Published

2022-04-26

Effect of physical and thermal pretreatments on enzymatic activity in the production of microporous cassava starch

Efecto de pretratamientos físicos y térmicos sobre la actividad enzimática en la producción de almidón microporoso de yuca

DOI:

https://doi.org/10.15446/agron.colomb.v41n1.105089

Keywords:

annealing, crystallinity, gelatinization, hydrolysis, hydro-thermal treatments (en)
recocido, cristalinidad, gelatinización, hidrólisis, tratamientos hidrotermales (es)

Downloads

Authors

Cassava starch is modified to increase porosity and lacerations that are limited when only enzymatic treatments are used. This study proposes to improve enzymatic activity of α-amylase and amyloglucosidase on the polymer chains of cassava starch by implementing physical and thermal pretreatments below the gelatinization temperature and before the hydrolytic process. The pretreatments increased the biocatalytic action of the enzymes, causing significant changes in the morphology of the granules, and superficial lacerations were found in samples of starches pretreated with ultrasound (UTS) or annealing and ultra-rapid freezing (ANN-C). At the structural level, the modified starches revealed substantial changes as the infrared spectra reflected a displacement of the absorption bands in the region from 900 to 1100 cm-1. This is associated with an alteration and reorganization of the amorphous and crystalline zones of the granules and is consistent with a decrease in amylose content (from 19.53% to 17.64%) and an increase in the crystallinity index. The thermal behavior of the starches was also modified by increasing the peak temperature (from 68.22°C to 75.38°C) and reducing the gelatinization enthalpy (from 19.34 to 15.79 J/g). UTS and ANN-C pretreatments significantly improved the mesoporous and hydrophilic properties of the modified cassava starches.

El almidón de yuca es modificado para aumentar su porosidad y laceraciones, las cuales son limitadas cuando sólo se utilizan tratamientos enzimáticos. Por lo tanto, este estudio propone mejorar la actividad enzimática de la α-amilasa y la amiloglucosidasa sobre las cadenas poliméricas del almidón de yuca utilizando pretratamientos físicos y térmicos por debajo de la temperatura de gelatinización antes del proceso hidrolítico. En este caso, los pretratamientos aumentaron la acción biocatalítica de las enzimas, provocando cambios significativos en la morfología de los gránulos, y se encontraron marcadas laceraciones superficiales en muestras de almidones pretratados con ultrasonido (UTS) o recocido y congelación ultrarrápida (ANN-C). A nivel estructural, los almidones modificados revelaron cambios sustanciales dado que los espectros infrarrojos reflejaron un desplazamiento de las bandas de absorción en la región de 900 a 1100 cm-1. Esto está asociado con una alteración y reorganización de las zonas amorfa y cristalina de los gránulos y es consistente con la disminución del contenido de amilosa (desde 19.53% hasta 17.64%) y el aumento del índice de cristalinidad. El comportamiento térmico de los almidones también se modificó al aumentar la temperatura pico (desde 68.22 hasta 75.38°C) y reducir la entalpía de gelatinización (desde 19.34 hasta 15.79 J/g). Los pretratamientos UTS y ANN-C mejoraron significativamente las propiedades mesoporosas e hidrofílicas de los almidones de yuca procesados.

References

Benavent-Gil, Y., & Rosell, C. M. (2017). Morphological and physicochemical characterization of porous starches obtained from different botanical sources and amylolytic enzymes. International Journal of Biological Macromolecules, 103, 587–595. https://doi.org/10.1016/j.ijbiomac.2017.05.089 DOI: https://doi.org/10.1016/j.ijbiomac.2017.05.089

Chen, Y., Huang, S., Tang, Z., Chen, X., & Zhang, Z. (2011). Structural changes of cassava starch granules hydrolyzed by a mixture of α-amylase and glucoamylase. Carbohydrate Polymers, 85(1), 272–275. https://doi.org/10.1016/j.carbpol.2011.01.047 DOI: https://doi.org/10.1016/j.carbpol.2011.01.047

Dias, A. R. G., Zavareze, E. R., Spier, F., Castro, L. A. S., & Gutkoski, L. C. (2010). Effects of annealing on the physicochemical properties and enzymatic susceptibility of rice starches with different amylose contents. Food Chemistry, 123(3), 711–719. https://doi.org/10.1016/j.foodchem.2010.05.040 DOI: https://doi.org/10.1016/j.foodchem.2010.05.040

Dura, A., Błaszczak, W., & Rosell, C. M. (2014). Functionality of porous starch obtained by amylase or amyloglucosidase treatments. Carbohydrate Polymers, 101, 837–845. https://doi.org/10.1016/j.carbpol.2013.10.013 DOI: https://doi.org/10.1016/j.carbpol.2013.10.013

Figueroa-Flórez, J. A., Cadena-Chamorro, E., Rodríguez-Sandoval, E., Salcedo-Mendoza, J., & Ciro-Velásquez, H. (2019). Cassava starches modified by enzymatic biocatalysis: Effect of reaction time and drying method. DYNA, 86(208), 162–170. https://doi.org/10.15446/dyna.v86n208.72976 DOI: https://doi.org/10.15446/dyna.v86n208.72976

Foresti, M. L., Williams, M. P., Martínez-García, R., & Vázquez, A. (2014). Analysis of a preferential action of α-amylase from B. licheniformis towards amorphous regions of waxy maize starch. Carbohydrate Polymers, 102, 80–87. https://doi.org/10.1016/j.carbpol.2013.11.013 DOI: https://doi.org/10.1016/j.carbpol.2013.11.013

Gao, F., Li, D., Bi, C., Mao, Z., & Adhikari, B. (2013). Application of various drying methods to produce enzymatically hydrolyzed porous starch granules. Drying Technology, 31(13–14), 1627–1634. https://doi.org/10.1080/07373937.2013.771651 DOI: https://doi.org/10.1080/07373937.2013.771651

Gomes, A. M. M., Silva, C. M., & Ricardo, N. M. P. S. (2005). Effects of annealing on the physicochemical properties of fermented cassava starch (polvilho azedo). Carbohydrate Polymers, 60(1), 1–6. https://doi.org/10.1016/j.carbpol.2004.11.016 DOI: https://doi.org/10.1016/j.carbpol.2004.11.016

Guo, L., Li, J., Li, H., Zhu, Y., & Cui, B. (2020). The structure property and adsorption capacity of new enzyme-treated potato and sweet potato starches. International Journal of Biological Macromolecules, 144, 863–873. https://doi.org/10.1016/j.ijbiomac.2019.09.164 DOI: https://doi.org/10.1016/j.ijbiomac.2019.09.164

He, S., Qin, Y., Walid, E., Li, L., Cui, J., & Ma, Y. (2014). Effect of ball-milling on the physicochemical properties of maize starch. Biotechnology Reports, 3, 54–59. https://doi.org/10.1016/j.btre.2014.06.004 DOI: https://doi.org/10.1016/j.btre.2014.06.004

Hossen, M. S., Sotome, I., Takenaka, M., Isobe, S., Nakajima, M., & Okadome, H. (2011). Effect of particle size of different crop starches and their flours on pasting properties. Japan Journal of Food Engineering, 12(1), 29–35. https://doi.org/10.11301/jsfe.12.29 DOI: https://doi.org/10.11301/jsfe.12.29

Jayakody, L., & Hoover, R. (2008). Effect of annealing on the molecular structure and physicochemical properties of starches from different botanical origins - A review. Carbohydrate Polymers, 74(3), 691–703. https://doi.org/10.1016/j.carbpol.2008.04.032 DOI: https://doi.org/10.1016/j.carbpol.2008.04.032

Jung, Y. S., Lee, B. H., & Yoo, S. H. (2017). Physical structure and absorption properties of tailor-made porous starch granules produced by selected amylolytic enzymes. PLoS ONE, 12(7), Article e0181372. https://doi.org/10.1371/journal.pone.0181372 DOI: https://doi.org/10.1371/journal.pone.0181372

Keeratiburana, T., Hansen, A. R., Soontaranon, S., Blennow, A., & Tongta, S. (2020). Porous high amylose rice starch modified by amyloglucosidase and maltogenic α-amylase. Carbohydrate Polymers, 230, Article 115611. https://doi.org/10.1016/j.carbpol.2019.115611 DOI: https://doi.org/10.1016/j.carbpol.2019.115611

Kiseleva, V. I., Genkina, N. K., Tester, R., Wasserman, L. A., Popov, A. A., & Yuryev, V. P. (2004). Annealing of normal, low and high amylose starches extracted from barley cultivars grown under different environmental conditions. Carbohydrate Polymers, 56(2), 157–168. https://doi.org/10.1016/j.carbpol.2004.01.006 DOI: https://doi.org/10.1016/j.carbpol.2004.01.006

Li, M., Li, J., & Zhu, C. (2018). Effect of ultrasound pretreatment on enzymolysis and physicochemical properties of corn starch. International Journal of Biological Macromolecules, 111, 848–856. https://doi.org/10.1016/j.ijbiomac.2017.12.156 DOI: https://doi.org/10.1016/j.ijbiomac.2017.12.156

Ma, Z., Yin, X., Chang, D., Hu, X., & Boye, J. I. (2018). Long- and short-range structural characteristics of pea starch modified by autoclaving, α-amylolysis, and pullulanase debranching. International Journal of Biological Macromolecules, 120(PartA), 650–656. https://doi.org/10.1016/j.ijbiomac.2018.08.132 DOI: https://doi.org/10.1016/j.ijbiomac.2018.08.132

Monroy, Y., Rivero, S., & García, M. A. (2018). Microstructural and techno-functional properties of cassava starch modified by ultrasound. Ultrasonics Sonochemistry, 42, 795–804. https://doi.org/10.1016/j.ultsonch.2017.12.048 DOI: https://doi.org/10.1016/j.ultsonch.2017.12.048

O’Brien, S., & Wang, Y. J. (2008). Susceptibility of annealed starches to hydrolysis by α-amylase and glucoamylase. Carbohydrate Polymers, 72(4), 597–607. https://doi.org/10.1016/j.carbpol.2007.09.032 DOI: https://doi.org/10.1016/j.carbpol.2007.09.032

Rocha, T. S., Carneiro, A. P. A., & Franco, C. M. L. (2010). Effect of enzymatic hydrolysis on some physicochemical properties of root and tuber granular starches. Food and Science Technology, 30(2), 544–551. https://doi.org/10.1590/s0101-20612010000200039 DOI: https://doi.org/10.1590/S0101-20612010000200039

Rouquerol, J., Avnir, D., Fairbridge, C. W., Everett, D. H., Haynes, J. M., Pernicone, N., Ramsay, J. D. F., Sing, K. S. W., & Unger, K. K. (1994). Recommendations for the characterization of porous solids (Technical Report). Pure and Applied Chemistry, 66(8), 1739–1758. https://doi.org/10.1351/pac199466081739 DOI: https://doi.org/10.1351/pac199466081739

Salcedo-Mendoza, J., Paternina-Urzola, S., Lujan-Rhenals, D., & Figueroa-Flórez, J. (2018). Enzymatic modification of cassava starch (Corpoica M-Tai) around the pasting temperature. DYNA, 85(204), 223–230. https://doi.org/10.15446/dyna.v85n204.66620 DOI: https://doi.org/10.15446/dyna.v85n204.66620

Seetapan, N., Limparyoon, N., Fuongfuchat, A., Gamonpilas, C., & Methacanon, P. (2016). Effect of freezing rate and starch granular morphology on ice formation and non-freezable water content of flour and starch gels. International Journal of Food Properties, 19(7), 1616–1630. https://doi.org/10.1080/10942912.2015.1107575 DOI: https://doi.org/10.1080/10942912.2015.1107575

Shariffa, Y. N., Karim, A. A., Fazilah, A., & Zaidul, I. S. M. (2009). Enzymatic hydrolysis of granular native and mildly heattreated tapioca and sweet potato starches at sub-gelatinization temperature. Food Hydrocolloids, 23(2), 434–440. https://doi.org/10.1016/j.foodhyd.2008.03.009 DOI: https://doi.org/10.1016/j.foodhyd.2008.03.009

Shariffa, Y. N., Uthumporn, U., Karim, A. A., & Zaibunnisa, A. H. (2017). Hydrolysis of native and annealed tapioca and sweet potato starches at subgelatinization temperature using a mixture of amylolytic enzymes. International Food Research Journal, 24(5), 1925–1933.

Tao, H., Yan, J., Zhao, J., Tian, Y., Jin, Z., & Xu, X. (2015). Effect of multiple freezing/thawing cycles on the structural and functional properties of waxy rice starch. PLoS ONE, 10(5), Article e0127138. https://doi.org/10.1371/journal.pone.0127138 DOI: https://doi.org/10.1371/journal.pone.0127138

Tonon, R. V., Alexandre, D., Hubinger, M. D., & Cunha, R. L. (2009). Steady and dynamic shear rheological properties of açai pulp (Euterpe oleraceae Mart.). Journal of Food Engineering, 92(4), 425–431. https://doi.org/10.1016/j.jfoodeng.2008.12.014 DOI: https://doi.org/10.1016/j.jfoodeng.2008.12.014

Tukomane, T., Leerapongnun, P., Shobsngob, S., & Varavinit, S. (2007). Preparation and characterization of annealedenzymatically hydrolyzed tapioca starch and the utilization in tableting. Starch, 59(1), 33–45. https://doi.org/10.1002/star.200600524 DOI: https://doi.org/10.1002/star.200600524

Waduge, R. N., Hoover, R., Vasanthan, T., Gao, J., & Li, J. (2006). Effect of annealing on the structure and physicochemical properties of barley starches of varying amylose content. Food Research International, 39(1), 59–77. https://doi.org/10.1016/j.foodres.2005.05.008 DOI: https://doi.org/10.1016/j.foodres.2005.05.008

Wang, H., Lv, J., Jiang, S., Niu, B., Pang, M., & Jiang, S. (2016). Preparation and characterization of porous corn starch and its adsorption toward grape seed proanthocyanidins. Starch, 68(11–12), 1254–1263. https://doi.org/10.1002/star.201600009 DOI: https://doi.org/10.1002/star.201600009

Wang, S. Y., Zhang, C., Liu, Q. Q., Wang Z. J., Wan, K. X., Qian, J. Y., Zhang, L., Wu, C., & Li, Q. (2022). Modification of potato starch by critical melting pretreatment combined with freeze-thawing: Preparation, morphology, structure, and functionality. LWT-Food Science and Technology, 158, Article 113109. https://doi.org/10.1016/j.lwt.2022.113109 DOI: https://doi.org/10.1016/j.lwt.2022.113109

Wu, Y., Du, X., Ge, H., & Lv, Z. (2011). Preparation of microporous starch by glucoamylase and ultrasound. Starch, 63(4), 217–225. https://doi.org/10.1002/star.201000036 DOI: https://doi.org/10.1002/star.201000036

Xie, Y., Li, M. N., Chen, H. Q., & Zhang, B. (2019). Effects of the combination of repeated heat-moisture treatment and compound enzymes hydrolysis on the structural and physicochemical properties of porous wheat starch. Food Chemistry, 274, 351–359. https://doi.org/10.1016/j.foodchem.2018.09.034 DOI: https://doi.org/10.1016/j.foodchem.2018.09.034

Xu, M., Saleh, A. S. M., Gong, B., Li, B., Jing, L., Gou, M., Jiang, H., & Li, W. (2018). The effect of repeated versus continuous annealing on structural, physicochemical, and digestive properties of potato starch. Food Research International, 111, 324–333. https://doi.org/10.1016/j.foodres.2018.05.052 DOI: https://doi.org/10.1016/j.foodres.2018.05.052

Zhang, B., Cui, D., Liu, M., Gong, H., Huang, Y., & Han, F. (2012). Corn porous starch: Preparation, characterization and adsorption property. International Journal of Biological Macromolecules, 50(1), 250–256. https://doi.org/10.1016/j.ijbiomac.2011.11.002 DOI: https://doi.org/10.1016/j.ijbiomac.2011.11.002

Zhang, F., Zhang, Y. Y., Thakur, K., Zhang, J. G., & Wei, Z. J. (2019). Structural and physicochemical characteristics of lycoris starch treated with different physical methods. Food Chemistry, 275, 8–14. https://doi.org/10.1016/j.foodchem.2018.09.079 DOI: https://doi.org/10.1016/j.foodchem.2018.09.079

Zhao, A. Q., Yu, L., Yang, M., Wang, C. J., Wang, M. M., & Bai, X. (2018). Effects of the combination of freeze-thawing and enzymatic hydrolysis on the microstructure and physicochemical properties of porous corn starch. Food Hydrocolloids, 83, 465–472. https://doi.org/10.1016/j.foodhyd.2018.04.041 DOI: https://doi.org/10.1016/j.foodhyd.2018.04.041

Zhong, Y., Xu, J., Liu, X., Ding, L., Svensson, B., Herburger, K., Guo, K., Pang, C., & Blennow, A. (2022). Recent advances in enzyme biotechnology on modifying gelatinized and granular starch. Trends in Food Science & Technology, 123, 343–354. https://doi.org/10.1016/j.tifs.2022.03.019. DOI: https://doi.org/10.1016/j.tifs.2022.03.019

How to Cite

APA

Figueroa-Flórez, J. A., Arroyo Dagobeth, E. D., Cadena-Chamorro, E., Rodríguez-Sandoval, E., Salcedo-Mendoza, J. G. and Ciro-Velásquez, H. J. (2023). Effect of physical and thermal pretreatments on enzymatic activity in the production of microporous cassava starch. Agronomía Colombiana, 41(1), e105089. https://doi.org/10.15446/agron.colomb.v41n1.105089

ACM

[1]
Figueroa-Flórez, J.A., Arroyo Dagobeth, E.D., Cadena-Chamorro, E., Rodríguez-Sandoval, E., Salcedo-Mendoza, J.G. and Ciro-Velásquez, H.J. 2023. Effect of physical and thermal pretreatments on enzymatic activity in the production of microporous cassava starch. Agronomía Colombiana. 41, 1 (Jan. 2023), e105089. DOI:https://doi.org/10.15446/agron.colomb.v41n1.105089.

ACS

(1)
Figueroa-Flórez, J. A.; Arroyo Dagobeth, E. D.; Cadena-Chamorro, E.; Rodríguez-Sandoval, E.; Salcedo-Mendoza, J. G.; Ciro-Velásquez, H. J. Effect of physical and thermal pretreatments on enzymatic activity in the production of microporous cassava starch. Agron. Colomb. 2023, 41, e105089.

ABNT

FIGUEROA-FLÓREZ, J. A.; ARROYO DAGOBETH, E. D.; CADENA-CHAMORRO, E.; RODRÍGUEZ-SANDOVAL, E.; SALCEDO-MENDOZA, J. G.; CIRO-VELÁSQUEZ, H. J. Effect of physical and thermal pretreatments on enzymatic activity in the production of microporous cassava starch. Agronomía Colombiana, [S. l.], v. 41, n. 1, p. e105089, 2023. DOI: 10.15446/agron.colomb.v41n1.105089. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/105089. Acesso em: 23 jan. 2025.

Chicago

Figueroa-Flórez, Jorge Antonio, Eduardo David Arroyo Dagobeth, Edith Cadena-Chamorro, Eduardo Rodríguez-Sandoval, Jairo Guadalupe Salcedo-Mendoza, and Héctor José Ciro-Velásquez. 2023. “Effect of physical and thermal pretreatments on enzymatic activity in the production of microporous cassava starch”. Agronomía Colombiana 41 (1):e105089. https://doi.org/10.15446/agron.colomb.v41n1.105089.

Harvard

Figueroa-Flórez, J. A., Arroyo Dagobeth, E. D., Cadena-Chamorro, E., Rodríguez-Sandoval, E., Salcedo-Mendoza, J. G. and Ciro-Velásquez, H. J. (2023) “Effect of physical and thermal pretreatments on enzymatic activity in the production of microporous cassava starch”, Agronomía Colombiana, 41(1), p. e105089. doi: 10.15446/agron.colomb.v41n1.105089.

IEEE

[1]
J. A. Figueroa-Flórez, E. D. Arroyo Dagobeth, E. Cadena-Chamorro, E. Rodríguez-Sandoval, J. G. Salcedo-Mendoza, and H. J. Ciro-Velásquez, “Effect of physical and thermal pretreatments on enzymatic activity in the production of microporous cassava starch”, Agron. Colomb., vol. 41, no. 1, p. e105089, Jan. 2023.

MLA

Figueroa-Flórez, J. A., E. D. Arroyo Dagobeth, E. Cadena-Chamorro, E. Rodríguez-Sandoval, J. G. Salcedo-Mendoza, and H. J. Ciro-Velásquez. “Effect of physical and thermal pretreatments on enzymatic activity in the production of microporous cassava starch”. Agronomía Colombiana, vol. 41, no. 1, Jan. 2023, p. e105089, doi:10.15446/agron.colomb.v41n1.105089.

Turabian

Figueroa-Flórez, Jorge Antonio, Eduardo David Arroyo Dagobeth, Edith Cadena-Chamorro, Eduardo Rodríguez-Sandoval, Jairo Guadalupe Salcedo-Mendoza, and Héctor José Ciro-Velásquez. “Effect of physical and thermal pretreatments on enzymatic activity in the production of microporous cassava starch”. Agronomía Colombiana 41, no. 1 (January 1, 2023): e105089. Accessed January 23, 2025. https://revistas.unal.edu.co/index.php/agrocol/article/view/105089.

Vancouver

1.
Figueroa-Flórez JA, Arroyo Dagobeth ED, Cadena-Chamorro E, Rodríguez-Sandoval E, Salcedo-Mendoza JG, Ciro-Velásquez HJ. Effect of physical and thermal pretreatments on enzymatic activity in the production of microporous cassava starch. Agron. Colomb. [Internet]. 2023 Jan. 1 [cited 2025 Jan. 23];41(1):e105089. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/105089

Download Citation

CrossRef Cited-by

CrossRef citations2

1. Nedys Acevedo-Viloria, Manuel Cervera-Ricardo, Jorge Figueroa-Flórez, Jairo Salcedo-Mendoza, Veronica Ramos-Villacob. (2024). Vigilancia científica y tecnológica en procesos de modificación físico-enzimática en gránulos de almidón. Revista U.D.C.A Actualidad & Divulgación Científica, 27(1) https://doi.org/10.31910/rudca.v27.n1.2024.2416.

2. Nedys Acevedo-Viloria, Jorge Figueroa-Flórez, Jairo Salcedo-Mendoza, Jorge Hernández-Ruydiaz, Fabian Ortega-Quintana. (2025). Effect of hydrothermal processing on the native starches of cassava (Manihot esculenta) and yam (Dioscorea alata). Revista Facultad Nacional de Agronomía Medellín, 78(1), p.10977. https://doi.org/10.15446/rfnam.v78n1.112802.

Dimensions

PlumX

Article abstract page views

421

Downloads

Download data is not yet available.