Published

2022-08-31

Efficiency of herbicides for weed control in chickpea and effect of their residues on wheat growth

Eficacia de herbicidas para el control de malezas en garbanzo y efecto de sus residuos en el crecimiento del trigo

DOI:

https://doi.org/10.15446/agron.colomb.v40n2.101580

Keywords:

dryland conditions, flumioxazin, imazethapyr, rotation, trifluralin (en)
condiciones áridas, flumioxazina, imazetapir, rotación, trifuralina (es)

Downloads

Authors

In order to determine the best time to use and the adequate dose of four herbicides to control weeds in dryland chickpea (Cicer arietinum L.) fields, we performed the present experiment in 4 x 5 m plots. Fourteen treatments were carried out that from 1 to 9 included trifluralin. Treatments 1, 2, and 3 were with increasing doses of trifluralin (480, 720, and 960 g ai ha-1) applied 30 days before planting. Treatments 4, 5, and 6 included increasing doses of trifluralin (480, 720, and 960 g ai ha-1) applied 15 days before planting. Treatments 7, 8 and 9 consisted of increasing doses of trifluralin (480, 720, and 960 g ai ha-1) applied at the time of planting. Treatments 10, 11, and 12 included pyroxasulfone (85 g ai ha-1), flumioxazin (51 g ai ha-1) and imazethapyr (100 g ai ha-1), respectively. These last three treatments were carried out at the time of planting; treatments 13 and 14 were: weed-infested (without weed control) and weed-free (manual weeding during the entire season). Flumioxazin 66% and pyroxasulfone 57% (mean of two samples) reduced weed dry weight compared to uncontrolled treatment. The results showed that the treatments were significantly different for 100-seed weight, biological yield, and seed yield of chickpea. Weed-infested and weed-free plants had the lowest and highest grain yield, respectively. Herbicide treatments of flumioxazin, trifluralin 960 g ai ha-1, and pyroxasulfone at planting produced 55%, 44%, and 40% higher grain yield than the weed-infested plots. Also, none of the herbicide treatments reduced chickpea yield and biomass. The herbicide residues had no adverse effect on wheat growth in the next crop season.

Con el fin de identificar el mejor momento de uso y la dosis adecuada de cuatro herbicidas para el control de malezas en campos áridos de garbanzo (Cicer aretinum L.), el presente experimento se realizó en parcelas de 4 x 5 m. Se realizaron 14 tratamientos donde, del 1 al 9 incluyeron trifluralina; los tratamientos 1, 2 y 3 fueron con dosis crecientes de trifluralina (480, 720, and 960 g ia ha-1) aplicada 30 días antes de la siembra; los tratamientos 4, 5 y 6 incluyeron dosis crecientes de trifluralina (480, 720, y 960 g ia ha-1) 15 d antes de la siembra. Los tratamientos 7, 8 y 9 consistieron en dosis crecientes de trifluralina (480, 720, y 960 g ia ha-1) al momento de la siembra. Los tratamientos 10, 11 y 12, incluyeron piroxasulfona (85 g ia ha-1), flumioxazina (51 g ia ha-1) e imazetapir (100 g ai ha-1) respectivamente. Estos tres últimos tratamientos se realizaron al momento de la siembra; los tratamientos 13 y 14 fueron: infestado de maleza (sin control de maleza) y libre de maleza (desmalezado manual durante toda la temporada). La flumioxazina al 66% y la piroxasulfona al 57% (media de dos muestras) redujeron el peso seco de las malezas en comparación con la parcela infestada de malezas. Los resultados mostraron que los tratamientos fueron significativamente diferentes para el peso de 100 semillas, el rendimiento biológico y el rendimiento de semillas de garbanzo. Las plantas infestadas de malezas y libres de malezas tuvieron el rendimiento de grano más bajo y alto respectivamente.  Los tratamientos con herbicidas flumioxazina, trifluralina 960 g ia ha-1, y piroxasulfona en la siembra, mostraron un rendimiento de grano 55%, 44% y 40% mayor, respectivamente, que las parcelas infestadas de malezas. Además, ninguno de los tratamientos con herbicida redujo el rendimiento y la biomasa del garbanzo. Los residuos del herbicida no tuvieron efecto adverso sobre el crecimiento del trigo en la siguiente temporada de cultivo.

References

Abbasian, A. (2011). Effect of tillage methods on darkness and light and application of imazethapyr and trifluralin herbicides on weed control, yield, and yield components of chickpea [MSc thesis, Ferdowsi University of Mashhad].

Abdulahi, A., Dabbagh Mohammadi Nassab, A., Nasrolahzadeh, S., Zehtab Salmasi, S., & Pourdad, S. S. (2012). Evaluation of wheat-chickpea intercrops as influenced by nitrogen and weed management. American Journal of Agricultural and Biological Science, 7(4), 447–460. https://doi.org/10.3844/ajabssp.2012.447.460

Barnett, J. B., & Brundage, K. M. (2010). Immunotoxicology of pesticides and chemotherapies. In D. Lawrence (Ed.), Comprehensive toxicology. (2nd ed. Vol. 5: Immune system toxicology. pp. 467–487). Elsevier Inc. https://doi.org/10.1016/B978-0-08-046884-6.00627-8

Booth, B. D., Murphy, S. D., & Swanton, C. J. (2003). Studying community structure and dynamics. In B. D. Booth, S. D. Murphy, & C. J. Swanton (Eds.). Weed ecology in natural and agricultural systems (pp. 255–276). CABI. http://doi.org/10.1079/9780851995281.0000

Chalechale, Y., MinBashi Moeini, M., & Shirani Rad, A. H. (2015). Weed map distribution of chickpea (Cicer arietinum L.) fields and prediction of their presence in agricultural fields of Kermanshah province with using Geographic Information System (GIS). Journal of Weed Ecology, 2(2), 95–112.

FAO. (2021). Food outlook - Biannual Report on Global Food Markets, November 2021. FAO.

Fathi, E., Tahmasebi, I., & Timori, N. (2017). Effect of sowing date and weed interference on chickpea seed quantitative and traits in genotypes under dryland conditions. Iranian Journal of Dryland Agriculture, 5(2), 135–155. https://doi.org/10.22092/IDAJ.2016.109662

Grover, R., Wolt, J. D., Cessna, A. J., & Schiefer, H. B. (1997). Environmental fate of trifluralin. In G. W. Ware (Ed.), Reviews of environmental contamination and toxicology (Vol. 153. pp. 1–64). Springer. https://doi.org/10.1007/978-1-4612-2302-3_1

Ito, M., Nakatani, M., Fujinami, M., & Hanai, R. (2015). 3-sulfonylisoxazoline derivatives as novel herbicides. In P. Maienfisch, & T. M. Stevenson, Discovery and synthesis of crop protection products. ACS Symposium Series vol. 1024 (ch. 19, pp. 261–276). American Chemical Society. https://doi.org/10.1021/bk-2015-1204.ch019

Iwashita, K., Hosokawa, Y., Ihara, R., Miyamoto, T., Otani, M., Abe, J., Asano, K., Mercier, O., Miyata, K., & Barlow, S. (2022). Flumioxazin, a PPO inhibitor: A weight-of-evidence consideration of its mode of action as a developmental toxicant in the rat and its relevance to humans. Toxicology, 472, Article 153160. https://doi.org/10.1016/j.tox.2022.153160

Knott, C. M., & Halila, H. M. (1988). Weeds in food legumes: problems, effects and control. In R. J. Summerfield (Ed.), World crops: Cool season food legumes. Current plant science and biotechnology in agriculture (Vol. 5. pp. 535–548). Springer. https://doi.org/10.1007/978-94-009-2764-3_45

Liebman, M., Mohler, C. L., & Staver, C. P. (2001). Weed evolution and community structure. In M. Liebman, C. L. Mohler, & C. P. Staver (Eds.), Ecological management of agricultural weeds (pp. 444–493). Cambridge University Press. https://doi.org/10.1017/CBO9780511541810

Mahmoudi, G., Ghanbari, A., & Mohammadabadi, A. (2011). Assessment of corn densities on ecological indices of weed species. Iranian Journal of Field Crop Research, 9(4), 685–693. https://doi.org/10.22067/GSC.V9I4.13276

Mirkamali, H., & Maddah, M. B. (1974). Some herbicides for control of weeds in cotton in Iran. Iranian Journal of Plant Pathology, 10(1/2), 21–22. https://eurekamag.com/research/000/502/000502284.php

Mohammadi, G., Javanshir, A., Khooie, F. R., Mohammadi, S. A., & Zehtab Salmasi, S. (2005). Critical period of weed interference in chickpea. Weed Research, 45(1), 57–63. https://doi.org/10.1111/j.1365-3180.2004.00431.x

Moradi, A. (2009). Evaluation of the herbicides of Imaztapir, Oxyfluorfen, Terflan, Pendimethalin, and manual weeding in chickpea fields in the Mashhad region. [Undergraduate thesis, Ferdowsi University of Mashhad].

Mousavi, K., Zand, E., & Saremi, H. (2005). Physiological function and application of herbicides. Zanjan University Press.

Mousavi, S. K., Pezeshkpour, P., & Shahverdi, M. (2007). Weed population response to chickpea (Cicer arietinum L.) variety and planting date. Journal of Science and Technology of Agriculture and Natural Resources, 11(40), 167–176.

Naghib Alsadati, M., Babaei, S., Tahmasebi, I., & Kiani, H. (2020). Evaluation of airborne dust effect on the efficiency of Atlantis OD, clodinafop propargyl and 2,4-D+MCPA herbicides on weed control in wheat. Iranian Journal of Field Crop Science, 50(4), 1–11. https://doi.org/10.22059/IJFCS.2019.278717.654599

Nezami, A., Bagheri, A., Mohammadabadi, A. A., & Langari, M. (1997). Investigation of the effects of weed weeding and density on yield and yield components of chickpea. Journal of Agricultural Science and Technology, 11, 53–64. https://profdoc.um.ac.ir/paper-abstract-1011812.html

Norsworthy, J. K., Ward, S. M., Shaw, D. R., Llewellyn, R. S., Nichols, R. L., Webster, T. M., Bradley, K. W., Frisvold, G., Powles, S. B., Burgos, N. R., Witt, W. W., & Barrett, M. (2012). Reducing the risks of herbicide resistance: best management practices and recommendations. Weed Science, 60, 31–62. https://doi.org/10.1614/ws-d-11-00155.1

Nourbakhsh, F. (2013). Investigation of the effect of chickpea plant density and different weed control methods on yield, yield components of chickpea. [Undergraduate thesis, Razi University of Kermanshah].

Paolini, R., Faustini, F., Saccardo, F., & Crinò, P. (2006). Competitive interactions between chick-pea genotypes and weeds. Weed Research, 46(4), 335–344. https://doi.org/10.1111/J.1365-3180.2006.00513.X

Poggio, S. L. (2005). Structure of weed communities occurring in monoculture and intercropping of field pea and barley. Agriculture, Ecosystems & Environment, 109(1-2), 48–58. https://doi.org/10.1016/j.agee.2005.02.019

Rodrigues, B. N., & Almeida, F. S. (2018). Guia de herbicidas (7th ed). Independent. https://livraria.funep.org.br/product/guia-de-herbicidas-7a-edicao/

Rouse, C. E., Roma-Burgos, N., Estorninos, L. E., & Penka, T. M. (2018). Assessment of new herbicide programs for cowpea production. Weed Technology, 32(3), 273–283. https://doi.org/10.1017/WET.2017.115

Samaei, M., Akbari Ali, G., & Zand, E. (2006). The study of redroot pigweed (Amaranthus retroflexus) competition and density effects on morphological chractristics, yield and yield components of soybean (Glycine max) cultivars. Journal of Agricultural Sciences, 12(1), 41–55.

SAS Institute. (1998). SAS/STAT® User’s guide, Release 8.1 Edition. SAS Institute Inc.

Shahsavari, N. (2017). Evaluation of integrated weed management in autumn dryland chickpeas [Undergraduate thesis, University of Tabriz].

Tan, S., Evans, R. R., Dahmer, M. L., Singh, B. K., & Shaner, D. L. (2005). Imidazolinone tolerant crops: History, current status and future. Pest Management Science 61(3), 246–257. https://doi.org/10.1002/ps.993

Tanetani, Y., Kaku, K., Kawai, K., Fujioka, T., & Shimizu, T. (2009). Action mechanism of a novel herbicide, pyroxasulfone. Pesticide Biochemistry and Physiology, 95(1), 47–55. https://doi.org/10.1016/j.pestbp.2009.06.003

Yousefi, A. R., Alizadeh, H., Rahimian, H., & Jahansooz, M. R. (2006). Investigation on single and integrated application of different herbicides on chickpea (Cicer arietinum L.) yield and its components in entezari sowing date. Iranian Journal of Agricultural Science, 37(1), 337-346. https://jijas.ut.ac.ir/article_17732.html

How to Cite

APA

Babaei, S., Lahooni, S., Mousavi, S. K., Tahmasebi, I., Sabeti, P. & Abdulahi, A. (2022). Efficiency of herbicides for weed control in chickpea and effect of their residues on wheat growth. Agronomía Colombiana, 40(2), 249–257. https://doi.org/10.15446/agron.colomb.v40n2.101580

ACM

[1]
Babaei, S., Lahooni, S., Mousavi, S.K., Tahmasebi, I., Sabeti, P. and Abdulahi, A. 2022. Efficiency of herbicides for weed control in chickpea and effect of their residues on wheat growth. Agronomía Colombiana. 40, 2 (May 2022), 249–257. DOI:https://doi.org/10.15446/agron.colomb.v40n2.101580.

ACS

(1)
Babaei, S.; Lahooni, S.; Mousavi, S. K.; Tahmasebi, I.; Sabeti, P.; Abdulahi, A. Efficiency of herbicides for weed control in chickpea and effect of their residues on wheat growth. Agron. Colomb. 2022, 40, 249-257.

ABNT

BABAEI, S.; LAHOONI, S.; MOUSAVI, S. K.; TAHMASEBI, I.; SABETI, P.; ABDULAHI, A. Efficiency of herbicides for weed control in chickpea and effect of their residues on wheat growth. Agronomía Colombiana, [S. l.], v. 40, n. 2, p. 249–257, 2022. DOI: 10.15446/agron.colomb.v40n2.101580. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/101580. Acesso em: 15 nov. 2025.

Chicago

Babaei, Sirwan, Sahar Lahooni, Sayed Karim Mousavi, Iraj Tahmasebi, Payman Sabeti, and Abdolvahab Abdulahi. 2022. “Efficiency of herbicides for weed control in chickpea and effect of their residues on wheat growth”. Agronomía Colombiana 40 (2):249-57. https://doi.org/10.15446/agron.colomb.v40n2.101580.

Harvard

Babaei, S., Lahooni, S., Mousavi, S. K., Tahmasebi, I., Sabeti, P. and Abdulahi, A. (2022) “Efficiency of herbicides for weed control in chickpea and effect of their residues on wheat growth”, Agronomía Colombiana, 40(2), pp. 249–257. doi: 10.15446/agron.colomb.v40n2.101580.

IEEE

[1]
S. Babaei, S. Lahooni, S. K. Mousavi, I. Tahmasebi, P. Sabeti, and A. Abdulahi, “Efficiency of herbicides for weed control in chickpea and effect of their residues on wheat growth”, Agron. Colomb., vol. 40, no. 2, pp. 249–257, May 2022.

MLA

Babaei, S., S. Lahooni, S. K. Mousavi, I. Tahmasebi, P. Sabeti, and A. Abdulahi. “Efficiency of herbicides for weed control in chickpea and effect of their residues on wheat growth”. Agronomía Colombiana, vol. 40, no. 2, May 2022, pp. 249-57, doi:10.15446/agron.colomb.v40n2.101580.

Turabian

Babaei, Sirwan, Sahar Lahooni, Sayed Karim Mousavi, Iraj Tahmasebi, Payman Sabeti, and Abdolvahab Abdulahi. “Efficiency of herbicides for weed control in chickpea and effect of their residues on wheat growth”. Agronomía Colombiana 40, no. 2 (May 1, 2022): 249–257. Accessed November 15, 2025. https://revistas.unal.edu.co/index.php/agrocol/article/view/101580.

Vancouver

1.
Babaei S, Lahooni S, Mousavi SK, Tahmasebi I, Sabeti P, Abdulahi A. Efficiency of herbicides for weed control in chickpea and effect of their residues on wheat growth. Agron. Colomb. [Internet]. 2022 May 1 [cited 2025 Nov. 15];40(2):249-57. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/101580

Download Citation

CrossRef Cited-by

CrossRef citations5

1. Imtiaz Khan, Muhammad Ishfaq Khan, Saima Hashim, Muhammad Fawad, Aftab Jamal, Mahmoud F. Seleiman, Haroon Khan, Bakhtiar Gul, Zahid Hussain, Muhammad Farhan Saeed, Aurelio Scavo. (2023). Managing Weed–Crop Interactions Enhances Chickpea (Cicer arietinum L.) Chemical Components. Plants, 12(17), p.3073. https://doi.org/10.3390/plants12173073.

2. Ebadollah Lorestani, Sirwan Babaei, Iraj Tahmasebi, Peyman Sabeti. (2023). Assessment of Tribenuron Methyl Soil Residual on Crops Germination Properties. Gesunde Pflanzen, 75(4), p.765. https://doi.org/10.1007/s10343-022-00781-5.

3. Behrouz Khalil Tahmasebi, Eskandar Zand, Alireza Yousefi, Sirwan Babaei, Amir Sadeghpour. (2024). Surveillance and mapping of tribenuron-methyl-resistant weeds in wheat fields. Scientific Reports, 14(1) https://doi.org/10.1038/s41598-024-75308-1.

4. Narendra Kumar, C.P. Nath, K.K. Hazra, Shailesh Tripathi, G.P. Dixit, Kamal Tiwari, Guriqbal Singh, Harpreet Kaur Virk, K.C. Gupta, Dasharath Prasad, Brij Nandan, Sunil Kumar, N. Anando Singh, Md. Hedayetullah, P.A. Pagar, D.K. Patil, G.P. Banjara, R.P. Singh, Satya Narayan Meena, S.R. Vasava, D.H. Patil. (2025). Assessing post-emergence herbicides in chickpea (Cicer arietinum L.) for economic benefits, yield response, and weed control under different mega-environments in India. Field Crops Research, 333, p.110113. https://doi.org/10.1016/j.fcr.2025.110113.

5. Anjani Kammili. (2024). https://doi.org/10.1079/cabicompendium.98245875.

Dimensions

PlumX

Article abstract page views

434

Downloads

Download data is not yet available.