Publicado
ANTIFUNGAL AND ANTIOXIDANT POTENTIAL OF ETHANOLIC AND AQUEOUS EXTRACTS OF THE WILD PLANT CONSUELA (Tinantia erecta)
Potencial antifúngico y antioxidante de extractos acuosos de la planta silvestre Consuela (Tinantia erecta)
DOI:
https://doi.org/10.15446/abc.v28n1.95084Palabras clave:
phenolics compouds, HPLC-DAD, natural products, phytopathogens fungi, plant organs (en)compuestos fenólicos, HPLC-DAD, hongos fitopatógenos, órganos vegetales, productos naturales (es)
Descargas
Wild edible plant species can be a good source of biologically active compounds. Therefore, the aims of this research were to evaluate the antioxidant activity and quantify the phenolic compounds present in ethanolic (70% v/v) and aqueous extracts of Tinantia erecta, and to evaluate their antifungal activity against phytopathogenic fungi. The total phenol and flavonoid content and the in vitro antioxidant activity of extracts were assessed, and the phenolic compounds were quantified by HPLC. The extracts (250 μg mL–1) from T. erecta were tested for antifungal activity against Fusarium oxysporum, Phytophthora capsici, Colletotrichum gloeosporioides, Sclerotium rolfsii, and Rhizoctonia solani. The plant organ with the highest concentration of antioxidant compounds was the leaf, and the most efficient solvent for the extraction of these compounds was 70% ethanol. The phenolic compounds found in high concentrations were phloridzin (97.5 mg g–1), naringenin (19.3 mg g–1), and rutin (14.8 mg g–1). The extract obtained from leaves with 70% ethanol inhibited mycelial growth by 84 to 100%, with F. oxysporum being the least sensitive and R. solani being the most sensitive to the effect of the extract. The maximum percentage inhibition of the aqueous extracts was 15.6% against P. capsici. Extracts from the endemic species T. erecta exhibited good antioxidant activity, primarily due to the presence of phenolic compounds, and showed a great potential to inhibit phytopathogenic microorganisms.
Las plantas comestibles de origen silvestre pueden ser una fuente importante de compuestos biológicamente activos. Por tanto, el objetivo de la presente investigación fue evaluar la actividad antioxidante y cuantificar los compuestos fenólicos presentes en extractos etanólicos (70% v/v) y acuosos de Tinantia erecta y evaluar su actividad antifúngica frente a hongos fitopatógenos. Se evaluó el contenido de fenoles totales, flavonoides y la actividad antioxidante in vitro de los extractos, así mismo se cuantificaron los compuestos fenólicos por HPLC. También se evaluó la actividad antifúngica de los extractos (250 μg mL–1) de T. erecta frente a Fusarium oxysporum, Phytophthora capsici, Colletotrichum gloeosporioides, Sclerotium rolfsii y Rhizoctonia solani. El órgano de la planta con mayor concentración de compuestos antioxidantes fue la hoja, y el solvente más eficiente para la extracción de estos compuestos fue el etanol al 70%. Los compuestos fenólicos encontrados en más altas concentraciones fueron floridzina (97.5 mg g–1), naringenina (19.3 mg g–1) y rutina (14.8 mg g–1). El extracto obtenido de hojas con etanol al 70% inhibió el crecimiento micelial en un 84 a 100%, siendo F. oxysporum el menos sensible y R. solani el más sensible al efecto del extracto. El máximo porcentaje de inhibición de los extractos acuosos fue de tan sólo 15.6% frente a P. capsici. Los extractos de la especie endémica T. erecta exhibieron una buena actividad antioxidante, debido a la presencia de los compuestos fenólicos, así mismo mostraron un gran potencial para inhibir microorganismos fitopatógenos.
Referencias
Aguiñiga-Sánchez, I., Cadena-Iñiguez, J., Santiago-Osorio, E., Gómez-García, G., Mendoza-Núñez, V. M., Rosado-Pérez, J., Ruíz-Ramos, M., Cisneros-Solano, V. M., Ledesma-Martínez, E., Delgado-Bordonave, A. D. J., & Soto-Hernández, R. M. (2017). Chemical analyses and in vitro and in vivo toxicity of fruit methanol extract of Sechium edule var. nigrum spinosum. Pharmaceutical Biology, 55(1), 1638–1645. https://doi.org/10.1080/13880209.2017.1316746 DOI: https://doi.org/10.1080/13880209.2017.1316746
Aslam, M., Habib, A., Sahi, S. T., & Khan, R. R. (2020). Effect of Bion and Salicylic acid on peroxidase activity and total phenolics in tomato against Alternaria solani. Pakistan Journal of Agricultural Sciences, 57(1), 53-62. https://doi.org/10.21162/PAKJAS/20.2020
Andrade-Andrade, G., Delgado-Alvarado, A., Herrera-Cabrera, B. E., Arévalo-Galarza, L., & Caso-Barrera, L. (2018). Variation of phenolic compounds, flavonoids and tannins in Vanilla planifolia Jacks. ex Andrews in the Huasteca Hidalguense, Mexico. Agrociencia, 52(1), 55–66.
Ayala-Zavala, J. F., Silva-Espinoza, B. A., Cruz-Valenzuela, M. R., Villegas-Ochoa, M. A., Esqueda, M., González-Aguilar, G. A., & Calderón-López, Y. (2012). Antioxidant and antifungal potential of methanol extracts of Phellinus spp. from Sonora, Mexico. Revista Iberoamericana de Micologia, 29(3), 132–138. https://doi.org/10.1016/j.riam.2011.09.004 DOI: https://doi.org/10.1016/j.riam.2011.09.004
Barrientos Ramírez, L., Arvizu, M. L., Salcedo Pérez, E., Villanueva Rodríguez, S., Vargas Radillo, J. J., Barradas Reyes, B. A., & Ruiz López, M. A. (2019). Contenido de polifenoles y capacidad antioxidante de Physalis chenopodifolia Lam. silvestre y cultivo. Revista Mexicana de Ciencias Forestales, 10(51), 182-200. DOI: https://doi.org/10.29298/rmcf.v10i51.323
Basu, A., Prasad, P., Das, S. N., Kalam, S., Sayyed, R. Z., Reddy, M. S., & El Enshasy, H. (2021). Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: recent developments, constraints, and prospects. Sustainability, 13(3), 1140-1160. https://doi.org/10.3390/su13031140 DOI: https://doi.org/10.3390/su13031140
Batnini, M., Haddoudi, I., Taamali, W., Djebali, N., Badri, M., Mrabet, M., & Mhadhbi, H. (2021). Medicago truncatula in Interaction with Fusarium and Rhizoctonia Phytopathogenic Fungi: Fungal Aggressiveness, Plant Response Biodiversity and Character Heritability Indices. The Plant Pathology Journal, 37(4), 315-328. https://doi.org/10.5423/PPJ.OA.01.2021.0010 DOI: https://doi.org/10.5423/PPJ.OA.01.2021.0010
Behiry, S. I., Okla, M. K., Alamri, S. A., El-Hefny, M., Salem, M. Z., Alaraidh, I. A., Al-Ghtani, S. M., Monroy J. C., & Salem, A. Z. (2019). Antifungal and antibacterial activities of Musa paradisiaca L. peel extract: HPLC analysis of phenolic and flavonoid contents. Processes, 7(4), 215-229. https://doi.org/10.3390/pr7040215 DOI: https://doi.org/10.3390/pr7040215
Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5 DOI: https://doi.org/10.1016/S0023-6438(95)80008-5
Diem, Q., Elisa, A., & Tran-nguyen, P. L. (2013). Effect of extraction solvent on total phenol content, total flavonoids content, and antioxidant activity of Limnophila aromatica. Journal of Food and Drug Analysis, 22(3), 1–7. https://doi.org/10.1016/j.jfda.2013.11.001 DOI: https://doi.org/10.1016/j.jfda.2013.11.001
Ferhat, R., Lekbir, A., Ouadah, H., Kahoul, M. A., Khlalfa, L., Laroui, S., & Alloui-Lombarkia, O. (2017). Effect of extraction solvent on total phenolic content, total flavonoid content, and antioxidant activities of Algerian pomace olive oil. International Food Research Journal, 24(6), 2295–2303.
Fernández-Rodríguez, V. E., & Ruiz-López, M. A. (2021). Polyphenol content, antioxidant capacity and toxicity of Solanum ferrugineum (Solanaceae) with medicinal potential. Acta Biológica Colombiana, 26(3), 2-34. https://doi.org/10.15446/abc.v26n3.87032 DOI: https://doi.org/10.15446/abc.v26n3.87032
Filippi, D., Rodrigues, L. B., Priamo, W. L., Chiomento, J. L. T., & Friedrich, M. T. (2020). Phenolic compounds in fisalis (Physalis peruviana Linneus) extracts and action of the extracts on the phytopathogen Botrytis cinerea Pers. Brazilian Journal of Development, 6(10), 78370-78385. https://doi.org/10.34117/bjdv6n10-316. DOI: https://doi.org/10.34117/bjdv6n10-316
García E. (2004). Modificaciones al Sistema de Clasificación Climática de Köppen. Universidad Autónoma de México.
Gutiérrez-Tlahque, J., Aguirre-Mancilla, C. L., López-Palestina, C., Sánchez-Fernández, R. E., Hernández-Fuentes, A. D., & Martin Torres-Valencia, J. (2019). Constituents, antioxidant and antifungal properties of Jatropha dioica var. dioica. Natural Product Communications, 14(5), 1-5. https://doi.org/10.1177/1934578X19852433 DOI: https://doi.org/10.1177/1934578X19852433
Joaquín-Ramos, A. J., López-Palestina, C. U., Pinedo-Espinoza, J. M., Altamirano-Romo, S. E., Santiago-Saenz, Y. O., Aguirre-Mancilla, C. L., & Gutiérrez-Tlahque, J. (2020). Phenolic compounds, antioxidant properties and antifungal activity of jarilla (Barkleyanthus salicifolius [Kunth] H. Rob & Brettell). Chilean Journal of Agricultural Research, 80(3), 352-360. https://doi.org/10.4067/S0718-58392020000300352 DOI: https://doi.org/10.4067/S0718-58392020000300352
He, M. H., Wang, Y. P., Wu, E. J., Shen, L. L., Yang, L. N., Wang, T., Shang, L. P., Zhu W., & Zhan, J. (2019). Constraining evolution of Alternaria alternata resistance to a demethylation inhibitor (DMI) fungicide difenoconazole. Frontiers in Microbiology, 10, 1609-1622. https://doi.org/10.3389/fmicb.2019.01609 DOI: https://doi.org/10.3389/fmicb.2019.01609
Kaur, J., Gulati, M., Singh, S. K., Kuppusamy, G., Kapoor, B., Mishra, V., Gupta, S., Mohammed F. A., Porwal, O., Kumar, N. J., Chaitanya, M. V. N. L., Chellappan, K. D., Gupta, G., Gupta, P. K., Dua, K., Khursheed, R., Awasthia, A., & Corrie, L. (2022). Discovering multifaceted role of vanillic acid beyond flavours: Nutraceutical and therapeutic potential. Trends in Food Science & Technology. 122, 187-200. https://doi.org/10.1016/j.tifs.2022.02.023 DOI: https://doi.org/10.1016/j.tifs.2022.02.023
Lattanzio, V., Lattanzio, V. M., & Cardinali, A. (2006). Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. In F. Imperato (Ed.), Phytochemistry: Advances in research (pp. 23–67). Research Signpost. https://www.semanticscholar.org/paper/Roleof-phenolics-in-the-resistance-mechanisms-of-LattanzioLattanzio/8b9ffbf3d54452cca6cadf210bfbe9d0c4ec679f
Li, J., Gu, F., Wu, R., Yang, J., & Zhang, K. Q. (2017). Phylogenomic evolutionary surveys of subtilase superfamily genes in fungi. Scientific Reports, 7(1), 1-15. https://doi.org/10.1038/srep45456 DOI: https://doi.org/10.1038/srep45456
Manuja, R., Sachdeva, S., Jain, A., & Chaudhary, J. (2013). A comprehensive review on biological activities of p-hydroxy benzoic acid and its derivatives. International Journal of Pharmaceutical Sciences Review and Research, 22(2), 109-115.
Marciniec, R., Zieba, E., & Winiarczyk, K. (2019). Distribution of plastids and mitochondria during male gametophyte formation in Tinantia erecta (Jacq) Fenzl. Protoplasma, 256, 1051–1063. https://doi.org/10.1007/s00709-019-01363-5 DOI: https://doi.org/10.1007/s00709-019-01363-5
Maurya, S., Singh, R., Singh, D. P., Singh, H. B., & Srivastava, J. S. (2007). Phenolic compounds of Sorghum vulgare in response to Sclerotium rolfsii infection. Journal of Plant Interactions, 2(1), 25–28. https://doi.org/10.1080/17429140701422504 DOI: https://doi.org/10.1080/17429140701422504
Mayo-Prieto, S., Marra, R., Vinale, F., Rodr, Á., Woo, S. L., Lorito, M., Guti, S., & Casquero, P. A. (2019). Effect of Trichoderma velutinum and Rhizoctonia solani on the Metabolome of Bean Plants (Phaseolus vulgaris L.). International Journal of Molecular Sciences, 20(3), 549. https://doi.org/10.3390/ijms20030549 DOI: https://doi.org/10.3390/ijms20030549
Meneses, N. G. T., Martins, S., Teixeira, J. A., & Mussatto, S. I. (2013). Influence of extraction solvents on the recovery of antioxidant phenolic compounds from brewers spent grains. Separation and Purification Technology, 108, 152–158. https://doi.org/10.1016/j.seppur.2013.02.015 DOI: https://doi.org/10.1016/j.seppur.2013.02.015
Mera-Ovando, L. M., Alvarado-Flores, R., Basurto-Peña, F., Castro-Lara, D., Evangelista, V., Mapes-Sánchez, C., Martínez-Alfaro, M. Ä., Molina, N., & Saldívar, J. (2003). De quelites me como un taco. Experiencia en educación nutricional. Revista del Jardín Botánico Nacional, 24(1–2), 45–49. https://www.jstor.org/stable/42597191
Murata, K., Kitano, T., Yoshimoto, R., Takata, R., Ube, N., Ueno, K., Yabuta, Y., Teraishi, M., Holland, C. K., Jander, G., Okumoto, Y., Mori, N., & Ishihara, A. (2020). Natural variation in the expression and catalytic activity of a naringenin 7-O-methyltransferase influences antifungal defenses in diverse rice cultivars. The Plant Journal, 101(5), 1103-1117. https://doi.org/10.1111/tpj.14577 DOI: https://doi.org/10.1111/tpj.14577
Muthukrishnan, S., Kumar, T. S., Gangaprasad, A., Maggi, F., & Rao, M. V. (2018). Phytochemical analysis, antioxidant and antimicrobial activity of wild and in vitro derived plants of Ceropegia thwaitesii Hook – An endemic species from Western Ghats, India. Journal of Genetic Engineering and Biotechnology, 16(2), 621–630. https://doi.org/10.1016/j.jgeb.2018.06.003 DOI: https://doi.org/10.1016/j.jgeb.2018.06.003
Patzke, H., & Schieber, A. (2018). Growth-inhibitory activity of phenolic compounds applied in an emulsifiable concentrate-ferulic acid as a natural pesticide against Botrytis cinerea. Food Research International, 113, 18-23. https://doi.org/10.1016/j.foodres.2018.06.062 DOI: https://doi.org/10.1016/j.foodres.2018.06.062
Prasad, R., & Prasad, S. B. (2019). A review on the chemistry and biological properties of Rutin, a promising nutraceutical agent. Asian Journal of Pharmacy and Pharmacology, 5(51), 1-20. https://doi.org/10.31024/ajpp.2019.5.s1.1 DOI: https://doi.org/10.31024/ajpp.2019.5.s1.1
Osondu, H. A. A., Akinola, S. A., Shoko, T., & Sivakumar, D. (2022). Phenolic compounds suppress anthracnose decay by enhancing antifungal properties and biochemical defence responses in avocado fruit. Journal of Plant Pathology, 1-10. https://doi.org/10.1007/s42161-022-01085-3 DOI: https://doi.org/10.1007/s42161-022-01085-3
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant Activity Applying an Improved ABTS Radical cation decolorization assay. Free Radical Biology & Medicine, 26(9–10), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3 DOI: https://doi.org/10.1016/S0891-5849(98)00315-3
Romero-Cortes, T., Pérez España, V. H., López Pérez, P. A., Rodríguez-Jimenes, G. D. C., Robles-Olvera, V. J., Aparicio Burgos, J. E., & Cuervo-Parra, J. A. (2019). Antifungal activity of vanilla juice and vanillin against Alternaria alternata. CyTA-Journal of Food, 17(1), 375-383. https://doi.org/10.1080/19476337.2019.1586776 DOI: https://doi.org/10.1080/19476337.2019.1586776
Roy, S., Nuckles, E., & Archbold, D. D. (2017). Effects of Phenolic Compounds on Growth of Colletotrichum spp. In Vitro. Current Microbiology, 75(5), 550–556. https://doi.org/10.1007/s00284-017-1415-7 DOI: https://doi.org/10.1007/s00284-017-1415-7
Saharan, V., Sharma, G., Yadav, M., Choudhary, M. K., Sharma, S. S., Pal, A., & Biswas, P. (2015). Synthesis and in vitro antifungal efficacy of Cu–chitosan nanoparticles against pathogenic fungi of tomato. International Journal of Biological Macromolecules, 75, 346-353. https://doi.org/10.1016/j.ijbiomac.2015.01.027 DOI: https://doi.org/10.1016/j.ijbiomac.2015.01.027
San Miguel-Chávez, R. (2017). Phenolic antioxidant capacity: A review of the state of the art. In M. Soto-Hernández (Ed.), Phenolic Compounds - Biological Activity (pp. 23–67). IntechOpen. https://doi.org/10.5772/66897 DOI: https://doi.org/10.5772/66897
Santiago-Saenz, Y. O., Hernández-Fuentes, A. D., Monroy-Torres, R., Cariño-Cortés, R., & Jiménez-Alvarado, R. (2018). Physicochemical, nutritional and antioxidant characterization of three vegetables (Amaranthus hybridus L., Chenopodium berlandieri L., Portulaca oleracea L.) as potential sources of phytochemicals and bioactive compounds. Journal of Food Measurement and Characterization, 12(4). https://doi.org/10.1007/s11694-018-9900-7 DOI: https://doi.org/10.1007/s11694-018-9900-7
Santiago-Saenz, Y. O., López-Palestina, C. U., Gutiérrez-Tlahque, J., Monroy-Torres, R., Pinedo-Espinoza, J. M., & Hernández-Fuentes, A. D. (2020). Nutritional and functional evaluation of three powder mixtures based on mexican quelites: alternative ingredients to formulate food supplements. Food Science and Technology, 40(4), 1029-1037. https://doi.org/10.1590/fst.28419 DOI: https://doi.org/10.1590/fst.28419
Sarfraz, M., Khan, S. A., Moosa, A., Farzand, A., Ishaq, U., Naeem, I., & Khan, W. A. (2018). Promising antifungal potential of selective botanical extracts, fungicides and Trichoderma isolates against Alternaria solani. Cercet ri agronomice în Moldova, 51, 65-74. DOI: https://doi.org/10.2478/cerce-2018-0006
Schöneberg, T., Kibler, K., Sulyok, M., Musa, T., Bucheli, D., Mascher, F., Bertossa, M., & Voegele, R. T. (2018). Can plant phenolic compounds reduce Fusarium growth and mycotoxin production in cereals? Food Additives & Contaminants: Part A, 35(12), 2455–2470. https://doi.org/10.1080/19440049.2018.1538570 DOI: https://doi.org/10.1080/19440049.2018.1538570
Singleton, V. L., & Rossi, A. J. (1965). Colorunetry of total phenolics with phosphomolybdic- phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144–158. http://www.ajevonline.org/content/16/3/144.abstract DOI: https://doi.org/10.5344/ajev.1965.16.3.144
Sultana, B., Anwar, F., & Ashraf, M. (2009). Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules, 14(6), 2167–2180. https://doi.org/10.3390/molecules14062167 DOI: https://doi.org/10.3390/molecules14062167
Tian, L., Cao, J., Zhao, T., Liu, Y., Khan, A., & Cheng, G. (2021). The bioavailability, extraction, biosynthesis and distribution of natural dihydrochalcone: Phloridzin. International Journal of Molecular Sciences, 22(2), 962. https://doi.org/10.3390/ijms22020962 DOI: https://doi.org/10.3390/ijms22020962
Venkateswara, R., Kiran, P., Rohini, P., & Bhagyasree, P. (2017). Flavonoid: A review on Naringenin. Journal of Pharmacognosy and Phytochemistry, 6(5), 2778-2783.
Villaseñor, J. L., & Espinosa, G. (1998). Catálogo de malezas. Universidad Nacional Autónoma de México.
Zabka, M., & Pavela, R. (2013). Antifungal efficacy of some natural phenolic compounds against significant pathogenic and toxinogenic filamentous fungi. Chemosphere, 93(6), 1051–1056. https://doi.org/10.1016/j.chemosphere.2013.05.076 DOI: https://doi.org/10.1016/j.chemosphere.2013.05.076
Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64(4), 555–559. https://doi.org/10.1016/S0308-8146(98)00102-2 DOI: https://doi.org/10.1016/S0308-8146(98)00102-2
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
CrossRef Cited-by
1. Carlos Schneider, Makarena González-Reyes, Carola Vergara, Camila Fuica-Carrasco, Patricio Zapata. (2024). Antioxidant and Antifungal Activities and Characterization of Phenolic Compounds Using High-Performance Liquid Chromatography and Mass Spectrometry (HPLC-MS) in Empetrum rubrum Vahl ex Willd.. Plants, 13(4), p.497. https://doi.org/10.3390/plants13040497.
2. Ricardo Omar Navarro-Cortez, Yair Olovaldo Santiago-Saenz, César Uriel López-Palestina, Jorge Gutiérrez-Tlahque, Javier Piloni-Martini. (2023). Application of a Simplex–Centroid Mixture Design to Evaluate the Phenolic Compound Content and Antioxidant Potential of Plants Grown in Mexico. Foods, 12(18), p.3479. https://doi.org/10.3390/foods12183479.
Dimensions
PlumX
Visitas a la página del resumen del artículo
Descargas
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
1. La aceptación de manuscritos por parte de la revista implicará, además de su edición electrónica de acceso abierto bajo licencia Attribution-NonCommercial-ShareAlike 4.0 (CC BY NC SA), la inclusión y difusión del texto completo a través del repositorio institucional de la Universidad Nacional de Colombia y en todas aquellas bases de datos especializadas que el editor considere adecuadas para su indización con miras a incrementar la visibilidad de la revista.
2. Acta Biológica Colombiana permite a los autores archivar, descargar y compartir, la versión final publicada, así como las versiones pre-print y post-print incluyendo un encabezado con la referencia bibliográfica del articulo publicado.
3. Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
4. Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos institucionales, en su página web o en redes sociales cientificas como Academia, Researchgate; Mendelay) lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada. (Véase El efecto del acceso abierto).