Effect of physical and thermal pretreatments on enzymatic activity in the production of microporous cassava starch
Efecto de pretratamientos físicos y térmicos sobre la actividad enzimática en la producción de almidón microporoso de yuca
DOI:
https://doi.org/10.15446/agron.colomb.v41n1.105089Keywords:
annealing, crystallinity, gelatinization, hydrolysis, hydro-thermal treatments (en)recocido, cristalinidad, gelatinización, hidrólisis, tratamientos hidrotermales (es)
Downloads
Cassava starch is modified to increase porosity and lacerations that are limited when only enzymatic treatments are used. This study proposes to improve enzymatic activity of α-amylase and amyloglucosidase on the polymer chains of cassava starch by implementing physical and thermal pretreatments below the gelatinization temperature and before the hydrolytic process. The pretreatments increased the biocatalytic action of the enzymes, causing significant changes in the morphology of the granules, and superficial lacerations were found in samples of starches pretreated with ultrasound (UTS) or annealing and ultra-rapid freezing (ANN-C). At the structural level, the modified starches revealed substantial changes as the infrared spectra reflected a displacement of the absorption bands in the region from 900 to 1100 cm-1. This is associated with an alteration and reorganization of the amorphous and crystalline zones of the granules and is consistent with a decrease in amylose content (from 19.53% to 17.64%) and an increase in the crystallinity index. The thermal behavior of the starches was also modified by increasing the peak temperature (from 68.22°C to 75.38°C) and reducing the gelatinization enthalpy (from 19.34 to 15.79 J/g). UTS and ANN-C pretreatments significantly improved the mesoporous and hydrophilic properties of the modified cassava starches.
El almidón de yuca es modificado para aumentar su porosidad y laceraciones, las cuales son limitadas cuando sólo se utilizan tratamientos enzimáticos. Por lo tanto, este estudio propone mejorar la actividad enzimática de la α-amilasa y la amiloglucosidasa sobre las cadenas poliméricas del almidón de yuca utilizando pretratamientos físicos y térmicos por debajo de la temperatura de gelatinización antes del proceso hidrolítico. En este caso, los pretratamientos aumentaron la acción biocatalítica de las enzimas, provocando cambios significativos en la morfología de los gránulos, y se encontraron marcadas laceraciones superficiales en muestras de almidones pretratados con ultrasonido (UTS) o recocido y congelación ultrarrápida (ANN-C). A nivel estructural, los almidones modificados revelaron cambios sustanciales dado que los espectros infrarrojos reflejaron un desplazamiento de las bandas de absorción en la región de 900 a 1100 cm-1. Esto está asociado con una alteración y reorganización de las zonas amorfa y cristalina de los gránulos y es consistente con la disminución del contenido de amilosa (desde 19.53% hasta 17.64%) y el aumento del índice de cristalinidad. El comportamiento térmico de los almidones también se modificó al aumentar la temperatura pico (desde 68.22 hasta 75.38°C) y reducir la entalpía de gelatinización (desde 19.34 hasta 15.79 J/g). Los pretratamientos UTS y ANN-C mejoraron significativamente las propiedades mesoporosas e hidrofílicas de los almidones de yuca procesados.
References
Benavent-Gil, Y., & Rosell, C. M. (2017). Morphological and physicochemical characterization of porous starches obtained from different botanical sources and amylolytic enzymes. International Journal of Biological Macromolecules, 103, 587–595. https://doi.org/10.1016/j.ijbiomac.2017.05.089 DOI: https://doi.org/10.1016/j.ijbiomac.2017.05.089
Chen, Y., Huang, S., Tang, Z., Chen, X., & Zhang, Z. (2011). Structural changes of cassava starch granules hydrolyzed by a mixture of α-amylase and glucoamylase. Carbohydrate Polymers, 85(1), 272–275. https://doi.org/10.1016/j.carbpol.2011.01.047 DOI: https://doi.org/10.1016/j.carbpol.2011.01.047
Dias, A. R. G., Zavareze, E. R., Spier, F., Castro, L. A. S., & Gutkoski, L. C. (2010). Effects of annealing on the physicochemical properties and enzymatic susceptibility of rice starches with different amylose contents. Food Chemistry, 123(3), 711–719. https://doi.org/10.1016/j.foodchem.2010.05.040 DOI: https://doi.org/10.1016/j.foodchem.2010.05.040
Dura, A., Błaszczak, W., & Rosell, C. M. (2014). Functionality of porous starch obtained by amylase or amyloglucosidase treatments. Carbohydrate Polymers, 101, 837–845. https://doi.org/10.1016/j.carbpol.2013.10.013 DOI: https://doi.org/10.1016/j.carbpol.2013.10.013
Figueroa-Flórez, J. A., Cadena-Chamorro, E., Rodríguez-Sandoval, E., Salcedo-Mendoza, J., & Ciro-Velásquez, H. (2019). Cassava starches modified by enzymatic biocatalysis: Effect of reaction time and drying method. DYNA, 86(208), 162–170. https://doi.org/10.15446/dyna.v86n208.72976 DOI: https://doi.org/10.15446/dyna.v86n208.72976
Foresti, M. L., Williams, M. P., Martínez-García, R., & Vázquez, A. (2014). Analysis of a preferential action of α-amylase from B. licheniformis towards amorphous regions of waxy maize starch. Carbohydrate Polymers, 102, 80–87. https://doi.org/10.1016/j.carbpol.2013.11.013 DOI: https://doi.org/10.1016/j.carbpol.2013.11.013
Gao, F., Li, D., Bi, C., Mao, Z., & Adhikari, B. (2013). Application of various drying methods to produce enzymatically hydrolyzed porous starch granules. Drying Technology, 31(13–14), 1627–1634. https://doi.org/10.1080/07373937.2013.771651 DOI: https://doi.org/10.1080/07373937.2013.771651
Gomes, A. M. M., Silva, C. M., & Ricardo, N. M. P. S. (2005). Effects of annealing on the physicochemical properties of fermented cassava starch (polvilho azedo). Carbohydrate Polymers, 60(1), 1–6. https://doi.org/10.1016/j.carbpol.2004.11.016 DOI: https://doi.org/10.1016/j.carbpol.2004.11.016
Guo, L., Li, J., Li, H., Zhu, Y., & Cui, B. (2020). The structure property and adsorption capacity of new enzyme-treated potato and sweet potato starches. International Journal of Biological Macromolecules, 144, 863–873. https://doi.org/10.1016/j.ijbiomac.2019.09.164 DOI: https://doi.org/10.1016/j.ijbiomac.2019.09.164
He, S., Qin, Y., Walid, E., Li, L., Cui, J., & Ma, Y. (2014). Effect of ball-milling on the physicochemical properties of maize starch. Biotechnology Reports, 3, 54–59. https://doi.org/10.1016/j.btre.2014.06.004 DOI: https://doi.org/10.1016/j.btre.2014.06.004
Hossen, M. S., Sotome, I., Takenaka, M., Isobe, S., Nakajima, M., & Okadome, H. (2011). Effect of particle size of different crop starches and their flours on pasting properties. Japan Journal of Food Engineering, 12(1), 29–35. https://doi.org/10.11301/jsfe.12.29 DOI: https://doi.org/10.11301/jsfe.12.29
Jayakody, L., & Hoover, R. (2008). Effect of annealing on the molecular structure and physicochemical properties of starches from different botanical origins - A review. Carbohydrate Polymers, 74(3), 691–703. https://doi.org/10.1016/j.carbpol.2008.04.032 DOI: https://doi.org/10.1016/j.carbpol.2008.04.032
Jung, Y. S., Lee, B. H., & Yoo, S. H. (2017). Physical structure and absorption properties of tailor-made porous starch granules produced by selected amylolytic enzymes. PLoS ONE, 12(7), Article e0181372. https://doi.org/10.1371/journal.pone.0181372 DOI: https://doi.org/10.1371/journal.pone.0181372
Keeratiburana, T., Hansen, A. R., Soontaranon, S., Blennow, A., & Tongta, S. (2020). Porous high amylose rice starch modified by amyloglucosidase and maltogenic α-amylase. Carbohydrate Polymers, 230, Article 115611. https://doi.org/10.1016/j.carbpol.2019.115611 DOI: https://doi.org/10.1016/j.carbpol.2019.115611
Kiseleva, V. I., Genkina, N. K., Tester, R., Wasserman, L. A., Popov, A. A., & Yuryev, V. P. (2004). Annealing of normal, low and high amylose starches extracted from barley cultivars grown under different environmental conditions. Carbohydrate Polymers, 56(2), 157–168. https://doi.org/10.1016/j.carbpol.2004.01.006 DOI: https://doi.org/10.1016/j.carbpol.2004.01.006
Li, M., Li, J., & Zhu, C. (2018). Effect of ultrasound pretreatment on enzymolysis and physicochemical properties of corn starch. International Journal of Biological Macromolecules, 111, 848–856. https://doi.org/10.1016/j.ijbiomac.2017.12.156 DOI: https://doi.org/10.1016/j.ijbiomac.2017.12.156
Ma, Z., Yin, X., Chang, D., Hu, X., & Boye, J. I. (2018). Long- and short-range structural characteristics of pea starch modified by autoclaving, α-amylolysis, and pullulanase debranching. International Journal of Biological Macromolecules, 120(PartA), 650–656. https://doi.org/10.1016/j.ijbiomac.2018.08.132 DOI: https://doi.org/10.1016/j.ijbiomac.2018.08.132
Monroy, Y., Rivero, S., & García, M. A. (2018). Microstructural and techno-functional properties of cassava starch modified by ultrasound. Ultrasonics Sonochemistry, 42, 795–804. https://doi.org/10.1016/j.ultsonch.2017.12.048 DOI: https://doi.org/10.1016/j.ultsonch.2017.12.048
O’Brien, S., & Wang, Y. J. (2008). Susceptibility of annealed starches to hydrolysis by α-amylase and glucoamylase. Carbohydrate Polymers, 72(4), 597–607. https://doi.org/10.1016/j.carbpol.2007.09.032 DOI: https://doi.org/10.1016/j.carbpol.2007.09.032
Rocha, T. S., Carneiro, A. P. A., & Franco, C. M. L. (2010). Effect of enzymatic hydrolysis on some physicochemical properties of root and tuber granular starches. Food and Science Technology, 30(2), 544–551. https://doi.org/10.1590/s0101-20612010000200039 DOI: https://doi.org/10.1590/S0101-20612010000200039
Rouquerol, J., Avnir, D., Fairbridge, C. W., Everett, D. H., Haynes, J. M., Pernicone, N., Ramsay, J. D. F., Sing, K. S. W., & Unger, K. K. (1994). Recommendations for the characterization of porous solids (Technical Report). Pure and Applied Chemistry, 66(8), 1739–1758. https://doi.org/10.1351/pac199466081739 DOI: https://doi.org/10.1351/pac199466081739
Salcedo-Mendoza, J., Paternina-Urzola, S., Lujan-Rhenals, D., & Figueroa-Flórez, J. (2018). Enzymatic modification of cassava starch (Corpoica M-Tai) around the pasting temperature. DYNA, 85(204), 223–230. https://doi.org/10.15446/dyna.v85n204.66620 DOI: https://doi.org/10.15446/dyna.v85n204.66620
Seetapan, N., Limparyoon, N., Fuongfuchat, A., Gamonpilas, C., & Methacanon, P. (2016). Effect of freezing rate and starch granular morphology on ice formation and non-freezable water content of flour and starch gels. International Journal of Food Properties, 19(7), 1616–1630. https://doi.org/10.1080/10942912.2015.1107575 DOI: https://doi.org/10.1080/10942912.2015.1107575
Shariffa, Y. N., Karim, A. A., Fazilah, A., & Zaidul, I. S. M. (2009). Enzymatic hydrolysis of granular native and mildly heattreated tapioca and sweet potato starches at sub-gelatinization temperature. Food Hydrocolloids, 23(2), 434–440. https://doi.org/10.1016/j.foodhyd.2008.03.009 DOI: https://doi.org/10.1016/j.foodhyd.2008.03.009
Shariffa, Y. N., Uthumporn, U., Karim, A. A., & Zaibunnisa, A. H. (2017). Hydrolysis of native and annealed tapioca and sweet potato starches at subgelatinization temperature using a mixture of amylolytic enzymes. International Food Research Journal, 24(5), 1925–1933.
Tao, H., Yan, J., Zhao, J., Tian, Y., Jin, Z., & Xu, X. (2015). Effect of multiple freezing/thawing cycles on the structural and functional properties of waxy rice starch. PLoS ONE, 10(5), Article e0127138. https://doi.org/10.1371/journal.pone.0127138 DOI: https://doi.org/10.1371/journal.pone.0127138
Tonon, R. V., Alexandre, D., Hubinger, M. D., & Cunha, R. L. (2009). Steady and dynamic shear rheological properties of açai pulp (Euterpe oleraceae Mart.). Journal of Food Engineering, 92(4), 425–431. https://doi.org/10.1016/j.jfoodeng.2008.12.014 DOI: https://doi.org/10.1016/j.jfoodeng.2008.12.014
Tukomane, T., Leerapongnun, P., Shobsngob, S., & Varavinit, S. (2007). Preparation and characterization of annealedenzymatically hydrolyzed tapioca starch and the utilization in tableting. Starch, 59(1), 33–45. https://doi.org/10.1002/star.200600524 DOI: https://doi.org/10.1002/star.200600524
Waduge, R. N., Hoover, R., Vasanthan, T., Gao, J., & Li, J. (2006). Effect of annealing on the structure and physicochemical properties of barley starches of varying amylose content. Food Research International, 39(1), 59–77. https://doi.org/10.1016/j.foodres.2005.05.008 DOI: https://doi.org/10.1016/j.foodres.2005.05.008
Wang, H., Lv, J., Jiang, S., Niu, B., Pang, M., & Jiang, S. (2016). Preparation and characterization of porous corn starch and its adsorption toward grape seed proanthocyanidins. Starch, 68(11–12), 1254–1263. https://doi.org/10.1002/star.201600009 DOI: https://doi.org/10.1002/star.201600009
Wang, S. Y., Zhang, C., Liu, Q. Q., Wang Z. J., Wan, K. X., Qian, J. Y., Zhang, L., Wu, C., & Li, Q. (2022). Modification of potato starch by critical melting pretreatment combined with freeze-thawing: Preparation, morphology, structure, and functionality. LWT-Food Science and Technology, 158, Article 113109. https://doi.org/10.1016/j.lwt.2022.113109 DOI: https://doi.org/10.1016/j.lwt.2022.113109
Wu, Y., Du, X., Ge, H., & Lv, Z. (2011). Preparation of microporous starch by glucoamylase and ultrasound. Starch, 63(4), 217–225. https://doi.org/10.1002/star.201000036 DOI: https://doi.org/10.1002/star.201000036
Xie, Y., Li, M. N., Chen, H. Q., & Zhang, B. (2019). Effects of the combination of repeated heat-moisture treatment and compound enzymes hydrolysis on the structural and physicochemical properties of porous wheat starch. Food Chemistry, 274, 351–359. https://doi.org/10.1016/j.foodchem.2018.09.034 DOI: https://doi.org/10.1016/j.foodchem.2018.09.034
Xu, M., Saleh, A. S. M., Gong, B., Li, B., Jing, L., Gou, M., Jiang, H., & Li, W. (2018). The effect of repeated versus continuous annealing on structural, physicochemical, and digestive properties of potato starch. Food Research International, 111, 324–333. https://doi.org/10.1016/j.foodres.2018.05.052 DOI: https://doi.org/10.1016/j.foodres.2018.05.052
Zhang, B., Cui, D., Liu, M., Gong, H., Huang, Y., & Han, F. (2012). Corn porous starch: Preparation, characterization and adsorption property. International Journal of Biological Macromolecules, 50(1), 250–256. https://doi.org/10.1016/j.ijbiomac.2011.11.002 DOI: https://doi.org/10.1016/j.ijbiomac.2011.11.002
Zhang, F., Zhang, Y. Y., Thakur, K., Zhang, J. G., & Wei, Z. J. (2019). Structural and physicochemical characteristics of lycoris starch treated with different physical methods. Food Chemistry, 275, 8–14. https://doi.org/10.1016/j.foodchem.2018.09.079 DOI: https://doi.org/10.1016/j.foodchem.2018.09.079
Zhao, A. Q., Yu, L., Yang, M., Wang, C. J., Wang, M. M., & Bai, X. (2018). Effects of the combination of freeze-thawing and enzymatic hydrolysis on the microstructure and physicochemical properties of porous corn starch. Food Hydrocolloids, 83, 465–472. https://doi.org/10.1016/j.foodhyd.2018.04.041 DOI: https://doi.org/10.1016/j.foodhyd.2018.04.041
Zhong, Y., Xu, J., Liu, X., Ding, L., Svensson, B., Herburger, K., Guo, K., Pang, C., & Blennow, A. (2022). Recent advances in enzyme biotechnology on modifying gelatinized and granular starch. Trends in Food Science & Technology, 123, 343–354. https://doi.org/10.1016/j.tifs.2022.03.019. DOI: https://doi.org/10.1016/j.tifs.2022.03.019
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Nedys Acevedo-Viloria, Manuel Cervera-Ricardo, Jorge Figueroa-Flórez, Jairo Salcedo-Mendoza, Veronica Ramos-Villacob. (2024). Vigilancia científica y tecnológica en procesos de modificación físico-enzimática en gránulos de almidón. Revista U.D.C.A Actualidad & Divulgación Científica, 27(1) https://doi.org/10.31910/rudca.v27.n1.2024.2416.
2. Nedys Acevedo-Viloria, Jorge Figueroa-Flórez, Jairo Salcedo-Mendoza, Jorge Hernández-Ruydiaz, Fabian Ortega-Quintana. (2025). Effect of hydrothermal processing on the native starches of cassava (Manihot esculenta) and yam (Dioscorea alata). Revista Facultad Nacional de Agronomía Medellín, 78(1), p.10977. https://doi.org/10.15446/rfnam.v78n1.112802.
Dimensions
PlumX
Article abstract page views
Downloads
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)
Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.