Efficiency of herbicides for weed control in chickpea and effect of their residues on wheat growth
Eficacia de herbicidas para el control de malezas en garbanzo y efecto de sus residuos en el crecimiento del trigo
DOI:
https://doi.org/10.15446/agron.colomb.v40n2.101580Keywords:
dryland conditions, flumioxazin, imazethapyr, rotation, trifluralin (en)condiciones áridas, flumioxazina, imazetapir, rotación, trifuralina (es)
Downloads
In order to determine the best time to use and the adequate dose of four herbicides to control weeds in dryland chickpea (Cicer arietinum L.) fields, we performed the present experiment in 4 x 5 m plots. Fourteen treatments were carried out that from 1 to 9 included trifluralin. Treatments 1, 2, and 3 were with increasing doses of trifluralin (480, 720, and 960 g ai ha-1) applied 30 days before planting. Treatments 4, 5, and 6 included increasing doses of trifluralin (480, 720, and 960 g ai ha-1) applied 15 days before planting. Treatments 7, 8 and 9 consisted of increasing doses of trifluralin (480, 720, and 960 g ai ha-1) applied at the time of planting. Treatments 10, 11, and 12 included pyroxasulfone (85 g ai ha-1), flumioxazin (51 g ai ha-1) and imazethapyr (100 g ai ha-1), respectively. These last three treatments were carried out at the time of planting; treatments 13 and 14 were: weed-infested (without weed control) and weed-free (manual weeding during the entire season). Flumioxazin 66% and pyroxasulfone 57% (mean of two samples) reduced weed dry weight compared to uncontrolled treatment. The results showed that the treatments were significantly different for 100-seed weight, biological yield, and seed yield of chickpea. Weed-infested and weed-free plants had the lowest and highest grain yield, respectively. Herbicide treatments of flumioxazin, trifluralin 960 g ai ha-1, and pyroxasulfone at planting produced 55%, 44%, and 40% higher grain yield than the weed-infested plots. Also, none of the herbicide treatments reduced chickpea yield and biomass. The herbicide residues had no adverse effect on wheat growth in the next crop season.
Con el fin de identificar el mejor momento de uso y la dosis adecuada de cuatro herbicidas para el control de malezas en campos áridos de garbanzo (Cicer aretinum L.), el presente experimento se realizó en parcelas de 4 x 5 m. Se realizaron 14 tratamientos donde, del 1 al 9 incluyeron trifluralina; los tratamientos 1, 2 y 3 fueron con dosis crecientes de trifluralina (480, 720, and 960 g ia ha-1) aplicada 30 días antes de la siembra; los tratamientos 4, 5 y 6 incluyeron dosis crecientes de trifluralina (480, 720, y 960 g ia ha-1) 15 d antes de la siembra. Los tratamientos 7, 8 y 9 consistieron en dosis crecientes de trifluralina (480, 720, y 960 g ia ha-1) al momento de la siembra. Los tratamientos 10, 11 y 12, incluyeron piroxasulfona (85 g ia ha-1), flumioxazina (51 g ia ha-1) e imazetapir (100 g ai ha-1) respectivamente. Estos tres últimos tratamientos se realizaron al momento de la siembra; los tratamientos 13 y 14 fueron: infestado de maleza (sin control de maleza) y libre de maleza (desmalezado manual durante toda la temporada). La flumioxazina al 66% y la piroxasulfona al 57% (media de dos muestras) redujeron el peso seco de las malezas en comparación con la parcela infestada de malezas. Los resultados mostraron que los tratamientos fueron significativamente diferentes para el peso de 100 semillas, el rendimiento biológico y el rendimiento de semillas de garbanzo. Las plantas infestadas de malezas y libres de malezas tuvieron el rendimiento de grano más bajo y alto respectivamente. Los tratamientos con herbicidas flumioxazina, trifluralina 960 g ia ha-1, y piroxasulfona en la siembra, mostraron un rendimiento de grano 55%, 44% y 40% mayor, respectivamente, que las parcelas infestadas de malezas. Además, ninguno de los tratamientos con herbicida redujo el rendimiento y la biomasa del garbanzo. Los residuos del herbicida no tuvieron efecto adverso sobre el crecimiento del trigo en la siguiente temporada de cultivo.
References
Abbasian, A. (2011). Effect of tillage methods on darkness and light and application of imazethapyr and trifluralin herbicides on weed control, yield, and yield components of chickpea [MSc thesis, Ferdowsi University of Mashhad].
Abdulahi, A., Dabbagh Mohammadi Nassab, A., Nasrolahzadeh, S., Zehtab Salmasi, S., & Pourdad, S. S. (2012). Evaluation of wheat-chickpea intercrops as influenced by nitrogen and weed management. American Journal of Agricultural and Biological Science, 7(4), 447–460. https://doi.org/10.3844/ajabssp.2012.447.460
Barnett, J. B., & Brundage, K. M. (2010). Immunotoxicology of pesticides and chemotherapies. In D. Lawrence (Ed.), Comprehensive toxicology. (2nd ed. Vol. 5: Immune system toxicology. pp. 467–487). Elsevier Inc. https://doi.org/10.1016/B978-0-08-046884-6.00627-8
Booth, B. D., Murphy, S. D., & Swanton, C. J. (2003). Studying community structure and dynamics. In B. D. Booth, S. D. Murphy, & C. J. Swanton (Eds.). Weed ecology in natural and agricultural systems (pp. 255–276). CABI. http://doi.org/10.1079/9780851995281.0000
Chalechale, Y., MinBashi Moeini, M., & Shirani Rad, A. H. (2015). Weed map distribution of chickpea (Cicer arietinum L.) fields and prediction of their presence in agricultural fields of Kermanshah province with using Geographic Information System (GIS). Journal of Weed Ecology, 2(2), 95–112.
FAO. (2021). Food outlook - Biannual Report on Global Food Markets, November 2021. FAO.
Fathi, E., Tahmasebi, I., & Timori, N. (2017). Effect of sowing date and weed interference on chickpea seed quantitative and traits in genotypes under dryland conditions. Iranian Journal of Dryland Agriculture, 5(2), 135–155. https://doi.org/10.22092/IDAJ.2016.109662
Grover, R., Wolt, J. D., Cessna, A. J., & Schiefer, H. B. (1997). Environmental fate of trifluralin. In G. W. Ware (Ed.), Reviews of environmental contamination and toxicology (Vol. 153. pp. 1–64). Springer. https://doi.org/10.1007/978-1-4612-2302-3_1
Ito, M., Nakatani, M., Fujinami, M., & Hanai, R. (2015). 3-sulfonylisoxazoline derivatives as novel herbicides. In P. Maienfisch, & T. M. Stevenson, Discovery and synthesis of crop protection products. ACS Symposium Series vol. 1024 (ch. 19, pp. 261–276). American Chemical Society. https://doi.org/10.1021/bk-2015-1204.ch019
Iwashita, K., Hosokawa, Y., Ihara, R., Miyamoto, T., Otani, M., Abe, J., Asano, K., Mercier, O., Miyata, K., & Barlow, S. (2022). Flumioxazin, a PPO inhibitor: A weight-of-evidence consideration of its mode of action as a developmental toxicant in the rat and its relevance to humans. Toxicology, 472, Article 153160. https://doi.org/10.1016/j.tox.2022.153160
Knott, C. M., & Halila, H. M. (1988). Weeds in food legumes: problems, effects and control. In R. J. Summerfield (Ed.), World crops: Cool season food legumes. Current plant science and biotechnology in agriculture (Vol. 5. pp. 535–548). Springer. https://doi.org/10.1007/978-94-009-2764-3_45
Liebman, M., Mohler, C. L., & Staver, C. P. (2001). Weed evolution and community structure. In M. Liebman, C. L. Mohler, & C. P. Staver (Eds.), Ecological management of agricultural weeds (pp. 444–493). Cambridge University Press. https://doi.org/10.1017/CBO9780511541810
Mahmoudi, G., Ghanbari, A., & Mohammadabadi, A. (2011). Assessment of corn densities on ecological indices of weed species. Iranian Journal of Field Crop Research, 9(4), 685–693. https://doi.org/10.22067/GSC.V9I4.13276
Mirkamali, H., & Maddah, M. B. (1974). Some herbicides for control of weeds in cotton in Iran. Iranian Journal of Plant Pathology, 10(1/2), 21–22. https://eurekamag.com/research/000/502/000502284.php
Mohammadi, G., Javanshir, A., Khooie, F. R., Mohammadi, S. A., & Zehtab Salmasi, S. (2005). Critical period of weed interference in chickpea. Weed Research, 45(1), 57–63. https://doi.org/10.1111/j.1365-3180.2004.00431.x
Moradi, A. (2009). Evaluation of the herbicides of Imaztapir, Oxyfluorfen, Terflan, Pendimethalin, and manual weeding in chickpea fields in the Mashhad region. [Undergraduate thesis, Ferdowsi University of Mashhad].
Mousavi, K., Zand, E., & Saremi, H. (2005). Physiological function and application of herbicides. Zanjan University Press.
Mousavi, S. K., Pezeshkpour, P., & Shahverdi, M. (2007). Weed population response to chickpea (Cicer arietinum L.) variety and planting date. Journal of Science and Technology of Agriculture and Natural Resources, 11(40), 167–176.
Naghib Alsadati, M., Babaei, S., Tahmasebi, I., & Kiani, H. (2020). Evaluation of airborne dust effect on the efficiency of Atlantis OD, clodinafop propargyl and 2,4-D+MCPA herbicides on weed control in wheat. Iranian Journal of Field Crop Science, 50(4), 1–11. https://doi.org/10.22059/IJFCS.2019.278717.654599
Nezami, A., Bagheri, A., Mohammadabadi, A. A., & Langari, M. (1997). Investigation of the effects of weed weeding and density on yield and yield components of chickpea. Journal of Agricultural Science and Technology, 11, 53–64. https://profdoc.um.ac.ir/paper-abstract-1011812.html
Norsworthy, J. K., Ward, S. M., Shaw, D. R., Llewellyn, R. S., Nichols, R. L., Webster, T. M., Bradley, K. W., Frisvold, G., Powles, S. B., Burgos, N. R., Witt, W. W., & Barrett, M. (2012). Reducing the risks of herbicide resistance: best management practices and recommendations. Weed Science, 60, 31–62. https://doi.org/10.1614/ws-d-11-00155.1
Nourbakhsh, F. (2013). Investigation of the effect of chickpea plant density and different weed control methods on yield, yield components of chickpea. [Undergraduate thesis, Razi University of Kermanshah].
Paolini, R., Faustini, F., Saccardo, F., & Crinò, P. (2006). Competitive interactions between chick-pea genotypes and weeds. Weed Research, 46(4), 335–344. https://doi.org/10.1111/J.1365-3180.2006.00513.X
Poggio, S. L. (2005). Structure of weed communities occurring in monoculture and intercropping of field pea and barley. Agriculture, Ecosystems & Environment, 109(1-2), 48–58. https://doi.org/10.1016/j.agee.2005.02.019
Rodrigues, B. N., & Almeida, F. S. (2018). Guia de herbicidas (7th ed). Independent. https://livraria.funep.org.br/product/guia-de-herbicidas-7a-edicao/
Rouse, C. E., Roma-Burgos, N., Estorninos, L. E., & Penka, T. M. (2018). Assessment of new herbicide programs for cowpea production. Weed Technology, 32(3), 273–283. https://doi.org/10.1017/WET.2017.115
Samaei, M., Akbari Ali, G., & Zand, E. (2006). The study of redroot pigweed (Amaranthus retroflexus) competition and density effects on morphological chractristics, yield and yield components of soybean (Glycine max) cultivars. Journal of Agricultural Sciences, 12(1), 41–55.
SAS Institute. (1998). SAS/STAT® User’s guide, Release 8.1 Edition. SAS Institute Inc.
Shahsavari, N. (2017). Evaluation of integrated weed management in autumn dryland chickpeas [Undergraduate thesis, University of Tabriz].
Tan, S., Evans, R. R., Dahmer, M. L., Singh, B. K., & Shaner, D. L. (2005). Imidazolinone tolerant crops: History, current status and future. Pest Management Science 61(3), 246–257. https://doi.org/10.1002/ps.993
Tanetani, Y., Kaku, K., Kawai, K., Fujioka, T., & Shimizu, T. (2009). Action mechanism of a novel herbicide, pyroxasulfone. Pesticide Biochemistry and Physiology, 95(1), 47–55. https://doi.org/10.1016/j.pestbp.2009.06.003
Yousefi, A. R., Alizadeh, H., Rahimian, H., & Jahansooz, M. R. (2006). Investigation on single and integrated application of different herbicides on chickpea (Cicer arietinum L.) yield and its components in entezari sowing date. Iranian Journal of Agricultural Science, 37(1), 337-346. https://jijas.ut.ac.ir/article_17732.html
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Imtiaz Khan, Muhammad Ishfaq Khan, Saima Hashim, Muhammad Fawad, Aftab Jamal, Mahmoud F. Seleiman, Haroon Khan, Bakhtiar Gul, Zahid Hussain, Muhammad Farhan Saeed, Aurelio Scavo. (2023). Managing Weed–Crop Interactions Enhances Chickpea (Cicer arietinum L.) Chemical Components. Plants, 12(17), p.3073. https://doi.org/10.3390/plants12173073.
2. Ebadollah Lorestani, Sirwan Babaei, Iraj Tahmasebi, Peyman Sabeti. (2023). Assessment of Tribenuron Methyl Soil Residual on Crops Germination Properties. Gesunde Pflanzen, 75(4), p.765. https://doi.org/10.1007/s10343-022-00781-5.
3. Behrouz Khalil Tahmasebi, Eskandar Zand, Alireza Yousefi, Sirwan Babaei, Amir Sadeghpour. (2024). Surveillance and mapping of tribenuron-methyl-resistant weeds in wheat fields. Scientific Reports, 14(1) https://doi.org/10.1038/s41598-024-75308-1.
4. Narendra Kumar, C.P. Nath, K.K. Hazra, Shailesh Tripathi, G.P. Dixit, Kamal Tiwari, Guriqbal Singh, Harpreet Kaur Virk, K.C. Gupta, Dasharath Prasad, Brij Nandan, Sunil Kumar, N. Anando Singh, Md. Hedayetullah, P.A. Pagar, D.K. Patil, G.P. Banjara, R.P. Singh, Satya Narayan Meena, S.R. Vasava, D.H. Patil. (2025). Assessing post-emergence herbicides in chickpea (Cicer arietinum L.) for economic benefits, yield response, and weed control under different mega-environments in India. Field Crops Research, 333, p.110113. https://doi.org/10.1016/j.fcr.2025.110113.
5. Anjani Kammili. (2024). https://doi.org/10.1079/cabicompendium.98245875.
Dimensions
PlumX
Article abstract page views
Downloads
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)

Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.







