Inoculation with mycorrhiza and Azotobacter chroococcum affects the quantitative and qualitative characteristics of Eryngium caeruleum at different planting densities
La inoculación con micorrizas y Azotobacter chroococcum afecta las características cuantitativas y cualitativas de Eryngium caeruleum a diferentes densidades de siembra
DOI:
https://doi.org/10.15446/agron.colomb.v41n2.106390Keywords:
oil crop, endemic herb, free-living N2 fixers, Glomus mosseae (en)cultivo oleaginoso, hierba endémica, fijadores de N2 de vida libre, Glomus mosseae, gastronomía local (es)
Downloads
Eryngium caeruleum is a perennial native plant that grows under diverse climatic conditions of Iran. This study aimed to investigate the effect of mycorrhizal and Azotobacter inoculation on the quantitative and qualitative characteristics of E. caeruleum at various planting densities. Factors included three levels of plant density (10×30 cm, 20×30 cm, and 30×30 cm), two levels of seed inoculation with Vesicular-Arbuscular Mycorrhiza (VAM) fungi (inoculation with Glomus mosseae and without inoculation), and two levels of seed inoculation with Azotobacter chroococcum (with and without inoculation). The application of VAM fungi and A. chrooroccum significantly affected the measured traits. The interaction effect of plant density×mycorrhizal application and plant density×Azotobacter application on dry leaf weight was significant at a 1% level. The total leaf dry weight for the VAM treatments at a 30×30 cm plant density was 2.93 g. Also, the application of mycorrhizal fungus increased the essential oil percentage, the essential oil yield, and phosphorus concentration in the aerial organs by 132.68%, 100%, and 137.5%, respectively, compared to the control treatment. The simultaneous application of A. chroococcum and VAM improved the quantity and quality of the yield components of E. caeruleum by increasing the availability of mineral nutrients
Eryngium caeruleum es una planta perenne nativa que crece en diversas condiciones climáticas de Irán. Este estudio tuvo como objetivo investigar el efecto de la inoculación de micorrizas y Azotobacter sobre las características cuantitativas y cualitativas de E. caeruleum en diferentes densidades de siembra. Los factores incluyeron tres niveles de densidad de plantas (10×30 cm, 20×30 cm y 30×30 cm), dos niveles de inoculación de semillas con hongos Vesiculo-Arbuscular Micorriza (VAM) (inoculación con Glomus mosseae y sin inoculación) y dos niveles de inoculación de semillas con Azotobacter chroococcum (con y sin inoculación). La aplicación de hongos VAM y A. chrooroccum afectó significativamente las características medidas. El efecto de interacción densidad de plantas×aplicación de micorrizas y densidad de plantas×aplicación de Azotobacter sobre el peso seco de la hoja fue significativo a un nivel del 1%. El peso seco total de las hojas para los tratamientos VAM a una densidad de plantas de 30×30 cm fue de 2.93 g. Además, la aplicación del hongo micorrícico incrementó el porcentaje de aceite esencial, el rendimiento de aceite esencial y la concentración de fósforo en los órganos aéreos en 132.68%, 100% y 137.5%, respectivamente, en comparación con el tratamiento control. La aplicación simultánea de A. chroococcum y hongos VAM mejoró la cantidad y calidad de los componentes del rendimiento en E. caeruleum al aumentar la disponibilidad de nutrientes minerales.
References
Ahmad, M. K., & Abdulla, A. R. (2016). The effect of plant density on the growth and seed yield of fenugreek (Trigonella foenum graecum L.). Journal of Zankoy Sulaimani, 18(4), 85–90. DOI: https://doi.org/10.17656/jzs.10564
Al-Mansour, B., Kalaivanan, D., Suryanarayana, M. A., Umesha, K., & Nair, A. K. (2018). Influence of organic and inorganic fertilizers on yield and quality of sweet basil (Ocimum basilicum L.). Journal of Spices and Aromatic Crops, 27(1), 38–44. https://doi.org/10.25081/josac.2018.v27.i1.1013 DOI: https://doi.org/10.25081/josac.2018.v27.i1.1013
Antunes, P. M., Deaville, D., & Goss, M. J. (2006). Effect of two AMF life strategies on the tripartite symbiosis with Bradyrhizobium japonicum and soybean. Mycorrhiza, 16(3), 167–173. https://doi.org/10.1007/s00572-005-0028-3 DOI: https://doi.org/10.1007/s00572-005-0028-3
Anwar, M., Patra, D. D., Chand, S., Alpesh, K., Naqvi, A. A., & Khanuja, S. P. S. (2005). Effect of organic manures and inorganic fertilizer on growth, herb and yield, nutrient accumulation, and oil quality of French basil. Communications in Soil Science and Plant Analysis, 36(13–14), 1737–1746. https://doi.org/10.1081/CSS-200062434 DOI: https://doi.org/10.1081/CSS-200062434
Arancon, N. Q., Edwards, C. A., Atiyeh, R., & Metzger, J. D. (2004). Effects of vermicomposts produced from food wasted on the growth and yields of greenhouse peppers. Bioresource Technology, 93(2), 139–144. https://doi.org/10.1016/j.biortech.2003.10.015 DOI: https://doi.org/10.1016/j.biortech.2003.10.015
Askari, A., Ardakani, M. R., Vazan, S., Paknejad, F., & Hosseini, Y. (2018). The effect of mycorrhizal symbiosis and seed priming on the amount of chlorophyll index and absorption of nutrients under drought stress in sesame plant under field conditions. Applied Ecology and Environmental Research, 16(1), 335–357. https://doi.org/10.15666/aeer/1601_335357 DOI: https://doi.org/10.15666/aeer/1601_335357
Bairagi, S. K. (2014). Effect of different doses of phosphorus and row spacing on the yield and quality of fenugreek (Trigonella foenum-graecum L.) seed. The Asian Journal of Horticulture, 9(2), 338–341. https://doi.org/10.15740/HAS/TAJH/9.2/338-341 DOI: https://doi.org/10.15740/HAS/TAJH/9.2/338-341
Balliu, A., Sallaku, G., & Rewald, B. (2015). AMF inoculation enhances growth and improves the nutrient uptake rates of transplanted, salt-stressed tomato seedlings. Sustainability, 7(12), 15967–15981. https://doi.org/10.3390/su71215799 DOI: https://doi.org/10.3390/su71215799
Barea, J. M., Palenzuela, J., Cornejo, P., Sánchez-Castro, I., Navarro-Fernández, C., López-García, A., Estrada, B., Azcón, R., Ferrol, N., & Azcón-Aguilar, C. (2011). Ecological and functional roles of mycorrhizas in semi-arid ecosystems of Southeast Spain. Journal of Arid Environments, 75(12), 1292–1301. https://doi.org/10.1016/j.jaridenv.2011.06.001 DOI: https://doi.org/10.1016/j.jaridenv.2011.06.001
Bauer, S. E., Tsigaridis, K., & Miller, R. (2016). Significant atmospheric aerosol pollution caused by world food cultivation. Geophysical Research Letters, 43(10), 5394–5400. https://doi.org/10.1002/2016GL068354 DOI: https://doi.org/10.1002/2016GL068354
Bouyoucos, G. J. (1962). Hydrometer method improved for making particle size analysis of soils. Agronomy Journal, 54, 464–465. DOI: https://doi.org/10.2134/agronj1962.00021962005400050028x
Bremner, J. M., & Mulvaney, C. S. (1982). Nitrogen-total. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of soil analysis. Part 2. Chemical and microbiological properties (pp. 595–624). American Society of Agronomy, Soil Science Society of America, Inc. Book Series. Madison, Wisconsin. https://doi.org/10.2134/agronmonogr9.2.2ed DOI: https://doi.org/10.2134/agronmonogr9.2.2ed.c31
Celik, I., Ortas, I., & Kilic, S. (2004). Effects of compost, mycorrhiza, manure and fertilizer on some physical properties of a Chromoxerert soil. Soil and Tillage Research, 78(1), 59–67. https://doi.org/10.1016/j.still.2004.02.012 DOI: https://doi.org/10.1016/j.still.2004.02.012
Chen, S., Zhao, H., Zou, C., Li, Y., Chen, Y., Wang, Z., Jiang, Y., Liu, A., Zhao, P., Wang, M., & Ahammed, G. J. (2017). Combined inoculation with multiple arbuscular mycorrhizal fungi improves growth, nutrient uptake and photosynthesis in cucumber seedlings. Frontiers in Microbiology, 8, Article 2516. https://doi.org/10.3389/fmicb.2017.02516 DOI: https://doi.org/10.3389/fmicb.2017.02516
Copetta, A., Lingua, G., & Berta, G. (2006). Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese. Mycorrhiza, 16, 485–494. https://doi.org/10.1007/s00572-006-0065-6 DOI: https://doi.org/10.1007/s00572-006-0065-6
Dehghan, H., Sarrafi, Y., & Salehi, P. (2016). Antioxidant and antidiabetic activities of 11 herbal plants from Hyrcania region, Iran. Journal of Food and Drug Analysis, 24(1), 179–188. https://doi.org/10.1016/j.jfda.2015.06.010 DOI: https://doi.org/10.1016/j.jfda.2015.06.010
Delshadi, S., Ebrahimi, M., & Shirmohammadi, E. (2017). Effectiveness of plant growth promoting rhizobacteria on Bromus tomentellus Boiss seed germination, growth and nutrients uptake under drought stress. South African Journal of Botany, 113, 11–18. https://doi.org/10.1016/j.sajb.2017.07.006 DOI: https://doi.org/10.1016/j.sajb.2017.07.006
Derkowska, E., Sas Paszt, L., Harbuzov, A., & Sumorok, B. (2015). Root growth, mycorrhizal frequency and soil microorganisms in strawberry as affected by biopreparations. Journal of Advances in Microbiology, 5(1), 65–73. https://doi.org/10.4236/aim.2015.51007 DOI: https://doi.org/10.4236/aim.2015.51007
Elser, J., & Bennett, E. (2011). A broken biogeochemical cycle. Nature, 478, 29–31. https://doi.org/10.1038/478029a DOI: https://doi.org/10.1038/478029a
Emami, A. (1996). Plant decomposition methods (Vol. 1, Technical Leaflet No. 982). Soil and Water Research Institute (In Persian).
Erdem, S. A., Nabavi, S. F., Orhan, I. E., Daglia, M., Izadi, M., & Nabavi, S. M. (2015). Blessings in disguise: a review of phytochemical composition and antimicrobial activity of plants belonging to the genus Eryngium. DARU Journal of Pharmaceutical Sciences, 23(1), Article 53. https://doi.org/10.1186/s40199-015-0136-3 DOI: https://doi.org/10.1186/s40199-015-0136-3
Faramawy, F. M. K. (2014). Response of Prosopis chilensis to biofertilization under calcareous soil of RasSudr. 2 – Pod production. Annals of Agricultural Sciences, 59(2), 263–271. https://doi.org/10.1016/j.aoas.2014.11.015 DOI: https://doi.org/10.1016/j.aoas.2014.11.015
Feng, G., Zhang, F., Li, X., Tian, C., Tang, C., & Rengel, Z. (2002). Improved tolerance of maize plants to salt stress by arbuscular mycorrhiza is related to higher accumulation of soluble sugars in roots. Mycorrhiza, 12, 185–190. https://doi.org/10.1007/s00572-002-0170-0 DOI: https://doi.org/10.1007/s00572-002-0170-0
Gosling, P., Hodge, A., Goodlass, G., & Bending, G. D. (2006). Arbuscular mycorrhiza fungi and organic farming. Agriculture, Ecosystems & Environment, 113(1-4), 17–35. https://doi.org/10.1016/j.agee.2005.09.009 DOI: https://doi.org/10.1016/j.agee.2005.09.009
Harrier, L. A., & Watson, C. A. (2004). The potential role of arbuscular mycorrhizal (AM) fungi in the bioprotection of plants against soil-borne pathogens in organic and/or other sustainable farming systems. Pest Management Science, 60(2), 149–157. https://doi.org/10.1002/ps.820 DOI: https://doi.org/10.1002/ps.820
Hashemabadi, D., & Kaviani, B. (2011). Chemical constituents of essential oils extracted from the leaves and stems of Eryngium caucasicum Trautv. from Iran. Journal of Essential Oil Bearing Plants, 14(6), 693–698. https://doi.org/10.1080/0972060X.2011.10643991 DOI: https://doi.org/10.1080/0972060X.2011.10643991
Hoseinzade, H., Ardakani, M. R., Shahdi, A., Asadi Rahmani, H., Noormohammadi, G., & Miransari, M. (2016). Rice (Oryza sativa L.) nutrient management using mycorrhizal fungi and endophytic Herbaspirillum seropedicae. Journal of Integrative Agriculture, 15(6), 1385–1394. https://doi.org/10.1016/S2095-3119(15)61241-2 DOI: https://doi.org/10.1016/S2095-3119(15)61241-2
Jansa, J., Smith, F. A., & Smith, S. E. (2008). Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytologist, 177(3), 779–789. https://doi.org/10.1111/j.1469-8137.2007.02294.x DOI: https://doi.org/10.1111/j.1469-8137.2007.02294.x
Jnawali, A. D., Ojha, R. B., & Marahatta, S. (2015). Role of Azotobacter in soil fertility and sustainability–a review. Advances in Plants & Agriculture Research, 2(6), 250–253. https://doi.org/10.15406/apar.2015.02.00069 DOI: https://doi.org/10.15406/apar.2015.02.00069
Kapoor, R., Chaudhary, V., & Bhatnagar, A. K. (2007). Effects of arbuscular mycorrhiza and phosphorus application on artemisinin concentration in Artemisia annua L. Mycorrhiza, 17, 581–587. https://doi.org/10.1007/s00572-007-0135-4 DOI: https://doi.org/10.1007/s00572-007-0135-4
Kapoor, R., Giri, B., & Mukerji, K. G. (2002). Mycorrhization of coriander (Coriandrum sativum L.) to enhance the concentration and quality of essential oil. Journal of the Science of Food and Agriculture, 82(4), 339–342. https://doi.org/10.1002/jsfa.1039 DOI: https://doi.org/10.1002/jsfa.1039
Kapoor, R., Giri, B., & Mukerji, K. G. (2004). Improved growth and essential oil yield and quality in Foeniculum vulgare mill on mycorrhizal inoculation supplemented with P-fertilizer. Bioresource Technology, 93(3), 307–311. https://doi.org/10.1016/j.biortech.2003.10.028 DOI: https://doi.org/10.1016/j.biortech.2003.10.028
Khaosaad, T., Vierheilig, H., Nell, M., Zitterl-Eglseer, K., & Novak, J. (2006). Arbuscular mycorrhiza alter the concentration of essential oils in oregano (Origanum sp., Lamiaceae). Mycorrhiza, 16(6), 443–446. https://doi.org/10.1007/s00572-006-0062-9 DOI: https://doi.org/10.1007/s00572-006-0062-9
Khoshbakht. K., Hammer, K., & Pistrick, K. (2007). Eryngium caucasicum Trautv. cultivated as a vegetable in the Elburz Mountains (Northern Iran). Genetic Resources and Crop Evolution, 54(2), 445–448. https://doi.org/10.1007/s10722-006-9121-5 DOI: https://doi.org/10.1007/s10722-006-9121-5
Koozehgar Kaleji, M., & Ardakani, M. R. (2018). Quantitative and qualitative performance of Froriepia subpinnata as affected by mycorrhizal symbiosis, compost tea, and vermicompost. Iranian Journal of Plant Physiology, 8(3), 2457–2467. https://doi.org/10.30495/IJPP.2018.540990
Koozehgar Kaleji, M., & Ardakani, M. R. (2019). Effects of organic fertilizers application on yield and yield components of Eryngium caeruleum M. Bieb. affected by mycorrhizal symbiosis. Iranian Journal of Medicinal and Aromatic Plants Research, 34(6), 924–935. https://doi.org/10.22092/ijmapr.2019.120403.2235
Koozehgar Kaleji, M., Ardakani, M. R., Abedini Aboksari, H., Bandegani Rooieen, M., & Khosniat, S. H. (2021). Effect of mycorrhizal symbiosis and application of organic fertilizers on photosynthetic pigments, yield and nutrient content Nasturtium officinalis. Crop Production, 14(1), 87–102. https://doi.org/10.22069/EJCP.2021.18599.2379
Kumar, V., Kumar Dubedi Anal, A., & Nath, V. (2018). Growth response of litchi to arbuscular mycorrhizal co-inoculation with Trichoderma viride, Azotobacter chroococcum and Bacillus megatarium. Indian Phytopathology, 71, 65–74. https://doi.org/10.1007/s42360-018-0010-6 DOI: https://doi.org/10.1007/s42360-018-0010-6
Larimi, S. B., Shakiba, M., Mohammadinasab, A. D., & Vahed, M. M. (2014). Changes in nitrogen and chlorophyll density and leaf area of sweet basil (Ocimum basilicum L.) affected by biofertilizer and nitrogen application. International Journal of Biosciences, 5(9), 256–265. http://doi.org/10.12692/ijb/5.9.256-265 DOI: https://doi.org/10.12692/ijb/5.9.256-265
Marulanda, A., Barea, J. N., & Azcón, R. (2006). An indigenous drought-tolerant strain of Glomus intraradices associated with a native bacterium improves water transport and root development in Retama sphaerocarpa. Microbial Ecology, 52, 670–678. https://doi.org/10.1007/s00248-006-9078-0 DOI: https://doi.org/10.1007/s00248-006-9078-0
Marulanda, A., Barea, J.-M., & Azcón, R. (2009). Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacterial effectiveness. Journal of Plant Growth Regulation, 28, 115–124. https://doi.org/10.1007/s00344-009-9079-6 DOI: https://doi.org/10.1007/s00344-009-9079-6
Mrkovacki, N., & Milic, V. (2001). Use of Azotobacter chroococcum as potentially useful in agricultural application. Annals of Microbiology, 51(2), 145–158.
Nelson, R. E. (1982). Carbonate and gypsum. In A. L. Page (Ed.), Methods of soil analysis. Part 2. chemical and microbiological properties (pp. 181–197). American Society of Agronomy, Soil Science Society of America. DOI: https://doi.org/10.2134/agronmonogr9.2.2ed.c11
Ortas, I., & Bykova, A. (2018). The effect of mycorrhiza inoculation and phosphorus application on phosphorus efficiency of wheat plants. Communications in Soil Science and Plant Analysis, 49(10), 1199–1207. https://doi.org/10.1080/00103624.2018.1455849 DOI: https://doi.org/10.1080/00103624.2018.1455849
Page, A. L., Miller, R. H., & Kenney, D. R. (1982). Methods of soil analysis. Part 2. Chemical and microbiological properties (2nd ed.). Agronomy Society of America, Soil Science Society of America. DOI: https://doi.org/10.2134/agronmonogr9.2.2ed
Palencia, P., Martínez, F., Pestana, M., Oliveira, J. A., & Correia, P. J. (2015). Effect of Bacillus velezensis and Glomus intraradices on fruit quality and growth parameters in strawberry soilless growing system. The Horticulture Journal, 84(2), 122–130. https://doi.org/10.2503/hortj.MI-002 DOI: https://doi.org/10.2503/hortj.MI-002
Paul, J. H. A., Seaforth, C. E., & Tikasingh, T. (2011). Eryngium foetidum L.: a review. Fitoterapia, 82(3), 302–308. https://doi.org/10.1016/j.fitote.2010.11.010 DOI: https://doi.org/10.1016/j.fitote.2010.11.010
Pellegrino, E., & Bedini, S. (2014). Enhancing ecosystem services in sustainable agriculture: biofertilization and biofortification of chickpea (Cicer arietinum L.) by arbuscular mycorrhizal fungi. Soil Biology and Biochemistry, 68, 429–439. https://doi.org/10.1016/j.soilbio.2013.09.030 DOI: https://doi.org/10.1016/j.soilbio.2013.09.030
Pinior, A., Grunewaldt-Stocker, G., von Alten, H., & Strasser, R. J. (2005). Mycorrhizal impact on drought stress tolerance of rose plants probed by chlorophyll a fluorescence, praline content and visual scoring. Mycorrhiza, 15(8), 596–605. https://doi.org/10.1007/s00572-005-0001-1 DOI: https://doi.org/10.1007/s00572-005-0001-1
Rodrigues, M. Â., Ladeira, L. C., & Arrobas, M. (2018). Azotobacterenriched organic manures to increase nitrogen fixation and crop productivity. European Journal of Agronomy, 93, 88–94. https://doi.org/10.1016/j.eja.2018.01.002 DOI: https://doi.org/10.1016/j.eja.2018.01.002
Rojas-Tapias, D., Moreno-Galván, A., Pardo-Díaz, S., Obando, M., Rivera, D., & Bonilla, R. (2012). Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Applied Soil Ecology, 61, 264–272. https://doi.org/10.1016/j.apsoil.2012.01.006 DOI: https://doi.org/10.1016/j.apsoil.2012.01.006
Rueda, D., Valencia, G., Soria, N., Rueda, B. B., Manjunatha, B., Kundapur, R. R., & Selvanayagam, M. (2016). Effect of Azospirillum spp. and Azotobacter spp. on the growth and yield of strawberry (Fragaria vesca) in hydroponic system under different nitrogen levels. Journal of Applied Pharmaceutical Science, 6(1), 48–54. https://doi.org/10.7324/JAPS.2016.600108 DOI: https://doi.org/10.7324/JAPS.2016.600108
Samarbakhsh, S., Rejali, F., Ardakani, M. R., Pak Nejad, F., & Miransari, M. (2009). The combined effects of fungicides and arbuscular mycorrhiza on corn (Zea mays L.) growth and yield under field conditions. Journal of Biological Sciences, 9(4), 372–376. https://doi.org/10.3923/jbs.2009.372.376 DOI: https://doi.org/10.3923/jbs.2009.372.376
Tang, M., Chen, H., Huang, J. C., & Tian, Z. Q. (2009). AM fungi effects on the growth and physiology of Zea mays seedlings under diesel stress. Soil Biology and Biochemistry, 41(5), 936–940. https://doi.org/10.1016/j.soilbio.2008.11.007 DOI: https://doi.org/10.1016/j.soilbio.2008.11.007
Tilman, D., Clark, M., Williams, D. R., Kimmel, K., Polasky, S., & Packer, C. (2017). Future threats to biodiversity and pathways to their prevention. Nature, 546, 73–81. https://doi.org/10.1038/nature22900 DOI: https://doi.org/10.1038/nature22900
Tubiello, F. N., Salvatore, M., Ferrara, A. F., House, J., Federici, S., Rossi, S., Biancalani, R., Condor Golec, R. D., Jacobs, H., Flammini, A., Prosperi, P., Cardenas-Galindo, P., Schmidhuber, J., Sanz Sanchez, M. J., Srivastava, N., & Smith, P. (2015). The contribution of agriculture, forestry and other land use activities to global warming, 1990–2012. Global Change Biology, 21(7), 2655–2660. https://doi.org/10.1111/gcb.12865 DOI: https://doi.org/10.1111/gcb.12865
Turan, M., Yildirim, E., Kitir, N., Unek, C., Nikerel, E., Ozdemir, B. S., Güneş, A., & Mokhtari, N. E. P. (2017). Beneficial role of plant growth-promoting bacteria in vegetable production under abiotic stress. In A. Zaidi, & M. S. Khan (Eds.), Microbial strategies for vegetable production (pp. 151–166). Springer Science Reviews, Springer. https://doi.org/10.1007/978-3-319-54401-4_7 DOI: https://doi.org/10.1007/978-3-319-54401-4_7
Vafadar, F., Amooaghaie, R., & Otroshy, M. (2014). Effects of plant-growth-promoting rhizobacteria and arbuscular mycorrhizal fungus on plant growth, stevioside, NPK, and chlorophyll content of Stevia rebaudiana. Journal of Plant Interactions, 9(1), 128–136. https://doi.org/10.1080/17429145.2013.779035 DOI: https://doi.org/10.1080/17429145.2013.779035
Wang, P., Su, Z., Yuan, W., Deng, G., & Li, S. (2012). Phytochemical constituents and pharmacological activities of Eryngium L. (Apiaceae). Pharmaceutical Crops, 3, 99–120. https://doi.org/10.2174/2210290601203010099 DOI: https://doi.org/10.2174/2210290601203010099
Zhang, X., Wang, L., Ma, F., Yang, J., & Su, M. (2016). Effects of arbuscular mycorrhizal fungi inoculation on carbon and nitrogen distribution and grain yield and nutritional quality in rice (Oryza sativa L.). Journal of the Science of Food and Agriculture, 97(9), 2919–2925. https://doi.org/10.1002/jsfa.8129 DOI: https://doi.org/10.1002/jsfa.8129
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)

Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.