Published

2022-08-30

Genetic improvement of faba bean (Vicia faba L.) genotypes selected for resistance to chocolate spot disease

Mejoramiento genético de genotipos de haba (Vicia faba L.) seleccionados con resistencia a la enfermedad de la mancha chocolate

DOI:

https://doi.org/10.15446/agron.colomb.v40n2.102128

Keywords:

hybridization, ISSR, genetic resistance, plant breeding, RAPD, yield components (en)
hibridación, ISSR, resistencia genética, fitomejoramiento, RAPD, componentes de rendimiento (es)

Downloads

Authors

Inter-varietal hybridization is a powerful tool for genetic improvement and production of new genotypes for a trait of interest. Four parents of faba beans (Vicia faba L.) were hybridized using agromorphological and molecular characterization to obtain genotypes resistant to the chocolate spot disease. The study was done at the Nubaria Research Station, Giza, Egypt. Eight traits including resistance to chocolate spot, days to flowering, plant height (cm), number of branches/plant, number of pods/plant, number of seeds/plant, 100-seed weight (g), and seed yield/plant were estimated during the three growth seasons of 2016/2017, 2017/2018, and 2018/2019. Genetic parameters revealed by RAPD and ISSR markers assessed the genetic variation of genotypes with their generations. Crosses 1 (P1 “Nubaria-1” x P2 “Sakha-1”), 2 (P1 “Nubaria-1” x P3 “T.W”), and 3 (P1 “Nubaria-1” x P4 “Camolina”) revealed high resistance to disease with high yield. Markers patterned specific loci of resistant parents at a length of 360, 470, 450, 660, and 140 bp in RAPD and 1100, 810, 650, 700, 480 bp in ISSR. Inter-varietal hybridization between the resistant and susceptible genotypes is considered one of the most promising methods to obtain germplasm with resistance and high yield.

La hibridación intervarietal es una herramienta poderosa para el mejoramiento genético y la producción de nuevos genotipos prometedores para un rasgo de interés. Cuatro progenitores de haba (Vicia faba L.) fueron cruzados para obtener genotipos resistentes a la enfermedad de la mancha chocolate mediante caracterización agromorfológica y molecular. El estudio de campo se llevó a cabo en la Granja Experimental de la Estación de Investigación de Nubaria, Giza, Egipto. Se estimaron ocho características, incluidas el grado de resistencia a la mancha chocolate, los días a floración, la altura de planta (cm), el número de ramas/planta, el número de vainas/planta, el número de semillas/planta, el peso de 100 semillas (g) y el rendimiento de semillas/planta, durante las tres temporadas de crecimiento de 2016/2017, 2017/2018 y 2018/2019. Los parámetros genéticos se estimaron mediante marcadores RAPD e ISSR para evaluar la variación genética de los genotipos con sus generaciones. Los cruces 1 (P1 “Nubaria-1” x P2 “Sakha-1”), 2 (P1 “Nubaria-1” x P3 “TW”) y 3 (P1 “Nubaria-1” x P4 “Camolina”) revelaron alta resistencia a la enfermedad de la mancha chocolate con alto rendimiento. Los marcadores modelaron loci específicos de padres resistentes a una longitud de 360, 470, 450, 660 y 140 pb en RAPD y 1100, 810, 650, 700, 480 pb en ISSR. La hibridación intervarietal entre los genotipos resistentes y susceptibles es considerada uno de los métodos más promisorios para obtener germoplasma con resistencia y alto rendimiento.

References

Abdalla, M. M. F., Shafik, M. M., Attia, S. M., & Ghannam, H. A. (2017). Combining ability, heterosis and inbreeding effects in faba bean (Vicia faba L.). Journal Experimental Agriculture International, 15(5), 1–13. https://doi.org/10.9734/JEAI/2017/31964

Abdel-Razzak, H. S., Alfrmawy, A. M., Ibrahim, H. M., & El-Hanafy, A. A. (2012). Genetic diversity in faba bean (Vicia faba L.) using Inter-Simple Sequence Repeat (ISSR) markers and protein analysis. Life Science Journal, 9(2), 497–503.

Abid, G., Mingeot, D., Udupa S. M., Muhovski, Y., Watillon, B., Sassi, K., M’hamdi, M., Souissi, F., Mannai, K., Barhoumi, F., & Jebara, M. (2015). Genetic relationship and diversity analysis of faba bean (Vicia faba L. var. Minor) genetic resources using morphological and microsatellite molecular markers. Plant Molecular Biology Reporter, 33(6), 1755–1767. https://doi.org/10.1007/s11105-015-0871-0

Abou-Zeid, M. N., & Hassanein, A. M. (2000). Biological control of chocolate spot disease (Botrytis fabae Sard.) in faba bean in Egypt. Phytophathology, 90, 1182.

Abou-Zied, A. A., & El-Gendy, H. A. (2019). Estimation of gene effect for yield, yield components and foliar diseases of two faba bean hybrids at Nubaria region. Alexandria Journal of Agricultural Sciences, 64(2), 87–96. https://doi.org/10.21608/alexja.2019.48391

Aguilar-Luna, J. M. E., López-López, S., & Loeza-Corte, J. M. (2021). Susceptibility of fungi, mainly chocolate spot (Botrytis fabae SARD.), to gamma irradiation in the faba bean crop (Vicia faba L.). Bioagro, 33(1), 29–40. http://www.doi.org/10.51372/bioagro331.4

Aguilera, J. G., Pessoni, L. A., Rodrigues, G. B., Elsayed, A. Y., Silva, D. J., & Barros, E. G. (2011). Genetic variability by ISSR markers in tomato (Solanum lycopersicon Mill). Revista Brasileira de Ciências Agrárias, 6(2), 243–252. https://doi.org/10.5039/agraria.v6i2a998

Ahmed, J. O., Abdulla, A. R., & Mohammed, R. A. (2016). Comparative on yield and its components performance and correlation in some broad bean (Vicia faba L.) genotypes at Bakrajo, Sulaimani. American-Eurasian Journal of Agricultural & Environmental Science, 16(3), 635–640.

Ajibade, S. R., Weeden, N. F., & Chite, S. M. (2000). Inter simple sequence repeat analysis of genetic relationships in the genus Vigna. Euphytica, 111, 47–55. https://doi.org/10.1023/A:1003763328768

Alghamdi, S. S. (2009). Chemical composition of faba bean (Vicia faba L.) genotypes under various water regimes. Pakistan Journal of Nutrition, 8(4), 477–482. https://doi.org/10.3923/pjn.2009.477.482

Asfaw, B. M., Dagne, K., Wakayo, G. K., Kemal, S. A., & Muleta, K. T. (2018). Genetic diversity study of Ethiopian faba bean (Vicia faba L.) varieties based on phenotypic traits and inter simple sequence repeat (ISSR) markers. African Journal of Biotechnology, 17(13), 433–446.

Bakry, B. A., Elewa, T. A., El Karamany, M. F., Zeidan, M. S., & Tawfik, M. M. (2011). Effect of row and spacing on yield and its components of some faba bean varieties under newly reclaimed sandy soil condition. World Journal of Agricultural Science, 7(1), 68–72.

Belal, M. A., Eldemery, S. M. M., Khidr, Y. A., & Abdellatif, K. F. (2018). Morphological and biochemical diversity and response of Egyptian faba bean to heat and drought stresses. Menoufia Journal of Agricultural Biotechnology, 3(1), 1–18. https://doi.org/10.21608/mjab.2018.175689

Bernier, C. C., Hanounik, S. B., Hussein, M. M., & Mohamed, H. A. (1993). Field manual of common faba bean diseases in the Nile Valley. [Information Bulletin No. 3] International Center for Agricultural Research in Dry Areas (ICARDA).

Beyene, A. T., Derera, J., Sibiya, J., & Fikre, A. (2016). Gene action determining grain yield and chocolate spot (Botrytis fabae) resistance in faba bean. Euphytica, 207, 293–304. https://doi.org/10.1007/s10681-015-1536-7

Botstein, D., White, R. L., Skolnick, M., & Davis, R. W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 32(3), 314–331.

Chen, Y., Zhou, R., Lin, X., Wu, K., Qian, X., & Huang, S. (2008). ISSR analysis of genetic diversity in sacred lotus cultivars. Aquatic Botany, 89(3), 311–316. https://doi.org/10.1016/j.aquabot.2008.03.006

Debibakas, S., Rocher, S., Garsmeur, O., Toubi, L., Roques, D., D’Hont, A., Hoarau, J.-Y., & Daugrois, J. H. (2014). Prospecting sugarcane resistance to Sugarcane yellow leaf virus by genome-wide association. Theoretical and Applied Genetics, 127, 1719–1732. https://doi.org/10.1007/s00122-014-2334-7

Duc, G. (1997). Faba bean (Vicia faba L.). Field Crops Research, 53(1-3), 99–109. https://doi.org/10.1016/S0378-4290(97)00025-7

Duc, G. S., Bao, S., Baum, B. M., Redden, B., Sadiki, M., Suso, M. J., Vishniakova, M., & Zong, X. (2010). Diversity maintenance and use of Vicia faba L. genetic resources. Field Crops Research. 115(3), 270–278. https://doi.org/10.1016/j.fcr.2008.10.003

El-Abssi, M. G., Rabi, H. A., Awaad, H. A., & Qabil, N. (2019). Performance and gene action for earliness, yield and chocolate spot disease of faba bean. Zagazig Journal of Agricultural Research, 46(6), 1825–1834. https://doi.org/10.21608/zjar.2019.51882

Eldemery, S. M. M., Abdellatif, K. F., El-Absawy, E. A., Emara, H. A., El-Rodeny, W. M., & Zakaria, A. M. (2016). Gene expression induced in faba bean (Vicia faba L.) by Orobanche crenata and its impact on the field level. Egyptian Journal of Genetics and Cytology, 45(2), 279–295.

El-Ghadban, E. A. E., Abou El-leel, O. F., & Mahdy, E. M. B. (2016). Morphological, phytochemical and molecular characterization on some jatropha species cultivated in Egypt. International Journal of Pharma Sciences and Scientific Research, 3(1), 1–13. https://doi.org/10.25141/2471-6782-2017-1.0001

El-Komy, M. H., Saleh, A. A., & Molan, Y. Y. (2015). Resistance/susceptibility of faba bean to Botrytis fabae: The causal agent of chocolate spot with respect to leaf position. International Journal of Agriculture and Biology, 17(4), 691–701. https://doi.org/10.17957/IJAB/14.0021

El-Rodeny, W. M., Eldemery, S. M. M., Soliman, A., & Abdellatif, K. F. (2020). Investigation of chocolate spot and rust resistance in Egyptian faba bean population using morphological traits and molecular markers. Agrociencia, 54(2),15–30.

El-Sharabasy, S. F., Mahdy, E. M. B., & Ghazzawy, H. S. (2021). Genome conformity of in vitro cultures of date palm. In J. M. Al-Khayri, S. M. Jain, & D. V. Johnson (Eds.), The date palm genome. (Vol. 1: Phylogeny, biodiversity and mapping. pp. 77-100), Springer, Cham. https://doi.org/10.1007/978-3-030-73746-7_4

Ghazzawy, H. S., Mahdy, E. M., Ali-Dinar, H. M., & El-Beltagi, H. S. (2021). Impact of geographical distribution on genetic variation of two date palm cultivars in arid region. Fresenius Environmental Bulletin, 30(10), 11513–11523.

Gómez, A. K., & Gómez, A. A. (1984). Statistical procedures for agriculture research (2nd ed.). Wiley.

González, A., Wong, A., Delgado-Salinas, A., Papa, R., & Gepts, P. (2005). Assessment of inter simple sequence repeat markers to differentiate sympatric wild and domesticated populations of common bean. Crop Science, 45(2), 606–615. https://doi.org/10.2135/cropsci2005.0606

Grativol, C., Lira-Medeiros, C. F., Hemerly, A. S., & Ferreira, P. C. G. (2011). High efficiency and reliability of inter-simple sequence repeats (ISSR) markers for evaluation of genetic diversity in Brazilian cultivated Jatropha curcas L. accessions. Molecular Biology Reports, 38(7), 4245–4256. https://doi.org/10.1007/s11033-010-0547-7

Haile, M., Adugna, G., & Lemessa, F. (2016). Reactions of improved faba bean varieties to chocolate spot (Botrytis fabae Sard.) epidemics across contrasting altitudes in southwest Ethiopia. African Journal of Agricultural Research, 11(10), 837–848. https://doi.org/10.5897/AJAR2014.9316

Hamza, F. E. A., & Khalifa, G. E. (2017). The correlation and path coefficient analysis for yield and some yield components of faba bean (Vicia faba L.) genotypes in Northern Sudan. Nile Journal for Agricultural Sciences, 2(1), 52–63.

Harrison, J. G. (1988). The biology of Botrytis spp. on Vicia beans and chocolate spot disease-a review. Plant Pathology, 37(2), 168–201. https://doi.org/10.111/j.1365-3059.1988.tb02064.x

Hartl, D. L., & Clark, A. G. (1997). Principles of population genetics (3rd ed.). Sinauer Associates.

Hemeida, A. A. (2008). The discriminating capacity of SSR, RAPD and AFLP markers and their effectiveness in establishing genetic relationships in olive (Olea europaea L.). Egyptian Journal of Genetics and Cytology, 37, 249–264.

Ibrahim, S. D., Abd El-Hakim, A. F., Ali, H. E., & Abd El-Maksoud, R. M. (2019). Genetic differentiation using ISSR, SCoT and DNA barcoding for quinoa genotypes. Arab Journal of Biotechnology, 22(2), 103–118.

ICARDA. (2005). Faba bean pathology progress report 2003/4. Food Legume Improvement Program, ICARDA.

Jaccard, P. (1908). Nouvelles recherches sur la distribution florale. Lausanne, Rouge. Bulletin de la Société Vaudoise des Sciences Naturelles, 44, 223-270.

Khalaf, A. E. A., Afiah, S. A., Khalil, R. M. A. & Ahmed, A. I. S. (2015). Molecular markers for resistance of chocolate spot disease in faba bean (Vicia faba L.) using ISSR-PCR. Middle-East Journal of Scientific Research, 23(4), 558–567.

Khalil, S. A., El-Hady, M. M., Dissouky, R. F., Amer, M. I., & Omer, S. A. (1993). Breeding for high yielding ability with improved level of resistance to chocolate spot (Botrytis faba) diseases in faba bean (Vicia faba L.). Journal of Agricultural Sciences - Mansoura University, 18(5), 1315–1328.

Link, W., Dixkens, C., Singh, M., Schwall, M., & Melchinger, A. E. (1995). Genetic diversity in European and Mediterranean faba bean germplasm revealed by RAPD markers. Theoretical and Applied Genetics, 90, 27–32. https://doi.org/10.1007/BF00220992

Liu, K., & Muse, S. V. (2005). PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics, 21(9), 2128–2129. https://doi.org/10.1093/bioinformatics/bti282

Loarce, Y., Gallego, R., & Ferrer, E. (1996). A comparative analysis of genetic relationships between rye cultivars using RFLP and RAPD markers. Euphytica, 88, 107–115. https://doi.org/10.1007/BF00032441

Lou, Y., Hu, L., Chen, L., Sun, X., Yang, Y., Liu, H., & Xu, Q. (2015). Association analysis of Simple Sequence repeat (SSR) markers with agronomic traits in tall fescue (Festuca arundinacea Schreb.). PLoS ONE, 10(7), Article e0133054. https://doi.org/10.1371/journal.pone.0133054

Mahdy, E. M. B. (2012). Genetic studies on some vegetable crops (Corchorus olitorius L. and Lactuca sativa L.). [MSc thesis, Faculty of Agriculture, Zagazig University, Egypt].

Mahdy, E. M. B. (2018). Genetical studies on DNA storage and preservation on some accessions of cowpea plant. [Doctoral dissertation, Faculty of Agriculture, Al-Azhar University], Cairo, Egypt.

Mahdy, E. M. B., & El-Sharabasy, S. F. (2021). Date palm genetic identification and improvement utilizing molecular markers and DNA barcoding. In J. M. Al-Khayri, S. M. Jain, & D. V. Johnson (Eds.), The date palm genome (Vol. 1: Phylogeny, biodiversity and mapping, pp. 101–134). Springer. https://doi.org/10.1007/978-3-030-73746-7_5

Mahdy, E. M. B., El-Shaer, H. F. A., Sayed, A. I. H., & El-Halwagi, A. (2021). Genetic diversity of local cowpea (Vigna spp. (L.) Walp.) accessions cultivated in some regions of Egypt. Jordan Journal of Biological Sciences,14(4), 775–789. https://doi.org/10.54319/jjbs/140419

Mohamed, A. M., Al-Sohaibani, S. A., Al-Othman, M. R., & Abd El-Aziz, A. R. M. (2012). Biochemical screening of chocolate spot disease on faba bean caused by Botrytis fabae. African Journal of Microbiology Research, 6(32), 6122–6129. https://doi.org/10.5897/AJMR11.1412

Morgan, D. T. (1971). Numerical taxonomic studies of the genus Botrytis: I. The B. cinerea complex. Transactions of the British Mycological Society, 6(3), 319–325. https://doi.org/10.1016/S0007-1536(71)80126-2

Nagaoka, T., & Ogihara, Y. (1997). Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. Theoretical and Applied Genetics, 94, 597–602. https://doi.org/10.1007/s001220050456

Nei, M. (1972). Genetic distance between populations. The American Naturalist, 106(949), 283–392. http://doi.org/10.1086/282771

Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89(3), 583–590. https://doi.org/10.1093/genetics/89.3.583

Oliveira, H. R., Tomás, D., Silva, M., Lopes, S., Viegas, W., & Veloso, M. M. (2016). Genetic diversity and population structure in Vicia faba L. landraces and wild related species assessed by nuclear SSRs. PLoS ONE, 11(5), Article e0154801. https://doi.org/10.1371/journal.pone.0154801

Rahman, M. Z., Honda, Y., Islam, S. Z., & Arase, S. (2002). Effect of metabolic inhibitors on red light-induced resistance of broad bean (Vicia faba L.) against Botrytis cinerea. Journal of Phytophathology, 150(8-9). 463–468. https://doi.org/10.1046/j.1439-0434.2002.00781.x

Sahile, S., Ahmed, S., Fininsa, C., Abang, M. M., & Sakhuja, P. K. (2008). Survey of chocolate spot (Botrytis fabae) disease of faba bean (Vicia faba L.) and assessment of factors influencing disease epidemics in northern Ethiopia. Crop Protection, 27(11), 1457–1463. https://doi.org/10.1016/j.cropro.2008.07.011

Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27(3), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

Sherwin, W. B., Jabot, F., Rush, R., & Rossetto, M. (2006). Measurement of biological information with applications from genes to landscapes. Molecular Ecology, 15(10), 2857–2869. https://doi.org/10.1111/j.1365-294X.2006.02992.x

Steel, R. G. D., & Torrie, J. H, (1980). Principles and procedures of statistics: A biometrical approach (2nd ed.), McGraw-Hill Book Company.

Steel, R. G. D., Torrie, J. H., & Dickey, D. A. (1997). Principles and procedures of statistics: A biometrical approach (3rd ed., pp. 352–358), McGraw Hill, Inc. Book Co.

Sun, X., Du, Z., Ren, J., Amombo, E., Hu, T., & Fu, J. (2015). Association of SSR markers with functional traits from heat stress in diverse tall fescue accessions. BMC Plant Biology, 15, 116–149. https://doi.org/10.1186/s12870-015-0494-5

Suresh, S., Park, J-H., Cho, G-T., Lee, H-S., Baek, H-J., Lee S-Y., & Chung, J-W. (2013). Development and molecular characterization of 55 novel polymorphic cDNA-SSR markers in faba bean (Vicia faba L.) using 454 pyrosequencing. Molecules, 18(2), 1844–1856. https://doi.org/10.3390/molecules18021844

Terzopoulos, P. J., & Bebeli, P. J. (2008). Genetic diversity analysis of Mediterranean faba bean (Vicia faba L.) with ISSR markers. Field Crops Research, 108(1), 39–44. https://doi.org/10.1016/j.fcr.2008.02.015

Tomás, D., Dias, A. L., Silva, M., Oliveira, H. R., Suso, M. J., Viegas, W., & Veloso, M. M. (2016). Genetic diversity assessment of Portuguese cultivated Vicia faba L. through IRAP markers. Diversity, 8(2), 8. https://doi.org/10.3390/d8020008

Torres, A. M., Weeden, N. F., & Martín, A. (1993). Linkage among isozyme, RFLP and RAPD markers in Vicia faba. Theoretical and Applied Genetics, 85(8), 937–945. https://doi.org/10.1007/BF00215032

Villegas-Fernández, A. M., Sillero, J. C., and Rubiales, D. (2012). Screening faba bean for chocolate spot resistance, evaluation methods and effects of age of host tissue and temperature. European Journal of Plant Pathology, 132, 443–453. https://doi.org/10.1007/s10658-011-9889-9

Wilson, A. R. (1937). The chocolate spot disease of faba bean caused by Botrytis cinerea Pers. Annals of Applied Biology, 24(2), 258–288. https://doi.org/10.1111/j.1744-7348.1937.tb05033.x

Yang, J., Benyamin, B., McEvoy, B. P., Gordon, S., Henders, A. K., Nyholt, D. R., Madden, P. A., Heath, A.C., Martin N. G., Montgomery, G. W., Goddard, M. E., & Visscher, P. M. (2010). Common SNPs explain a large proportion of the heritability for human height. Nature Genetics, 42, 565–569. http://doi.org/10.1038/ng.608

Zakaria, A. M., El-Okkiah, S. A. F., Eldemery, S. M. M., Emara, H. A., El-Absawy, E. S. A., & Abdel-Latif, K. F. (2015). Morphological, physiological, histological and biochemical characteristics of faba bean (Vicia faba L.) infected by broomrape (Orobanche crenata). Kafr El-Sheikh Journal of Agricultural Research, 41(4), 1073–1093.

Zietkiewicz, E., Rafalski, A., & Labuda, D. (1994), Genome fingerprinting by Simple Sequence Repeat (SSR)-anchored polymerase chain reaction amplification. Genomics, 20(2), 176–183. https://doi.org/10.1006/geno.1994.1151

Zong, X., Liu, X., Guan, J., Wang, S., Liu, Q., Paull, J. G., & Redden, R. (2009). Molecular variation among Chinese and global winter faba bean germplasm. Theoretical and Applied Genetics, 118(5), 971–978. https://doi.org/10.1007/s00122-008-0954-5

How to Cite

APA

Heiba, H. E., Mahgoub, E. ., Mahmoud, A., Ibrahim, M. and Mahdy, E. M. B. (2022). Genetic improvement of faba bean (Vicia faba L.) genotypes selected for resistance to chocolate spot disease. Agronomía Colombiana, 40(2), 186–197. https://doi.org/10.15446/agron.colomb.v40n2.102128

ACM

[1]
Heiba, H.E., Mahgoub, E. , Mahmoud, A., Ibrahim, M. and Mahdy, E.M.B. 2022. Genetic improvement of faba bean (Vicia faba L.) genotypes selected for resistance to chocolate spot disease. Agronomía Colombiana. 40, 2 (May 2022), 186–197. DOI:https://doi.org/10.15446/agron.colomb.v40n2.102128.

ACS

(1)
Heiba, H. E.; Mahgoub, E. .; Mahmoud, A.; Ibrahim, M.; Mahdy, E. M. B. Genetic improvement of faba bean (Vicia faba L.) genotypes selected for resistance to chocolate spot disease. Agron. Colomb. 2022, 40, 186-197.

ABNT

HEIBA, H. E.; MAHGOUB, E. .; MAHMOUD, A.; IBRAHIM, M.; MAHDY, E. M. B. Genetic improvement of faba bean (Vicia faba L.) genotypes selected for resistance to chocolate spot disease. Agronomía Colombiana, [S. l.], v. 40, n. 2, p. 186–197, 2022. DOI: 10.15446/agron.colomb.v40n2.102128. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/102128. Acesso em: 16 jul. 2024.

Chicago

Heiba, Hany Elsayed, Elsayed Mahgoub, Ahmed Mahmoud, Mostafa Ibrahim, and Ehab Mawad Badr Mahdy. 2022. “Genetic improvement of faba bean (Vicia faba L.) genotypes selected for resistance to chocolate spot disease”. Agronomía Colombiana 40 (2):186-97. https://doi.org/10.15446/agron.colomb.v40n2.102128.

Harvard

Heiba, H. E., Mahgoub, E. ., Mahmoud, A., Ibrahim, M. and Mahdy, E. M. B. (2022) “Genetic improvement of faba bean (Vicia faba L.) genotypes selected for resistance to chocolate spot disease”, Agronomía Colombiana, 40(2), pp. 186–197. doi: 10.15446/agron.colomb.v40n2.102128.

IEEE

[1]
H. E. Heiba, E. . Mahgoub, A. Mahmoud, M. Ibrahim, and E. M. B. Mahdy, “Genetic improvement of faba bean (Vicia faba L.) genotypes selected for resistance to chocolate spot disease”, Agron. Colomb., vol. 40, no. 2, pp. 186–197, May 2022.

MLA

Heiba, H. E., E. . Mahgoub, A. Mahmoud, M. Ibrahim, and E. M. B. Mahdy. “Genetic improvement of faba bean (Vicia faba L.) genotypes selected for resistance to chocolate spot disease”. Agronomía Colombiana, vol. 40, no. 2, May 2022, pp. 186-97, doi:10.15446/agron.colomb.v40n2.102128.

Turabian

Heiba, Hany Elsayed, Elsayed Mahgoub, Ahmed Mahmoud, Mostafa Ibrahim, and Ehab Mawad Badr Mahdy. “Genetic improvement of faba bean (Vicia faba L.) genotypes selected for resistance to chocolate spot disease”. Agronomía Colombiana 40, no. 2 (May 1, 2022): 186–197. Accessed July 16, 2024. https://revistas.unal.edu.co/index.php/agrocol/article/view/102128.

Vancouver

1.
Heiba HE, Mahgoub E, Mahmoud A, Ibrahim M, Mahdy EMB. Genetic improvement of faba bean (Vicia faba L.) genotypes selected for resistance to chocolate spot disease. Agron. Colomb. [Internet]. 2022 May 1 [cited 2024 Jul. 16];40(2):186-97. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/102128

Download Citation

CrossRef Cited-by

CrossRef citations2

1. Ehab M. B. Mahdy, Shafik D. Ibrahim, Hosam F. EL-Shaer, Mohamed S. Mansour. (2024). Genetic diversity and relationship between Egyptian Vigna (Vigna spp. (L.) Walp.) taxa populations via Phenotypic and Molecular profiling. Vegetos, https://doi.org/10.1007/s42535-024-00827-1.

2. Alaa A. Soliman, Manar I. Mousa, Abeer M. Mosalam, Zeinab E. Ghareeb, Shafik D. Ibrahim, Medhat Rehan, Haitian Yu, Yuhua He. (2023). The Potential Genetic Effect for Yield and Foliar Disease Resistance in Faba Bean (Vicia faba L.) Assessed via Morphological and SCoT Markers. Plants, 12(20), p.3645. https://doi.org/10.3390/plants12203645.

Dimensions

PlumX

Article abstract page views

372

Downloads

Download data is not yet available.