi.org/10.3389/fmicb.2015.01014
Singh, K. P., Wangikar, P. P., y Jadhav, S. (2012). Correlation between pellet morphology y glycopeptide antibiotic balhimycin production by Amycolatopsis balhimycina DSM 5908. Journal of industrial microbiology & biotechnology, 39(1), 27–35. https://doi.org/10.1007/s10295-011-0995-7 DOI: https://doi.org/10.1007/s10295-011-0995-7
Singh, K. P., Mahendra, A. L., Jayaraj, V., Wangikar, P. P., & Jadhav, S. (2013). Distribution of live y dead cells in pellets of an actinomycete Amycolatopsis balhimycina y its correlation with balhimycin productivity. Journal of industrial microbiology & biotechnology, 40(2), 235–244. https://doi.org/10.1007/s10295-012-1215-9 DOI: https://doi.org/10.1007/s10295-012-1215-9
Subramanian, S., Huiszoon, R. C., Chu, S., Bentley, W. E., & Ghodssi, R. (2019). Microsystems for biofilm characterization y sensing - A review. Biofilm, 2, 100015. https://doi.org/10.1016/j.bioflm.2019.10001 DOI: https://doi.org/10.1016/j.bioflm.2019.100015
Sugumaran, M., y Semensi, V. (1987). Sclerotization of mosquito cuticle. Experientia, 43(2), 172–174. https://doi.org/10.1007/BF01942839 DOI: https://doi.org/10.1007/BF01942839
Takano, H., Shimizu, A., Shibosawa, R., Sasaki, R., Iwagaki, S., Minagawa, O., Yamanaka, K., Miwa, K., Beppu, T., & Ueda, K. (2008). Characterization of developmental colony formation in Corynebacterium glutamicum. Applied microbiology y biotechnology, 81(1), 127–134. https://doi.org/10.1007/s00253-008-1622-z DOI: https://doi.org/10.1007/s00253-008-1622-z
Tamadoni, J. S., y Barzkar, N. (2018). Marine bacterial chitinase as sources of energy, eco-friendly agent, y industrial biocatalyst. International journal of biological macromolecules, 120(Pt B), 2147–2154. https://doi.org/10.1016/j.ijbiomac.2018.09.083 DOI: https://doi.org/10.1016/j.ijbiomac.2018.09.083
Tauch. A, y Sandbote, J. (2014). The Family Corynebacteriaceae. In E. Rosenberg E. F. DeLong, S. Lory, E. Stackebrandt y F. Thompson (Eds.), The Prokaryotes(pp. 239-277). Springer-Verlag . DOI: https://doi.org/10.1007/978-3-642-30138-4_187
Thomas M. B. (2018). Biological control of human disease vectors: a perspective on challenges y opportunities. BioControl (Dordrecht, Netherlands), 63(1), 61–69. https://doi.org/10.1007/s10526-017-9815-y DOI: https://doi.org/10.1007/s10526-017-9815-y
Tiwari, K., y Gupta, R. K. (2014). Bioactive Metabolites from Rare Actinomycetes. In A-u. Rahman (Ed.), Studies in Natural Products Chemistry(Vol. 41, pp. 419-512). Elsevier B.V. https://doi.org/10.1016/B978-0-444-63294-4.00014-0 DOI: https://doi.org/10.1016/B978-0-444-63294-4.00014-0
van der Aart, L. T., Spijksma, G. K., Harms, A., Vollmer, W., Hankemeier, T., y van Wezel, G. P. (2018). High-Resolution Analysis of the Peptidoglycan Composition in Streptomyces coelicolor. Journal of bacteriology, 200(20), e00290-18. https://doi.org/10.1128/JB.00290-18 DOI: https://doi.org/10.1128/JB.00290-18
van Dissel, D., y van Wezel, G. P. (2018). Morphology-driven downscaling of Streptomyces lividans to micro-cultivation. Antonie van Leeuwenhoek, 111(3), 457–469. https://doi.org/10.1007/s10482-017-0967-7 DOI: https://doi.org/10.1007/s10482-017-0967-7
Veiter, L., Rajamanickam, V., y Herwig, C. (2018). The filamentous fungal pellet-relationship between morphology y productivity. Applied microbiology y biotechnology, 102(7), 2997–3006. https://doi.org/10.1007/s00253-018-8818-7 DOI: https://doi.org/10.1007/s00253-018-8818-7
Ventura, M., Canchaya, C., Tauch, A., Chandra, G., Fitzgerald, G. F., Chater, K. F., & van Sinderen, D. (2007). Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiology y molecular biology reviews: MMBR, 71(3), 495–548. https://doi.org/10.1128/MMBR.00005-07 DOI: https://doi.org/10.1128/MMBR.00005-07
Vila, T. V., y Rozental, S. (2016). Biofilm Formation as a Pathogenicity Factor of Medically Important Fungi. In S. Sultan (Ed.), Fungal Pathogenicity(pp. 1-23). IntechOpen Limited. https://doi.org/10.5772/62768 DOI: https://doi.org/10.5772/62768
Viti, C., Pace, A., y Giovannetti, L. (2003). Characterization of Cr(VI)-resistant bacteria isolated from chromium-contaminated soil by tannery activity. Current microbiology, 46(1), 1–5. https://doi.org/10.1007/s00284-002-3800-z DOI: https://doi.org/10.1007/s00284-002-3800-z
Vivekanandhan, P., Arunthirumeni, M., Vengateswari, G., y Subramanian, M. (2018). Bioprospecting of Novel Fungal Secondary Metabolites for Mosquito Control. In B. Tyagi y D. Dharumadurai (Eds.), Microbial Control of Vector-Borne Diseases(pp. 61-89). Taylor & Francis Group. DOI: https://doi.org/10.1201/b22203-5
Wahl, M., Goecke, F., Labes, A., Dobretsov, S., y Weinberger, F. (2012). The second skin: ecological role of epibiotic biofilms on marine organisms. Frontiers in microbiology, 3, 292. https://doi.org/10.3389/fmicb.2012.00292 DOI: https://doi.org/10.3389/fmicb.2012.00292
Watanabe, T. (2010). Pictorial atlas of soil y seed fungi: Morphologies of Cultured Fungi y Key to Species. (3rd ed.) CRC Press. Taylor y Francis Group.
Whitman, W., Goodfellow, M., Kämpfer, P., Busse, H. J., Trujillo, M., Ludwig, W., Suzuki, K-i., y Parte, A. (Eds.). (2012). Bergey's Manual of Systematic Bacteriology. Volume 5: The Actinobacteria. (2nd ed.) Springer-Verlag. DOI: https://doi.org/10.1007/978-0-387-68233-4
Wilson, C., Lukowicz, R., Merchant, S., Valquier-Flynn, H., Caballero, J., Sandoval, J., Okuom, M., Huber, C., Brooks, T. D., Wilson, E., Clement, B., Wentworth, C. D., y Holmes, A. E. (2017). Quantitative y Qualitative Assessment Methods for Biofilm Growth: A Mini-review. Research & reviews. Journal of engineering y technology, 6(4), http://www.rroij.com/open-access/quantitative-y-qualitative-assessment-methods-for-biofilm-growth-a-minireview-.pdf.
World Health Organization (WHO). (2005). Guidelines for laboratory y field testing of mosquito larvicides. WHO.
Wu, X., Zhan, X., Gan, M., Zhang, D., Zhang, M., Zheng, X., Wu, Y., Li, Z., y He, A. (2013). Laccase2 is required for sclerotization y pigmentation of Aedes albopictus eggshell. Parasitology research, 112(5), 1929–1934. https://doi.org/10.1007/s00436-013-3349-8 DOI: https://doi.org/10.1007/s00436-013-3349-8
Yadav, S. K., y Sanyal, S. (2019). Biofilms: The Good y the Bad. In S. Kumar, N. Chandra, L. Singh, MZ, Hashmi y A. Varma (Eds), Biofilms in Human Diseases: Treatment y Control(pp. 13-26) Springer International Publishing. https://doi.org/10.1007/978-3-030-30757-8_2 DOI: https://doi.org/10.1007/978-3-030-30757-8_2
Young, K.D. (2006). The selective value of bacterial shape. Microbiology y Molecular Biology Reviews,70(3),660–703. DOI: https://doi.org/10.1128/MMBR.00001-06
Zhang, B., Wu, X., Tai, X., Sun, L., Wu, M., Zhang, W., Chen, X., Zhang, G., Chen, T., Liu, G., y Dyson, P. (2019). Variation in Actinobacterial Community Composition y Potential Function in Different Soil Ecosystems Belonging to the Arid Heihe River Basin of Northwest China. Frontiers in microbiology, 10, 2209. https://doi.org/10.3389/fmicb.2019.02209 DOI: https://doi.org/10.3389/fmicb.2019.02209
Zothanpuia, A.K., Leo, V. V., y Singh, B, P. (2018). Freshwater Actinobacteria: Potential Source for Natural Product Search y Discovery. In B. P. Singh, V. K. Gupta, A. K. Passari (Eds), New y Future Developments in Microbial Biotechnology y Bioengineering. Actinobacteria: Diversity y Biotechnological Applications(pp.67-77). Elsevier. https://doi.org/10.1016/B978-0-444-63994-3.00004-7 DOI: https://doi.org/10.1016/B978-0-444-63994-3.00004-7
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2021 Acta Biológica Colombiana
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
The acceptance of manuscripts by the Journal implies its electronic edition of open Access under Creative Commons Attribution License 4.0, and the inclusion and diffusion of the complete text through the institutional repository of the Universidad Nacional de Colombia and in all the specialized data bases that the editor considers adequate for its indexation to increase Journal visibility.
Acta Biológica Colombiana allows authors to archive, download and distribute the final published version, as well as pre-print and post-print versions including a header with the bibliographic reference of published article. The journal encourages the authors to distribute the final versión through Internet, for example in their personal or institutional web pages, and scientific social networks.