Published

2022-08-30

Taxonomic identification and diversity of effective soil microorganisms: towards a better understanding of this microbiome

Identificación taxonómica y diversidad de microorganismos efectivos del suelo: hacia un mejor entendimiento de este microbioma

DOI:

https://doi.org/10.15446/agron.colomb.v40n2.101378

Keywords:

molecular methods, soil microorganisms, agricultural residues, polyphasic approach (en)
métodos moleculares, microorganismos del suelo, residuos agrícolas, enfoque polifásico (es)

Downloads

Authors

  • Annerys Carabeo Universidad de Sancti Spiritus “José Martí Pérez” - Centro de Estudios de Energía y Procesos Industriales - Unidad de Desarrollo e Innovación - Sancti Spíritus, Cuba https://orcid.org/0000-0003-0129-5544
  • Janet Jiménez Universidad de Sancti Spiritus “José Martí Pérez” - Centro de Estudios de Energía y Procesos Industriales - Unidad de Desarrollo e Innovación - Sancti Spíritus, Cuba https://orcid.org/0000-0003-1631-6539
  • Zuleiqui Gil Universidad de Sancti Spiritus “José Martí Pérez” - Centro de Estudios de Energía y Procesos Industriales - Unidad de Desarrollo e Innovación - Sancti Spíritus, Cuba https://orcid.org/0000-0002-7743-1867
  • Deborah Henderson Kwantlen Polytechnic University - Institute for Sustainable Horticulture - Surrey, Canada https://orcid.org/0000-0003-2737-0899
  • Paul Adams Kwantlen Polytechnic University - Institute for Sustainable Horticulture - Surrey, Canada https://orcid.org/0000-0002-6722-6501
  • Alexander Calero-Hurtado Universidad de Sancti Spiritus “José Martí Pérez” - Centro Universitario Municipal de Taguasco “Enrique José Varona” - Sancti Spíritus, Cuba https://orcid.org/0000-0001-6536-2908

Soil microorganisms found in agricultural residues and the so-called efficient microorganisms (EM) are attractive for their potential applications and benefits in the bioremediation of complex ecosystems. However, the knowledge about Who is doing what?, as well as the trophic interaction in those communities that explain its benefits are limited; a better understanding of this microbiome is needed to explain its benefits. The objective of this research was to characterize the microorganisms isolated from two soil communities and the efficient microorganisms obtained in laboratory (EM16 consortium), taking into account physico-chemical characteristics, diversity, quantification, and taxonomic identification through microbiological and molecular techniques. A microbiological analysis was performed according to the morphological characteristics of the colonies as well as the study of the dynamics and taxonomic identification of the microbial populations through the TRFLP and Ion Torrent techniques. The diversity, dynamics, and taxonomic identification achieved in these studies showed the prospects for using these soil EM in bioremediation, considering the diverse metabolic pathways that these species have and their symbiotic interactive potential for biodegradation of lignocellulosic-resilient compounds. This study provides the first molecular characterization of the EM (EM16 consortium) and soil isolates from agricultural residues (sugarcane crop and bamboo field). The results suggest that the use of microbiological and molecular tools in a polyphasic approach allows the complete characterization of non-cultivable microorganisms that could contribute to sustainable environmental management and crop production.

Los microorganismos del suelo que se encuentran en los residuos agrícolas y los llamados microorganismos eficientes (ME) son atractivos por su potencial aplicación y beneficios en la biorremediación de ecosistemas complejos. Sin embargo, el conocimiento sobre ¿Quién hace qué?, así como la interacción trófica en esas comunidades que explican sus beneficios son limitados; se necesita una mejor comprensión de este microbioma que explique sus beneficios. El objetivo de esta investigación fue caracterizar los microorganismos aislados de dos comunidades de suelo y los ME obtenidos en el laboratorio (consorcio EM16), teniendo en cuenta las características físico-químicas, la diversidad, la cuantificación y la identificación taxonómica mediante técnicas microbiológicas y moleculares. Se realizó un análisis microbiológico según las características morfológicas de las colonias, así como el estudio de la dinámica e identificación taxonómica de las poblaciones microbianas mediante las técnicas TRFLP e Ion Torrent. La diversidad, dinámica e identificación taxonómica logradas en este estudio mostraron las perspectivas para uso de estos ME del suelo para la biorremediación, considerando las posibles rutas metabólicas que tienen estas especies y su potencial de interacción simbiótica para la biodegradación de compuestos lignocelulósicos resistentes. Este estudio proporciona la primera caracterización molecular de los ME (consorcio EM16) y de aislados del suelo procedentes de residuos agrícolas (cultivo de caña de azúcar y campo de bambú). Los resultados sugieren que el uso de herramientas microbiológicas y moleculares en un enfoque polifásico permite la caracterización completa de microorganismos no cultivables que podrían contribuir a la gestión ambiental sostenible y a la producción de cultivos.

References

Abd El-Mageed, T. A., Rady, M. M., Taha, R. S., Abd El Azeam, S., Simpson, C. R., & Semida, W. M. (2020). Effects of integrated use of residual sulfur-enhanced biochar with effective microorganisms on soil properties, plant growth and short-term productivity of Capsicum annuum under salt stress. Scientia Horticulturae, 261, Article 108930. https://doi.org/10.1016/j.scienta.2019.108930

Adamiak, J., Otlewska, A., Tafer, H., Lopandic, K., Gutarowska,B., Sterflinger, K., & Piñar, G. (2018). First evaluation of the microbiome of built cultural heritage by using the Ion Torrent next generation sequencing platform. International Biodeterioration & Biodegradation, 131, 11–18. https://doi.org/10.1016/j.ibiod.2017.01.040

Allahverdiyev, S. R., Kırdar, E., Gunduz, G., Kadimaliyev, D., Revin, V., Filonenko, V., Rasulova, D. A., Abbasova, Z. I., Gani-Zade, S. I., & Zeynalova, E. M. (2011). Effective microorganisms (EM) technology in plants. Technology, 14(4), 103–106.

Allahverdiyev, S., Atilla, A., Ismail, B. S., & Sahmurova, A. (2011). Response of photosystem II and photosynthetic pigments to salt and Baikal EM1 in tree seedlings. African Journal of Biotechnology, 10(4), 535–538.

Alvarez, M., Tucta, F., Quispe, E., & Meza, V. (2018). Incidencia de la inoculación de microorganismos benéficos en el cultivo de fresa (Fragaria sp.). Scientia Agropecuaria, 9(1), 33–42. https://doi.org/10.17268/sci.agropecu.2018.01.04

Amin, F. R., Khalid, H., Zhang, H., Rahman, S. U., Zhang, R., Liu, G., & Chen, C. (2017). Pretreatment methods of lignocellulosic biomass for anaerobic digestion. AMB Express, 7(1), Article 72. https://doi.org/10.1186/s13568-017-0375-4

Azman, S., Khadem, A. F., van Lier, J. B., Zeeman, G., & Plugge, C. M. (2015). Presence and role of anaerobic hydrolytic microbes in conversion of lignocellulosic biomass for biogas production. Critical Reviews in Environmental Science and Technology, 45(23), 2523–2564. https://doi.org/10.1080/10643389.2015.1053727

Baird, R. B., Eaton, A. D., & Rice, E. W. (Eds.). (2017). Standard methods for the examination of water and wasterwater (23rd ed.). American Public Health Association.

Blainski, J. M. L., Rocha Neto, A. C., Schimidt, E. C., Voltolini, J. A., Rossi, M. J., & Di Piero, R. M. (2018). Exopolysaccharides from Lactobacillus plantarum induce biochemical and physiological alterations in tomato plant against bacterial spot. Applied Microbiology and Biotechnology, 102(11), 4741–4753. https://doi.org/10.1007/s00253-018-8946-0

Breitenstein, A., Wiegel, J., Haertig, C., Weiss, N., Andreesen, J. R., & Lechner, U. (2002). Reclassification of Clostridium hydroxybenzoicum as Sedimentibacter hydroxybenzoicus gen. nov., comb. nov., and description of Sedimentibacter saalensis sp. nov. International Journal of Systematic and Evolutionary Microbiology, 52(3), 801–807. https://doi.org/10.1099/00207713-52-3-801

Calero Hurtado, A., Pérez Díaz, Y., Quintero Rodríguez, E., Olivera Viciedo, D., & Peña Calzada, K. (2019). Efecto de la aplicación asociada entre Rhizobium leguminosarum y microorganismos eficientes sobre la producción del fríjol común. Ciencia y Tecnología Agropecuaria, 20(2), 295–322. https://doi.org/10.21930/rcta.vol20_num2_art:1460

Calero Hurtado, A., Quintero Rodríguez, E., Pérez Díaz, Y., Jiménez Hernández, J., & Castro Lizazo, I. (2020). Asociación entre AzoFert® y microorganismos eficientes como potenciadores del crecimiento y la productividad del frijol. Revista de la Facultad de Agronomía, 37(4), 387–409. https://doi.org/10.47280/RevFacAgron(LUZ).v37.n4.04

Calero Hurtado, A., Quintero Rodríguez, E., Pérez Díaz, Y., Olivera Viciedo, D., Peña Calzada, K., & Jiménez Hernández, J. (2019). Efecto entre microorganismos eficientes y fitomas-e en el incremento agroproductivo del frijol. Biotecnología en el Sector Agropecuario y Agroindustrial, 17(1), 25–33.

Carabeo-Pérez, A., Guerra-Rivera, G., Ramos-Leal, M., & Jiménez-Hernández, J. (2019). Metagenomic approaches: Effective tools for monitoring the structure and functionality of microbiomes in anaerobic digestion systems. Applied Microbiology and Biotechnology, 103(23), 9379–9390. https://doi.org/10.1007/s00253-019-10052-5

Castro Lizazo, I., Calero Hurtado, A., Rodríguez Hernández, M. G., Peláez Casas, A., Martínez Balmori, D., & Pérez Díaz, Y. (2022). Potencialidades de dos bioestimulantes en la germinación y el crecimiento de las plántulas de tomate: QuitoMax® and OPLANT+® improve tomato germination and growth. Ciencia & Tecnología Agropecuaria, 23(1), Article 2343. https://doi.org/10.21930/rcta.vol23_num1_art:2343

Chang, Y.-H., Jung, M. Y., Park, I.-S., & Oh, H.-M. (2008). Sporolactobacillus vineae sp. nov., a spore-forming lactic acid bacterium isolated from vineyard soil. International Journal of Systematic and Evolutionary Microbiology, 58(10), 2316–2320. https://doi.org/10.1099/ijs.0.65608-0

Chassard, C., Delmas, E., Robert, C., Lawson, P. A., & Bernalier-Donadille, A. (2012). Ruminococcus champanellensis sp. nov., a cellulose-degrading bacterium from human gut microbiota. International Journal of Systematic and Evolutionary Microbiology, 62(1), 138–143. https://doi.org/10.1099/ijs.0.027375-0

Cortés Ortiz, W. G. (2016). Tratamientos aplicables a materiales lignocelulósicos para la obtención de etanol y productos químicos. Revista de Tecnología, 13(1), 39–44.

Crespo López, G., Cabrera Carcedo, E. A., & Díaz García, V. J. (2018). Study of the fertility of a carbonate red brown soil in a biomass bank with Cenchrus purpureus cv. CUBA CT-115 of ten exploitation years. Cuban Journal of Agricultural Science, 52(1), 67–74.

Dai, X., Chen, Y., Zhang, D., & Yi, J. (2016). High-solid anaerobic co-digestion of sewage sludge and cattle manure: The effects of volatile solid ratio and pH. Scientific Reports, 6(1), Article 35194. https://doi.org/10.1038/srep35194

Daranas, N., Badosa, E., Francés, J., Montesinos, E., & Bonaterra, A. (2018). Enhancing water stress tolerance improves fitness in biological control strains of Lactobacillus plantarum in plant environments. PLoS ONE, 13(1), Article e0190931. https://doi.org/10.1371/journal.pone.0190931

Després, V. R., Nowoisky, J. F., Klose, M., Conrad, R., Andreae, M. O., & Pöschl, U. (2007). Characterization of primary biogenic aerosol particles in urban, rural, and high-alpine air by DNA sequence and restriction fragment analysis of ribosomal RNA genes. Biogeosciences, 4(6), 1127–1141. https://doi.org/10.5194/bg-4-1127-2007

Erktan, A., Or, D., & Scheu, S. (2020). The physical structure of soil: Determinant and consequence of trophic interactions. Soil Biology and Biochemistry, 148, Article 107876. https://doi.org/10.1016/j.soilbio.2020.107876

Febles-González, J. M., Vega-Carreño, M. B., Amaral-Sobrinho, N. M. B., Tolón-Becerra, A., & Lastra-Bravo, X. B. (2014). Soil loss from erosion in the next 50 years in karst regions of Mayabeque province, Cuba. Land Degradation & Development, 25(6), 573–580. https://doi.org/10.1002/ldr.2184

Flint, H. J., Bayer, E. A., Rincon, M. T., Lamed, R., & White, B. A. (2008). Polysaccharide utilization by gut bacteria: Potential for new insights from genomic analysis. Nature Reviews Microbiology, 6(2), 121–131. https://doi.org/10.1038/nrmicro1817

Fujita, R., Mochida, K., Kato, Y., & Goto, K. (2010). Sporolactobacillus putidus sp. nov., an endospore-forming lactic acid bacterium isolated from spoiled orange juice. International Journal of Systematic and Evolutionary Microbiology, 60(7), 1499–1503. https://doi.org/10.1099/ijs.0.002048-0

Goncharov, A. A., & Tiunov, A. V. (2014). Trophic chains in the soil. Biology Bulletin Reviews, 4(5), 393–403. https://doi.org/10.1134/S207908641405003X

González-Herrera, J. E., Hernández-Beltrán, Y., López González, L. M., & Jiménez Hernández, J. (2021). Digestión anaerobia de suero de queso utilizando inóculo de estiércol porcino a diferentes relaciones inóculo-sustrato. Centro Azúcar, 48(3), 11–20.

Goodfellow, M., Kämpfer, P., De Vos, P., Rainey, F. A., Schleifer, K.- H., & Whitman, W. B. (Eds.). (2009). Family VIII. Ruminococcaceae fam. nov. In P. De Vos, G. M. Garrity, D. Jones, N. R. Krieg, W. Ludwig, F. A, Rainey, K.-H. Schleifer, & W. B. Whitman (Eds.), Bergey’s manual of systematic bacteriology (Vol. 3: The Firmicutes, pp. 1016–1043). Springer.

Henry, A. B., Maung, C. E. H., & Kim, K. Y. (2020). Metagenomic analysis reveals enhanced biodiversity and composting efficiency of lignocellulosic waste by thermoacidophilic effective microorganism (tEM). Journal of Environmental Management, 276, Article 111252. https://doi.org/10.1016/j.jenvman.2020.111252

Higa, T., & Parr, J. F. (2013). Microorganismos benéficos y efectivos para una agricultura y medio ambiente sostenibles. Centro Internacional de Investigación de Agricultura Natural.

Imachi, H., Sakai, S., Kubota, T., Miyazaki, M., Saito, Y., & Takai, K. (2016). Sedimentibacter acidaminivorans sp. nov., an anaerobic, amino-acid-utilizing bacterium isolated from marine subsurface sediment. International Journal of Systematic and Evolutionary Microbiology, 66(3), 1293–1300. https://doi.org/10.1099/ijsem.0.000878

Jacoby, R., Peukert, M., Succurro, A., Koprivova, A., & Kopriva, S. (2017). The role of soil microorganisms in plant mineral nutrition—Current knowledge and future directions. Frontiers in Plant Science, 8, Article 1617. https://doi.org/10.3389/fpls.2017.01617

Jiménez-Hernández, J., Carabeo-Pérez, A., & Guerra-Rivera, G. (2021). Métodos moleculares avanzados para el monitoreo de muestras ambientales: Una propuesta para Cuba. Revista Cubana de Ciencias Biológicas, 9(2), 1–14.

Joshi, H., Somduttand, Choudhary, P., & Mundra, S. L. (2019). Role of Effective Microorganisms (EM) in sustainable agriculture. International Journal of Current Microbiology and Applied Sciences, 8(3), 172–181. https://doi.org/10.20546/ijcmas.2019.803.024

La Reau, A. J., Meier-Kolthoff, J. P., & Suen, G. (2016). Sequence-based analysis of the genus Ruminococcus resolves its phylogeny and reveals strong host association. Microbial Genomics, 2(12), 1–13. https://doi.org/10.1099/mgen.0.000099

Lane, D. J. (1991). 16S/23S rRNA sequencing. In E. Stackebrandt, & M. Goodfellow (Eds.), Nucleic acid techniques in bacterial systematics (pp. 115–175). John Wiley & Sons, Inc.

López-Dávila, E., Calero Hurtado, A., Gómez León, Y., Gil Unday, Z., Henderson, D., & Jimenez, J. (2017). Efecto agronómico del biosólido en cultivo de tomate (Solanum lycopersicum): Control biológico de Rhizoctonia solani. Cultivos Tropicales, 38(1), 13–23.

López-Dávila, E., Gil Unday, Z., Henderson, D., Calero Hurtado, A., & Jiménez Hernánde, J. (2017). Use of biogas plant effluent and efficient microorganisms as biofertilizers in onion plants (Allium cepa L, cv. ’Caribe-71’). Cultivos Tropicales, 38(4), 7–14.

Madigan, M. T., Bender, K. S., Buckley, D. H., Sattley, W. M., & Stahl, D. A. (2019). Brock biology of microorganisms (15th ed.). Pearson Education.

Marzorati, M., Wittebolle, L., Boon, N., Daffonchio, D., & Verstraete, W. (2008). How to get more out of molecular fingerprints: Practical tools for microbial ecology. Environmental Microbiology, 10(6), 1571–1581. https://doi.org/10.1111/j.1462-2920.2008.01572.x

Moraïs, S., David, Y. B., Bensoussan, L., Duncan, S. H., Koropatkin, N. M., Martens, E. C., Flint, H. J., & Bayer, E. A. (2016). Enzymatic profiling of cellulosomal enzymes from the human gut bacterium, Ruminococcus champanellensis, reveals a fine-tuned system for cohesin-dockerin recognition. Environmental Microbiology, 18(2), 542–556. https://doi.org/10.1111/1462-2920.13047

Muhialdin, B. J., Algboory, H. L., Kadum, H., Mohammed, N. K., Saari, N., Hassan, Z., & Meor Hussin, A. S. (2020). Antifungal activity determination for the peptides generated by Lactobacillus plantarum TE10 against Aspergillus flavus in maize seeds. Food Control, 109, Article 106898. https://doi.org/10.1016/j.foodcont.2019.106898

Naik, K., Mishra, S., Srichandan, H., Singh, P. K., & Sarangi, P. K. (2019). Plant growth promoting microbes: Potential link to sustainable agriculture and environment. Biocatalysis and Agricultural Biotechnology, 21, Article 101326. https://doi. org/10.1016/j.bcab.2019.101326

Namasivayam, S. K. R., Shunmugaraj, M., Bharani, R. S. A., & Lazar, A. L. (2014). Evaluation of phytotoxicity of effective microorganism (EM) treated distillery industry effluent. Biosciences Biotechnology Research Asia, 11(2), 587–592. https://doi.org/10.13005/bbra/1310

Nobu, M. K., Narihiro, T., Rinke, C., Kamagata, Y., Tringe, S. G., Woyke, T., & Liu, W.-T. (2015). Microbial dark matter ecogenomics reveals complex synergistic networks in a methanogenic bioreactor. The ISME Journal, 9(8), 1710–1722. https://doi.org/10.1038/ismej.2014.256

Núñez-Caraballo, A., García-García, J. D., Ilyina, A., Flores-Gallegos, A. C., Michelena-Álvarez, L. G., Rodríguez-Cutiño, G., Martínez-Hernández, J. L., & Aguilar, C. N. (2019). Alcoholic beverages: Current situation and generalities of anthropological interest. In A. M. Grumezescu, & A. M. Holban (Eds.), Processing and sustainability of beverages (Vol. 2, pp. 37–72). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-815259-1.00002-1

Oca-Risco, A. M., Ulloa-Carcassés, M., & García-Cruz, S. (2014). Procedure for the recovery of the mined area in the deposit gravel - sand Rio Sagua, Holguin. Cuba. Boletín de Ciencias de la Tierra, (36), 18–25. https://doi.org/10.15446/rbct.n36.39543

Olivera-Viciedo, D., Sifontes, J. L., Calero Hurtado, A., Santana Sotolongo, M., & Hernández Muñoz, A. (2014). Prácticas agroecológicas en la provincia de Sancti Spíritus, Cuba. Microorganismos eficientes (EM), una tecnología apropiada sobre bases agroecológicas. Revista Logos Ciencia & Tecnología, 1, 77–83.

ONEI, Oficina Nacional de Estadística e Información. (2020). Agricultura, ganadería, silvicultura y pesca. In Anuario estadístico de Cuba (2019th ed., p. 31). http://www.onei.gob.cu/node/15006

Palleroni, N. J. (2015). Pseudomonas. In W. B. Whitman, F. A. Rainey, P. Kämpfer, & M. E. Trujillo (Eds.), Bergey’s manual of systematics of archaea and bacteria (pp. 1–105). John Wiley & Sons, Inc. . https://doi.org/10.1002/9781118960608.gbm01210

Pielou, E. C. (1966). The measurement of diversity in different types of biological collections. Journal of Theoretical Biology, 13, 131–144. https://doi.org/10.1016/0022-5193(66)90013-0

Quattrini, M., Bernardi, C., Stuknytė, M., Masotti, F., Passera, A., Ricci, G., Vallone, L., De Noni, I., Brasca, M., & Fortina, M. G. (2018). Functional characterization of Lactobacillus plantarum ITEM 17215: A potential biocontrol agent of fungi with plant growth promoting traits, able to enhance the nutritional value of cereal products. Food Research International, 106, 936–944. https://doi.org/10.1016/j.foodres.2018.01.074

Rademacher, A., Nolte, C., Schönberg, M., & Klocke, M. (2012). Temperature increases from 55 to 75°C in a two-phase biogas reactor result in fundamental alterations within the bacterial and archaeal community structure. Applied Microbiology and Biotechnology, 96(2), 565–576. https://doi.org/10.1007/s00253-012-4348-x

Raja, H. A., Miller, A. N., Pearce, C. J., & Oberlies, N. H. (2017). Fungal identification using molecular tools: A primer for the natural products research community. Journal of Natural Products, 80(3), 756–770. https://doi.org/10.1021/acs.jnatprod.6b01085

Salminen, S., & von Wright, A. (Eds.) (2004). Lactic acid bacteria: Microbiological and functional aspects (3rd ed.). CRC Press. https://doi.org/10.1201/9780824752033

Sanz, J. L., & Köchling, T. (2019). Next-generation sequencing and waste/wastewater treatment: A comprehensive overview. Reviews in Environmental Science and Bio/Technology, 18(4), 635–680. https://doi.org/10.1007/s11157-019-09513-0

Saw, J. H., Spang, A., Zaremba-Niedzwiedzka, K., Juzokaite, L., Dodsworth, J. A., Murugapiran, S. K., Colman, D. R., Takacs-Vesbach, C., Hedlund, B. P., Guy, L., & Ettema, T. J. G. (2015). Exploring microbial dark matter to resolve the deep archaeal ancestry of eukaryotes. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1678), Article 20140328. https://doi.org/10.1098/rstb.2014.0328

Shannon, C. E., & Weaver, W. (1963). The mathematical theory of communication. University of Illinois Press.

Sipos, R., Székely, A. J., Palatinszky, M., Révész, S., Márialigeti, K., & Nikolausz, M. (2007). Effect of primer mismatch, annealing temperature and PCR cycle number on 16S rRNA gene-targetting bacterial community analysis. FEMS Microbiology Ecology, 60(2), 341–350. https://doi.org/10.1111/j.1574-6941.2007.00283.x

Sun, L., Müller, B., & Schnürer, A. (2013). Biogas production from wheat straw: Community structure of cellulose-degrading bacteria. Energy, Sustainability and Society, 3(1), Article 15. https://doi.org/10.1186/2192-0567-3-15

Tanya Morocho, M., & Leiva-Mora, M. (2019). Microorganismos eficientes, propiedades funcionales y aplicaciones agrícolas. Centro Agrícola, 46(2), 93–103.

Tsuda, K., Tsuji, G., Higashiyama, M., Ogiyama, H., Umemura, K., Mitomi, M., Kubo, Y., & Kosaka, Y. (2016). Biological control of bacterial soft rot in Chinese cabbage by Lactobacillus plantarum strain BY under field conditions. Biological Control, 100, 63–69. https://doi.org/10.1016/j.biocontrol.2016.05.010

Vilatuña Catagña, F. O. (2019). Determinación de la microbiota del suelo en dependencia de la altitud y especies vegetales cultivadas [Undegraduate thesis, Universidad Central del Ecuador]. http://www.dspace.uce.edu.ec/handle/25000/20393

Wegmann, U., Louis, P., Goesmann, A., Henrissat, B., Duncan, S. H., & Flint, H. J. (2014). Complete genome of a new Firmicutes species belonging to the dominant human colonic microbiota (‘Ruminococcus bicirculans’) reveals two chromosomes and a selective capacity to utilize plant glucans. Environmental Microbiology, 16(9), 2879–2890. https://doi.org/10.1111/1462-2920.12217

Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173(2), 697–703. https://doi.org/10.1128/jb.173.2.697-703.1991

Widjaja, T., Noviyanto, Altway, A., & Gunawan, S. (2016). The effect of rumen and mixed microorganism (rumen and effective microorganism) on biogas production from rice straw waste. ARPN Journal of Engineering and Applied Sciences, 11(4), 2702–2710.

Woo, P. C. Y., Teng, J. L. L., Leung, K., Lau, S. K. P., Wong, M. K. M., & Yuen, K. (2004). Bacteremia in a patient with colonic carcinoma caused by a novel Sedimentibacter species: Sedimentibacter hongkongensis sp. nov. Diagnostic Microbiology and Infectious Disease, 50(2), 81–87. https://doi.org/10.1016/j.diagmicrobio.2004.05.005

Xiong, H., Chen, J., Wang, H., & Shi, H. (2012). Influences of volatile solid concentration, temperature and solid retention time for the hydrolysis of waste activated sludge to recover volatile fatty acids. Bioresource Technology, 119, 285–292. https://doi.org/10.1016/j.biortech.2012.05.126

Yanagida, F., Suzuki, K.-I., Kaneko, T., Kozaki, M., & Komagata, K. (1987). Morphological, biochemical, and physiological characteristics of spore-forming lactic acid bacteria. The Journal of General and Applied Microbiology, 33(1), 33–45. https://doi.org/10.2323/jgam.33.33

Ze, X., Duncan, S. H., Louis, P., & Flint, H. J. (2012). Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. The ISME Journal, 6(8), 1535–1543. https://doi.org/10.1038/ismej.2012.4

Zhou, J., He, Z., Yang, Y., Deng, Y., Tringe, S. G., & Alvarez-Cohen, L. (2015). High-throughput metagenomic technologies for complex microbial community analysis: open and closed formats. MBio, 6(1), Article e02288-14. https://doi.org/10.1128/mBio.02288-14

Zoetendal, E., Rajilić-Stojanović, M., & De Vos, W. M. (2008). High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. Gut, 57(11), 1605–1615. https://doi.org/10.1136/gut.2007.133603

How to Cite

APA

Carabeo, A., Jiménez, J., Gil, Z., Henderson, D. ., Adams, P. and Calero-Hurtado, A. . (2022). Taxonomic identification and diversity of effective soil microorganisms: towards a better understanding of this microbiome. Agronomía Colombiana, 40(2), 278–292. https://doi.org/10.15446/agron.colomb.v40n2.101378

ACM

[1]
Carabeo, A., Jiménez, J., Gil, Z., Henderson, D. , Adams, P. and Calero-Hurtado, A. 2022. Taxonomic identification and diversity of effective soil microorganisms: towards a better understanding of this microbiome. Agronomía Colombiana. 40, 2 (May 2022), 278–292. DOI:https://doi.org/10.15446/agron.colomb.v40n2.101378.

ACS

(1)
Carabeo, A.; Jiménez, J.; Gil, Z.; Henderson, D. .; Adams, P.; Calero-Hurtado, A. . Taxonomic identification and diversity of effective soil microorganisms: towards a better understanding of this microbiome. Agron. Colomb. 2022, 40, 278-292.

ABNT

CARABEO, A.; JIMÉNEZ, J.; GIL, Z.; HENDERSON, D. .; ADAMS, P.; CALERO-HURTADO, A. . Taxonomic identification and diversity of effective soil microorganisms: towards a better understanding of this microbiome. Agronomía Colombiana, [S. l.], v. 40, n. 2, p. 278–292, 2022. DOI: 10.15446/agron.colomb.v40n2.101378. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/101378. Acesso em: 18 oct. 2024.

Chicago

Carabeo, Annerys, Janet Jiménez, Zuleiqui Gil, Deborah Henderson, Paul Adams, and Alexander Calero-Hurtado. 2022. “Taxonomic identification and diversity of effective soil microorganisms: towards a better understanding of this microbiome”. Agronomía Colombiana 40 (2):278-92. https://doi.org/10.15446/agron.colomb.v40n2.101378.

Harvard

Carabeo, A., Jiménez, J., Gil, Z., Henderson, D. ., Adams, P. and Calero-Hurtado, A. . (2022) “Taxonomic identification and diversity of effective soil microorganisms: towards a better understanding of this microbiome”, Agronomía Colombiana, 40(2), pp. 278–292. doi: 10.15446/agron.colomb.v40n2.101378.

IEEE

[1]
A. Carabeo, J. Jiménez, Z. Gil, D. . Henderson, P. Adams, and A. . Calero-Hurtado, “Taxonomic identification and diversity of effective soil microorganisms: towards a better understanding of this microbiome”, Agron. Colomb., vol. 40, no. 2, pp. 278–292, May 2022.

MLA

Carabeo, A., J. Jiménez, Z. Gil, D. . Henderson, P. Adams, and A. . Calero-Hurtado. “Taxonomic identification and diversity of effective soil microorganisms: towards a better understanding of this microbiome”. Agronomía Colombiana, vol. 40, no. 2, May 2022, pp. 278-92, doi:10.15446/agron.colomb.v40n2.101378.

Turabian

Carabeo, Annerys, Janet Jiménez, Zuleiqui Gil, Deborah Henderson, Paul Adams, and Alexander Calero-Hurtado. “Taxonomic identification and diversity of effective soil microorganisms: towards a better understanding of this microbiome”. Agronomía Colombiana 40, no. 2 (May 1, 2022): 278–292. Accessed October 18, 2024. https://revistas.unal.edu.co/index.php/agrocol/article/view/101378.

Vancouver

1.
Carabeo A, Jiménez J, Gil Z, Henderson D, Adams P, Calero-Hurtado A. Taxonomic identification and diversity of effective soil microorganisms: towards a better understanding of this microbiome. Agron. Colomb. [Internet]. 2022 May 1 [cited 2024 Oct. 18];40(2):278-92. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/101378

Download Citation

CrossRef Cited-by

CrossRef citations4

1. Annerys Carabeo-Pérez, María Isabel Sánchez López, Gilda Guerra Rivera, Deborah Henderson, Janet Jiménez. (2023). Rice Straw and Swine Manure Anaerobic co-digestion Enhancement Through Bioaugmentation: Effect on the Microbial Community. BioEnergy Research, 17(1), p.756. https://doi.org/10.1007/s12155-023-10676-6.

2. Alexander Calero Hurtado, Yanery Pérez Díaz, Kolima Peña Calzada, Dilier Olivera Viciedo, Janet Jiménez Hernández, Annerys Carabeo Pérez. (2023). Coinoculación de biofertilizantes microbianos en pepino y habichuela y su efecto en el crecimiento y rendimiento. Temas Agrarios, 28(2), p.220. https://doi.org/10.21897/bz3pzk58.

3. Alexander Calero-Hurtado, Yanery Pérez-Díaz, Leticia Hernández-González, Yenisley García-Guardarrama, Silvia Manuela Pacheco-Méndez, Yaneida Rodríguez-Pérez, Iván Castro-Lizazo. (2023). COAPLICACIÓN ENTRE EL CONSORCIO MICROORGANISMOS EFICIENTES Y BIOBRAS-16® AUMENTAN EL CRECIMIENTO Y LA PRODUCTIVIDAD DEL FRIJOL COMÚN. Revista de la Facultad de Ciencias, 12(2), p.64. https://doi.org/10.15446/rev.fac.cienc.v12n2.107055.

4. Diksha Garg, Niketan Patel, Anamika Rawat, Alexandre Soares Rosado. (2024). Cutting edge tools in the field of soil microbiology. Current Research in Microbial Sciences, 6, p.100226. https://doi.org/10.1016/j.crmicr.2024.100226.

Dimensions

PlumX

Article abstract page views

480

Downloads

Download data is not yet available.