Low water availability has a greater influence on the development of coffee seedlings than an increase in temperature
La baja disponibilidad hídrica tiene mayor influencia sobre el desarrollo de plántulas de café que el aumento de temperatura
DOI:
https://doi.org/10.15446/agron.colomb.v41n1.105778Keywords:
drought, growth, photosynthesis, nitrogen content, Coffea arabica L. (en)sequía, crecimiento, fotosíntesis, contenido de nitrógeno, Coffea arabica L. (es)
Downloads
Coffee is an important product in the world, essential for thousands of producing families. However, climate change has generated variations in temperature and precipitation that negatively impact the maturation of crops. To quantify the combined effect of drought stress and elevated temperatures, plants of Coffea arabica cv. Ouro Verde IAC H5010-5 were evaluated under the climatic conditions of La Molina, Peru, with four treatments (WT: 100% available water + air temperature (22.7°C); -WT: < 50% available water + air temperature (22.7°C); W+T: 100% available water + elevated air temperature (22.7 + 2.5°C), and –W+T: < 50% available water + elevated air temperature (22.7 + 2.5°C)). In general, morphological indices were decreased by -WT and –W+T (P≤0.05). Plants subjected to -W+T, significantly affected quality indices like root:shoot ratio, robustness, and Dickson (P≤0.05). The -WT plants had a nitrogen content of 2.46%, the highest nitrogen content compared to other treatments. Isolated and combined stress had negative differential effects on plant development, and water scarcity (as an individual factor) was the repercussion, in most cases, that was more prominent than the effect of high temperature.
El café es un producto importante en el mundo, esencial para miles de familias productoras. No obstante, el cambio climático ha generado variaciones en los patrones de temperatura y precipitación que impactan negativamente el desarrollo del cultivo. Por lo tanto, con el fin de cuantificar el efecto combinado del estrés por sequía y de altas temperaturas, se evaluaron plantas de Coffea arabica cv. Ouro Verde IAC H5010-5, bajo condiciones de La Molina, Perú con cuatro tratamientos (WT: 100% de agua disponible + temperatura ambiental (22.7°C); -WT: < 50% agua disponible + temperatura ambiental (22.7°C); W+T: 100% agua disponible + temperatura ambiental elevada (22.7 + 2.5°C), y –W+T: < 50% agua disponible + temperatura ambiental elevada (22.7 + 2.5°C)). Los resultados mostraron que las variables de crecimiento fueron menores bajo -WT y -W+T (P≤0.05). Asimismo, -WT afectó significativamente índices de calidad como relación parte aérea:raíces, robustez y Dickson (P≤0.05). Las plantas – WT tuvieron un contenido de nitrógeno superior a otros tratamientos. Tanto el efecto aislado como combinado de ambos estreses tuvo una repercusión negativa sobre el desarrollo de la planta, siendo la deficiencia de agua (como efecto aislado), en la mayoría de los casos, más determinante que el efecto de la alta temperatura.
References
Almeida, W. L., Ávila, R. T., Pérez-Molina, J. P., Barbosa, M. L., Marçal, D. M. S., Souza, R. P. B., Martino, P. B., Cardoso, A. A., Martins, S. C. V., & DaMatta, F. M. (2021). The interplay between irrigation and fruiting on branch growth and mortality, gas exchange and water relations of coffee trees. Tree Physiology, 41(1), 35–49. https://doi.org/10.1093/treephys/tpaa116 DOI: https://doi.org/10.1093/treephys/tpaa116
Alsamir, M., Mahmood, T., Trethowan, R., & Ahmad, N. (2021). An overview of heat stress in tomato (Solanum lycopersicum L.). Saudi Journal of Biological Sciences, 28(3), 1654–1663. https://doi.org/10.1016/j.sjbs.2020.11.088 DOI: https://doi.org/10.1016/j.sjbs.2020.11.088
Ayub, M., Ashraf, M. Y., Kausar, A., Saleem, S., Anwar, S., Altay, V., & Ozturk, M. (2021). Growth and physio-biochemical responses of maize (Zea mays L.) to drought and heat stresses. Plant Biosystems, 155(3), 535–542. https://doi.org/10.1080/11263504.2020.1762785 DOI: https://doi.org/10.1080/11263504.2020.1762785
Bazán, T. R. (1996). Manual para el análisis químico de suelos, aguas y plantas. Universidad Nacional Agraria La Molina & Fundación Perú.
Borjas-Ventura, R., Ferraudo, A. S., Martínez, C. A., & Gratão, P. L. (2020). Global warming: Antioxidant responses to deal with drought and elevated temperature in Stylosanthes capitata, a forage legume. Journal of Agronomy and Crop Science, 206(1), 13–27. https://doi.org/10.1111/jac.12367 DOI: https://doi.org/10.1111/jac.12367
Borjas Ventura, R., Mendoza Soto, V., Julca Otiniano, A., & Gratão, P. L. (2019). Efeito do deficit hídrico e do aumento de temperatura sobre variáveis produtivas fisiológicas e bioquímicas do «cacau» Theobroma cacao L. Arnaldoa, 26(1), 287–296. DOI: https://doi.org/10.22497/arnaldoa.261.26112
C2ES. (2022, October 4). Drought and climate change. Center for climate and energy solutions. https://www.c2es.org/content/drought-and-climate-change/#:~:text=How%20climate%20change%20contributes%20to,the%20timing%20of%20water%20availability
Carvalho, F. G., Sera, G. H., Andreazi, E., Sera, T., Fonseca, I. C. B., Carducci, F. C., Shigueoka, L. H., Holderbaum, M. M., & Costa, K. C. (2017). Drought tolerance in seedlings of coffee genotypes carrying genes of different species. Coffee Science, 12(2), 156–163. DOI: https://doi.org/10.25186/cs.v12i2.1175
Corso, D., Delzon, S., Lamarque, L. J., Cochard, H., Torres‐Ruiz, J. M., King, A., & Brodribb, T. (2020). Neither xylem collapse, cavitation, nor changing leaf conductance drives stomatal closure in wheat. Plant, Cell & Environment, 43(4), 854–865. https://doi.org/10.1111/pce.13722 DOI: https://doi.org/10.1111/pce.13722
Corwin, D. L. (2021). Climate change impacts on soil salinity in agricultural areas. European Journal of Soil Science, 72(2), 842–862. https://doi.org/10.1111/ejss.13010 DOI: https://doi.org/10.1111/ejss.13010
DaMatta, F. M., Avila, R. T., Cardoso, A. A., Martins, S. C. V., & Ramalho, J. C. (2018). Physiological and agronomic performance of the coffee crop in the context of climate change and global warming: A review. Journal of Agricultural and Food Chemistry, 66(21), 5264–5274. https://doi.org/10.1021/acs.jafc.7b04537 DOI: https://doi.org/10.1021/acs.jafc.7b04537
Dickson, L. W. (1960). New root-absorption techniques and their application to forest trees. Forest Science, 6(4), 373–382.
Enquist, B. J., & Niklas, K. J. (2002). Global allocation rules for patterns of biomass partitioning in seed plants. Science, 295(5559), 1517–1520. https://doi.org/10.1126/science.1066360 DOI: https://doi.org/10.1126/science.1066360
Fahad, S., Bajwa, A. A., Nazir, U., Anjum, S. A., Farooq, A., Zohaib, A., Sadia, S., Nasim, W., Adkins, S., Saud, S., Ihsan, M. Z., Alharby, H., Wu, C., Wang, D., & Huang, J. (2017). Crop production under drought and heat stress: plant responses and management options. Frontiers in Plant Science, 8, Article 1147. https://doi.org/10.3389/fpls.2017.01147 DOI: https://doi.org/10.3389/fpls.2017.01147
Fazuoli, L. C., Medina Filho, H. P., Guerreiro Filho, O., Gonçalves, W., Silvarolla, M. B., & Gallo, P. B. (2000). Cultivares de café selecionadas pelo Instituto Agronômico de Campinas. Simpósio de Pesquisa dos Cafés do Brasil, 3, 488–494.
Fridell, M., Hudson, I., & Hudson, M. (2008). With friends like these: the corporate response to fair trade coffee. Review of Radical Political Economics, 40(1), 8–34. https://doi.org/10.1177/0486613407311082 DOI: https://doi.org/10.1177/0486613407311082
Handayani, T., & Watanabe, K. (2020). The combination of drought and heat stress has a greater effect on potato plants than single stresses. Plant, Soil and Environment, 66(4), 175–182. https://doi.org/10.17221/126/2020-PSE DOI: https://doi.org/10.17221/126/2020-PSE
He, M., & Dijkstra, F. A. (2014). Drought effect on plant nitrogen and phosphorus: a meta-analysis. New Phytologist, 204(4), 924–931. https://doi.org/10.1111/nph.12952 DOI: https://doi.org/10.1111/nph.12952
Helm, L. T., Shi, H., Lerdau, M. T., & Yang, X. (2020). Solar-induced chlorophyll fluorescence and short-term photosynthetic response to drought. Ecological Applications, 30(5), Article e02101. https://doi.org/10.1002/eap.2101 DOI: https://doi.org/10.1002/eap.2101
Hessini, K., Issaoui, K., Ferchichi, S., Saif, T., Abdelly, C., Siddique, K. H., & Cruz, C. (2019). Interactive effects of salinity and nitrogen forms on plant growth, photosynthesis and osmotic adjustment in maize. Plant Physiology and Biochemistry, 139, 171–178. https://doi.org/10.1016/j.plaphy.2019.03.005 DOI: https://doi.org/10.1016/j.plaphy.2019.03.005
Hussain, H. A., Men, S., Hussain, S., Chen, Y., Ali, S., Zhang, S., Zhang, K., Li, Y., Xu, Q., Liao C., & Wang, L. (2019). Interactive effects of drought and heat stresses on morpho-physiological attributes, yield, nutrient uptake and oxidative status in maize hybrids. Scientific Reports, 9(1), Article 3890. https://doi.org/10.1038/s41598-019-40362-7 DOI: https://doi.org/10.1038/s41598-019-40362-7
Hussain, S., Ulhassan, Z., Brestic, M., Zivcak, M., Weijun Z., Allakhverdiev, S. I., Yang, X., Ehsan S, M., Yang, W., & Liu, W. (2021). Photosynthesis research under climate change. Photosynthesis Research, 150, 5–19. https://doi.org/10.1007/s11120-021-00861-z DOI: https://doi.org/10.1007/s11120-021-00861-z
Imran, M., Latif Khan, A., Shahzad, R., Aaqil Khan, M., Bilal, S., Khan, A., Kang, S. M., & Lee, I. J. (2021). Exogenous melatonin induces drought stress tolerance by promoting plant growth and antioxidant defense system of soybean plants. AoB Plants, 13(4), 1–12. https://doi.org/10.1093/aobpla/plab026 DOI: https://doi.org/10.1093/aobpla/plab026
Junta Nacional del Café. (2020, October 8). El café de Perú. National Coffee Board. https://juntadelcafe.org.pe/el-cafe-de-peru
León-Burgos, A. F., Unigarro, C., & Balaguera López, H. E. (2022). Can prolonged conditions of water deficit alter photosynthetic performance and water relations of coffee plants in central-west Colombia? South African Journal of Botany, 149, 366–375. https://doi.org/10.1016/j.sajb.2022.06.034 DOI: https://doi.org/10.1016/j.sajb.2022.06.034
Lin, K. H., Wu, C. W., & Chang, Y. (2019). Applying Dickson quality index, chlorophyll fluorescence, and leaf area index for assessing plant quality of Pentas lanceolata. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 47(1), 169–176. https://doi.org/10.15835/nbha47111312 DOI: https://doi.org/10.15835/nbha47111312
Liu, X., Fan, Y., Long, J., Wei, R., Kjelgren, R., Gong, C., & Zhao, J. (2013). Effects of soil water and nitrogen availability on photosynthesis and water use efficiency of Robinia pseudoacacia seedlings. Journal of Environmental Sciences, 25(3), 585–595. https://doi.org/10.1016/S1001-0742(12)60081-3 DOI: https://doi.org/10.1016/S1001-0742(12)60081-3
Martinez, H. E. P., Souza, B. P., Caixeta, E. T., Carvalho, F. P., & Clemente, J. M. (2020). Water deficit changes nitrate uptake and expression of some nitrogen related genes in coffee-plants (Coffea arabica L.). Scientia Horticulturae, 267, Article 109254. https://doi.org/10.1016/j.scienta.2020.109254 DOI: https://doi.org/10.1016/j.scienta.2020.109254
Mittler, R., Zandalinas, S. I., Fichman, Y., & Van Breusegem, F. (2022). Reactive oxygen species signalling in plant stress responses. Nature Reviews Molecular Cell Biology, 23, 663–679. https://doi.org/10.1038/s41580-022-00499-2 DOI: https://doi.org/10.1038/s41580-022-00499-2
Raja, V., Qadir, S. U., Alyemeni, M. N., & Ahmad, P. (2020). Impact of drought and heat stress individually and in combination on physio-biochemical parameters, antioxidant responses, and gene expression in Solanum lycopersicum. 3 Biotech, 10(5), Article 208. https://doi.org/10.1007/s13205-020-02206-4 DOI: https://doi.org/10.1007/s13205-020-02206-4
Reddy, K. R., Brand, D., Wijewardana, C., & Gao, W. (2017). Temperature effects on cotton seedling emergence, growth, and development. Agronomy Journal, 109(4), 1379–1387. https://doi.org/10.2134/agronj2016.07.0439 DOI: https://doi.org/10.2134/agronj2016.07.0439
Reshma, M., Beena, R., Viji, M. M., Manju, R. V., & Roy, S. (2021). Validation of temperature induction response technique on combined effect of drought and heat stress in rice (Oryza sativa L.). Journal of Crop and Weed, 17(2), 119–128. https://doi.org/10.22271/09746315.2021.v17.i2.1461 DOI: https://doi.org/10.22271/09746315.2021.v17.i2.1461
Rodrigues, W. P., Silva, J. R., Ferreira, L. S., Filho, J. A. M., Figueiredo, F. A. M. M. A., Ferraz, T. M., Bernardo, W. P., Bezerra, L. B. S., Abreu, D. P., Cespom, L., Cespom. L., Ramalho, J. C., & Campostrini, E. (2018). Stomatal and photochemical limitations of photosynthesis in coffee (Coffea spp.) plants subjected to elevated temperatures. Crop & Pasture Science, 69(3), 317–325. https://doi.org/10.1071/CP17044 DOI: https://doi.org/10.1071/CP17044
Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., Dindaroglu, T., Abdul Wajid, H. H., & Battaglia, M. L. (2021). Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10(2), Article 259. https://doi.org/10.3390/plants10020259 DOI: https://doi.org/10.3390/plants10020259
Schönbeck, L., Li, M. H., Lehmann, M. M., Rigling, A., Schaub, M., Hoch, G., Kahmen, A., & Gessler, A. (2021). Soil nutrient availability alters tree carbon allocation dynamics during drought. Tree Physiology, 41(5), 697–707. https://doi.org/10.1093/treephys/tpaa139 DOI: https://doi.org/10.1093/treephys/tpaa139
Sharkey, T. D., & Schrader, S. M. (2006). High temperature stress. In K. V. M. Rao, A. S. Raghavendra, & K. J. Reddy (Eds.), Physiology and molecular biology of stress tolerance in plants (pp. 101–129). Springer. https://doi.org/10.1007/1-4020-4225-6_4 DOI: https://doi.org/10.1007/1-4020-4225-6_4
Shinohara, T., & Leskovar, D. I. (2014). Effects of ABA, antitranspirants, heat and drought stress on plant growth, physiology and water status of artichoke transplants. Scientia Horticulturae, 165, 225–234. https://doi.org/10.1016/j.scienta.2013.10.045 DOI: https://doi.org/10.1016/j.scienta.2013.10.045
Souza, B. P., Martínez, H. E. P., Carvalho, F. P., Loureiro, M. E., & Sturião, W. P. (2020). Gas exchanges and chlorophyll fluorescence of young coffee plants submitted to water and nitrogen stresses. Journal of Plant Nutrition, 43(16), 2455–2465. https://doi.org/10.1080/01904167.2020.1771589 DOI: https://doi.org/10.1080/01904167.2020.1771589
Tadesse, T., & Tesfaye, B., & Abera, G. (2019). Coffee seedlings growth and nutrient accumulation affected by application of different rates of nitrogen, zinc and boron fertilizers at Dilla, Ethiopia. Journal of Science and Inclusive Development, 1(2), 85–105. https://doi.org/10.20372/jsid/2019-18
Ullah, A., Romdhane, L., Rehman, A., & Farooq, M. (2019). Adequate zinc nutrition improves the tolerance against drought and heat stresses in chickpea. Plant Physiology and Biochemistry, 143, 11–18. https://doi.org/10.1016/j.plaphy.2019.08.020 DOI: https://doi.org/10.1016/j.plaphy.2019.08.020
Van Nguyen, D., Nguyen, H. M., Le, N. T., Nguyen, K. H., Nguyen, H. T., Le, H. M., Nguyen, A. T., Thu, D.N.T., Hoang, S. A., & Van Ha, C. (2022). Copper nanoparticle application enhances plant growth and grain yield in maize under drought stress conditions. Journal of Plant Growth Regulation, 41(1), 364–375. https://doi.org/10.1007/s00344-021-10301-w DOI: https://doi.org/10.1007/s00344-021-10301-w
Wang, H., Yang, Z., Yu, Y., Chen, S., He, Z., Wang, Y., Jiang, L., Wang, G., Yang, C., Liu, B., & Zhang, Z. (2017). Drought enhances nitrogen uptake and assimilation in maize roots. Agronomy Journal, 109(1), 39–46. https://doi.org/10.2134/agronj2016.01.0030 DOI: https://doi.org/10.2134/agronj2016.01.0030
Wang, Q. L., Chen, J. H., He, N. Y., & Guo, F. Q. (2018). Metabolic reprogramming in chloroplasts under heat stress in plants. International Journal of Molecular Sciences, 19(3), Article 849. https://doi.org/10.3390/ijms19030849 DOI: https://doi.org/10.3390/ijms19030849
Wang, Z., Li, G., Sun, H., Ma, L., Guo, Y., Zhao, Z., Gao, H., & Mei, L. (2018). Effects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves. Biology Open, 7(11), Article bio035279. https://doi.org/10.1242/bio.035279 DOI: https://doi.org/10.1242/bio.035279
Xiong, Q., Hu, J., Wei, H., Zhang, H., & Zhu, J. (2021). Relationship between plant roots, rhizosphere microorganisms, and nitrogen and its special focus on rice. Agriculture, 11(3), Article 234. https://doi.org/10.3390/agriculture11030234 DOI: https://doi.org/10.3390/agriculture11030234
Yang, X., Lu, M., Wang, Y., Wang, Y., Liu, Z., & Chen, S. (2021). Response mechanism of plants to drought stress. Horticulturae, 7(3), Article 50. https://doi.org/10.3390/horticulturae7030050 DOI: https://doi.org/10.3390/horticulturae7030050
Zambolim, L. (2016). Current status and management of coffee leaf rust in Brazil. Tropical Plant Pathology, 41(1), 1–8. https://doi.org/10.1007/s40858-016-0065-9 DOI: https://doi.org/10.1007/s40858-016-0065-9
Zhou, R., Yu, X., Ottosen, C. O., Rosenqvist, E., Zhao, L., Wang, Y., Yu, W., Zhao, T., & Wu, Z. (2017). Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress. BMC Plant Biology, 17(1), Article 24. https://doi.org/10.1186/s12870-017-0974-x DOI: https://doi.org/10.1186/s12870-017-0974-x
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)
Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.