Published

2023-04-30

Influence of modified cassava starch on the physicochemical properties of a fermented soybean beverage

Influencia del almidón de yuca modificado sobre las propiedades fisicoquímicas de una bebida fermentada de soya

DOI:

https://doi.org/10.15446/agron.colomb.v41n1.106936

Keywords:

syneresis, viscosity, physicochemical parameters, fermenting microorganisms, probiotics (en)
sinéresis, viscosidad, parámetros fisicoquímicos, microorganismos fermentadores, probióticos (es)

Downloads

Authors

Fermented soybean beverages are an alternative for improving intestinal health, and fermentation reduces the anti-nutritional factors of this legume. However, they do show high syneresis and low viscosity. Modified cassava starches could be added as a thickener and/or stabilizer to improve the quality of the product. The aim of this research was to assess the effect of adding modified cassava starch on the physicochemical properties of a fermented soybean beverage. Preliminary tests were carried out varying the concentration (0.8%, 1.0%, and 1.2%) of 3 types of modified cassava starch: octenyl succinic anhydride (OSA), acetylated distarch adipate (ADA) cross-linked starch, and substituted-crosslinked starch (mixed). A commercial culture of starter microorganisms and probiotics was used in the fermentation process. The statistical analysis was carried out with a two-factor (type of starch and concentration) and 3-level design; quality parameters such as pH, acidity, soluble solids, syneresis, and viscosity comparable to commercial fermented dairy beverages were evaluated. OSA starch had a lower syneresis and higher viscosity than the other starches for each concentration. Furthermore, the addition of 1.0% OSA and mixed starch, as well as 1.2% ADA starch, are comparable to the control commercial soybean beverage (SC).

Las bebidas fermentadas de soya son una alternativa para mejorar la salud intestinal y reducir los factores anti-nutricionales de esta leguminosa; no obstante, muestran alta sinéresis y baja viscosidad. Para mejorar estas características de calidad, se podrían adicionar almidones de yuca modificados empleados como espesante y/o estabilizante en el producto. El objetivo de este estudio fue evaluar el efecto de la adición de almidones de yuca modificados en las propiedades fisicoquímicas de una bebida fermentada de soya. Se realizaron pruebas preliminares variando la concentración (0.8%, 1.0% y 1.2%) de 3 tipos de almidón de yuca modificado: anhidirdo octenil succínico (OSA), almidón entrecruzado de adipato de dialmidón acetilado (ADA) y almidón entrecruzado-sustituido (mixto). La fermentación se realizó a partir de un cultivo comercial de microorganismos iniciadores y cultivos probióticos. El análisis estadístico se realizó con un diseño de dos factores (tipo de almidón y concentración) y 3 niveles; se evaluaron parámetros de calidad como pH, acidez, sólidos solubles, sinéresis y viscosidad comparables a los de bebidas lácteas comerciales. El almidón OSA tuvo una sinéresis menor y una viscosidad mayor frente a los otros almidones para cada una de las concentraciones. Por otra parte, la adición del 1.0% del almidón OSA y mixto, así como del almidón ADA al 1.2%, son comparables con el control de bebida comercial de soya (SC).

References

Abbas, K. A., Khalil, S. K., & Meor Hussin, A. S. (2010). Modified starches and their usages in selected food products: A review study. Journal of Agricultural Science, 2(2), 90–100. https://doi.org/10.5539/jas.v2n2p90 DOI: https://doi.org/10.5539/jas.v2n2p90

Aderibigbe, A. S., Cowieson, A. J., Ajuwon, K. M., & Adeola, O. (2021). Contribution of purified soybean trypsin inhibitor and exogenous protease to endogenous amino acid losses and mineral digestibility. Poultry Science, 100(12), Article 101486. https://doi.org/10.1016/j.psj.2021.101486 DOI: https://doi.org/10.1016/j.psj.2021.101486

Bravo-Núñez, Á., Pando, V., & Gómez, M. (2019). Physically and chemically modified starches as texturisers of low-fat milk gels. International Dairy Journal, 92, 21–27. https://doi.org/10.1016/j.idairyj.2019.01.007 DOI: https://doi.org/10.1016/j.idairyj.2019.01.007

Chen, B., Zhao, X., Cai, Y., Jing, X., Zhao, M., Zhao, Q., & Van der Meeren, P. (2023). Incorporation of modified okara-derived insoluble soybean fiber into set-type yogurt: Structural architecture, rheological properties and moisture stability. Food Hydrocolloids, 137, Article 108413. https://doi.org/10.1016/j.foodhyd.2022.108413 DOI: https://doi.org/10.1016/j.foodhyd.2022.108413

Cho, E. R., & Kang, D. H. (2022). Intensified inactivation efficacy of pulsed ohmic heating for pathogens in soybean milk due to sodium lactate. Food Control, 137, Article 108936. https://doi.org/10.1016/j.foodcont.2022.108936 DOI: https://doi.org/10.1016/j.foodcont.2022.108936

Cui, L., Chang, S. K. C., & Nannapaneni, R. (2021). Comparative studies on the effect of probiotic additions on the physicochemical and microbiological properties of yoghurt made from soymilk and cow’s milk during refrigeration storage (R2). Food Control, 119, Article 107474. https://doi.org/10.1016/j.foodcont.2020.107474 DOI: https://doi.org/10.1016/j.foodcont.2020.107474

Devnani, B., Ong, L., Kentish, S. E., Scales, P. J., & Gras, S. L. (2022). Physicochemical and rheological properties of commercial almond-based yoghurt alternatives to dairy and soy yoghurts. Future Foods, 6, Article 100185. https://doi.org/10.1016/j.fufo.2022.100185 DOI: https://doi.org/10.1016/j.fufo.2022.100185

Gao, W., Liu, P., Wang, B., Kang, X., Zhu, J., Cui, B., & Abd El-Aty, A. M. (2021). Synthesis, physicochemical and emulsifying properties of C-3 octenyl succinic anhydride-modified corn starch. Food Hydrocolloids, 120, Article 106961. https://doi.org/10.1016/j.foodhyd.2021.106961 DOI: https://doi.org/10.1016/j.foodhyd.2021.106961

Gomes, J. J. L., Duarte, A. M., Batista, A. S. M., Figueiredo, R. M. F., Sousa, E. P., Souza, E. L., & Queiroga, R. C. R. E. (2013). Physicochemical and sensory properties of fermented dairy beverages made with goat’s milk, cow’s milk and a mixture of the two milks. LWT- Food Science and Technology, 54(1), 18–24. https://doi.org/10.1016/j.lwt.2013.04.022 DOI: https://doi.org/10.1016/j.lwt.2013.04.022

Guerrero-Beltrán, J. A., Estrada-Girón, Y., Swanson, B. G., & Barbosa-Cánovas, G. V. (2009). Pressure and temperature combination for inactivation of soymilk trypsin inhibitors. Food Chemistry, 116(3), 676–679. https://doi.org/10.1016/j.foodchem.2009.03.001 DOI: https://doi.org/10.1016/j.foodchem.2009.03.001

Hosseini, F., & Ansari, S. (2019). Effect of modified tapioca starch on the physicochemical and sensory properties of liquid kashk. Journal of Food Science and Technology, 56(12), 5374–5385. https://doi.org/10.1007/s13197-019-04008-w DOI: https://doi.org/10.1007/s13197-019-04008-w

Huang, K., Liu, Y., Zhang, Y., Cao, H., Luo, D. K., Yi, C., & Guan, X. (2022). Formulation of plant-based yoghurt from soybean and quinoa and evaluation of physicochemical, rheological, sensory and functional properties. Food Bioscience, 49, Article 101831. https://doi.org/10.1016/j.fbio.2022.101831 DOI: https://doi.org/10.1016/j.fbio.2022.101831

Imbachí-Narváez, P. C. (2018). Efecto del almidón de yuca modificado sobre las propiedades fisicoquímicas, reológicas y sensoriales de una bebida láctea elaborada con suero de quesería [Magister dissertation, Universidad Nacional de Colombia]. Repository. https://repositorio.unal.edu.co/handle/unal/62882

Imbachí-Narváez, P. C., Sepúlveda-Valencia, J. U., & Rodríguez-Sabdoval, E. (2018). Effect of modified cassava starch on the rheological and quality properties of a dairy beverage prepared with sweet whey. Food Science and Technology, 39(1), 134–142. https://doi.org/10.1590/1678-457x.28017 DOI: https://doi.org/10.1590/1678-457x.28017

Jia, Y., Fu, Y., Man, H., Yan, X., Huang, Y., Sun, S., Qi, B., & Li, Y. (2022). Comparative study of binding interactions between different dietary flavonoids and soybean β-conglycinin and glycinin: Impact on structure and function of the proteins. Food Research International, 161, Article 111784. https://doi.org/10.1016/j.foodres.2022.111784 DOI: https://doi.org/10.1016/j.foodres.2022.111784

Joon, R., Mishra, S. K., Brar, G. S., Singh, P. K., Mishra, S. K., & Panwar, H. (2017). Instrumental texture and syneresis analysis of yoghurt prepared from goat and cow milk. The Pharma Innovation Journal, 6(7), 971–974.

Kapelko-Zeberska, M., Zięba, T., Spychaj, R., & Gryszkin, A. (2015). Acetylated adipate of retrograded starch as RS 3/4 type resistant starch. Food Chemistry, 188, 365–369. https://doi.org/10.1016/j.foodchem.2015.05.018 DOI: https://doi.org/10.1016/j.foodchem.2015.05.018

Khurshida, S., Das, M. J., Deka, S. C., & Sit, N. (2021). Effect of dual modification sequence on physicochemical, pasting, rheological and digestibility properties of cassava starch modified by acetic acid and ultrasound. International Journal of Biological Macromolecules, 188, 649–656. https://doi.org/10.1016/j.ijbiomac.2021.08.062 DOI: https://doi.org/10.1016/j.ijbiomac.2021.08.062

Kim, B. H., Shewfelt, R. L., Lee, H., & Akoh, C. C. (2005). Sensory evaluation of butterfat-vegetable oil blend spread prepared with structured lipid containing canola oil and caprylic acid. Journal of Food Science, 70(7), s406–s412. https://doi.org/10.1111/j.1365-2621.2005.tb11484.x DOI: https://doi.org/10.1111/j.1365-2621.2005.tb11484.x

León-Méndez, G., León-Méndez, D., Monroy-Arellano, M. R., De La Espriella-Angarita, S., & Herrera Barros, A. (2020). Modificación química de almidones mediante reacciones de esterificación y su potencial uso en la industria cosmética. Archivos Venezolanos de Farmacología y Terapéutica, 39(5), 620–629. https://doi.org/10.5281/zenodo.4263365

Lobato-Calleros, C., Ramírez-Santiago, C., Vernon-Carter, E. J., & Alvarez-Ramirez, J. (2014). Impact of native and chemically modified starches addition as fat replacers in the viscoelasticity of reduced-fat stirred yogurt. Journal of Food Engineering, 131, 110–115. https://doi.org/10.1016/j.jfoodeng.2014.01.019 DOI: https://doi.org/10.1016/j.jfoodeng.2014.01.019

Mahmood, K., Kamilah, H., Shang, P. L., Sulaiman, S., Ariffin, F., & Alias, A. K. (2017). A review: Interaction of starch/nonstarch hydrocolloid blending and the recent food applications. Food Bioscience, 19, 110–120. https://doi.org/10.1016/j.fbio.2017.05.006 DOI: https://doi.org/10.1016/j.fbio.2017.05.006

Marefati, A., Wiege, B., Haase, N. U., Matos, M., & Rayner, M. (2017). Pickering emulsifiers based on hydrophobically modified small granular starches – Part I: Manufacturing and physico-chemical characterization. Carbohydrate Polymers, 175, 473–483. https://doi.org/10.1016/j.carbpol.2017.07.044 DOI: https://doi.org/10.1016/j.carbpol.2017.07.044

McNamee, C. E., Sato, Y., Wiege, B., Furikado, I., Marefati, A., Nylander, T., Kappl, M., & Rayner, M. (2018). Rice starch particle interactions at air/aqueous interfaces-effect of particle hydrophobicity and solution ionic strength. Frontiers in Chemistry, 6, 1–15. https://doi.org/10.3389/fchem.2018.00139 DOI: https://doi.org/10.3389/fchem.2018.00139

Mitra, P., Nepal, K., & Tavade, P. (2022). Effect of whey and soy proteins fortification on the textural and rheological properties of value-added yogurts. Applied Food Research, 2(2), Article 100195. https://doi.org/10.1016/j.afres.2022.100195 DOI: https://doi.org/10.1016/j.afres.2022.100195

Monroy-Arellano, M. R., & Espriella-Angarita, S. D. La. (2020). Modificación química de almidones mediante reacciones de esterificación y su potencial uso en la industria cosmética. Archivos Venezolanos de Farmacología y Terapéutica, 39(5), 620–629.

Ovando-Martinez, M., Whitney, K., Ozsisli, B., & Simsek, S. (2017). Physicochemical properties of octenyl succinic esters of cereal, tuber and root starches. Journal of Food Processing and Preservation, 41(1), 1–9. https://doi.org/10.1111/jfpp.12872 DOI: https://doi.org/10.1111/jfpp.12872

Partheniadis, I., Zarafidou, E., Litinas, K. E., & Nikolakakis, I. (2020). Enteric release essential oil prepared by co‐spray drying methacrylate/polysaccharides – influence of starch type. Pharmaceutics, 12(6), 1–24. https://doi.org/10.3390/pharmaceutics12060571 DOI: https://doi.org/10.3390/pharmaceutics12060571

Peng, X., & Guo, S. (2015). Texture characteristics of soymilk gels formed by lactic fermentation: A comparison of soymilk prepared by blanching soybeans under different temperatures. Food Hydrocolloids, 43, 58–65. https://doi.org/10.1016/j.foodhyd.2014.04.034 DOI: https://doi.org/10.1016/j.foodhyd.2014.04.034

Prochaska, K., Konował, E., Sulej-Chojnacka, J., & Lewandowicz, G. (2009). Physicochemical properties of cross-linked and acetylated starches and products of their hydrolysis in continuous recycle membrane reactor. Colloids and Surfaces B: Biointerfaces, 74(1), 238–243. https://doi.org/10.1016/j.colsurfb.2009.07.034 DOI: https://doi.org/10.1016/j.colsurfb.2009.07.034

Rodríguez Sandoval, E., Sandoval Aldana, A., & Ayala Aponte, A. (2003). Hidrocoloides naturales de origen vegetal. Revista Tecnura, 7(13), 4–13. https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/6179/7703

Saari, H., Heravifar, K., Rayner, M., Wahlgren, M., & Sjöö, M. (2016). Preparation and characterization of starch particles for use in pickering emulsions. Cereal Chemistry, 93(2), 116–124. https://doi.org/10.1094/CCHEM-05-15-0107-R DOI: https://doi.org/10.1094/CCHEM-05-15-0107-R

Santamaria, M., Garzon, R., & Rosell, C. M. (2023). Impact of starch-hydrocolloid interaction on pasting properties and enzymatic hydrolysis. Food Hydrocolloids, 142, Article 108764. https://doi.org/10.1016/j.foodhyd.2023.108764 DOI: https://doi.org/10.1016/j.foodhyd.2023.108764

Sweedman, M. C., Tizzotti, M. J., Schäfer, C., & Gilbert, R. G. (2013). Structure and physicochemical properties of octenyl succinic anhydride modified starches: A review. Carbohydrate Polymers, 92(1), 905–920. https://doi.org/10.1016/j.carbpol.2012.09.040 DOI: https://doi.org/10.1016/j.carbpol.2012.09.040

Vanga, S. K., Wang, J., & Raghavan, V. (2020). Effect of ultrasound and microwave processing on the structure, in-vitro digestibility and trypsin inhibitor activity of soymilk proteins. LWT-Food Science and Technology, 131, Article 109708. https://doi.org/10.1016/j.lwt.2020.109708 DOI: https://doi.org/10.1016/j.lwt.2020.109708

Verfaillie, D., Janssen, F., Van Royen, G., & Wouters, A. G. B. (2023). A systematic study of the impact of the isoelectric precipitation process on the physical properties and protein composition of soy protein isolates. Food Research International, 163, Article 112177. https://doi.org/10.1016/j.foodres.2022.112177 DOI: https://doi.org/10.1016/j.foodres.2022.112177

Wang, L., Zhu, S., Chen, Y., Karthik, P., & Chen, J. (2023). Fabrication and characterization of O/W emulsion stabilized by Octenyl Succinic Anhydride (OSA) modified resistant starch. Food Hydrocolloids, 141, Article 108750. https://doi.org/10.1016/j.foodhyd.2023.108750 DOI: https://doi.org/10.1016/j.foodhyd.2023.108750

Wang, X., Li, X., Chen, L., Xie, F., Yu, L., & Li, B. (2011). Preparation and characterisation of octenyl succinate starch as a delivery carrier for bioactive food components. Food Chemistry, 126(3), 1218–1225. https://doi.org/10.1016/j.foodchem.2010.12.006 DOI: https://doi.org/10.1016/j.foodchem.2010.12.006

Xiao, Z., Kang, Y., Hou, W., Niu, Y., & Kou, X. (2019). Microcapsules based on octenyl succinic anhydride (OSA)-modified starch and maltodextrins changing the composition and release property of rose essential oil. International Journal of Biological Macromolecules, 137, 132–138. https://doi.org/10.1016/j.ijbiomac.2019.06.178 DOI: https://doi.org/10.1016/j.ijbiomac.2019.06.178

Yuan, S. H., & Chang, S. K. C. (2010). Trypsin inhibitor activity in laboratory-produced and commercial soymilk. American Chemical Society. https://www.researchgate.net/publication/287302665_Trypsin_inhibitor_activity_in_laboratoryproduced_and_commercial_soymilk DOI: https://doi.org/10.1021/bk-2010-1059.ch002

Zhang, Y., & Chang, S. K. C. (2022). Trypsin inhibitor activity, phenolic content and antioxidant capacity of soymilk as affected by grinding temperatures, heating methods and soybean varieties. LWT-Food Science and Technology, 153, Article 112424. https://doi.org/10.1016/j.lwt.2021.112424 DOI: https://doi.org/10.1016/j.lwt.2021.112424

Zhang, Y., Guo, S., Liu, Z., & Chang, S. (2012). Off-flavor related volatiles in soymilk as affected by soybean variety, grinding, and heat-processing methods. Journal of Agricultural and Food Chemistry, 60(30), 7457–7462. https://doi.org/10.1021/jf3016199 DOI: https://doi.org/10.1021/jf3016199

Zheng, B., Zhou, H., & McClements, D. J. (2021). Nutraceuticalfortified plant-based milk analogs: Bioaccessibility of curcumin-loaded almond, cashew, coconut, and oat milks. LWT-Food Science and Technology,, 147, Article 111517. https://doi.org/10.1016/j.lwt.2021.111517 DOI: https://doi.org/10.1016/j.lwt.2021.111517

Zięba, T., Gryszkin, A., & Kapelko, M. (2014). Selected properties of acetylated adipate of retrograded starch. Carbohydrate Polymers, 99, 687–691. https://doi.org/10.1016/j.carbpol.2013.08.064 DOI: https://doi.org/10.1016/j.carbpol.2013.08.064

How to Cite

APA

Rodriguez-Ruiz, J. D., Rodríguez-Sandoval, E. and Hernández, M. S. (2023). Influence of modified cassava starch on the physicochemical properties of a fermented soybean beverage. Agronomía Colombiana, 41(1), e106936. https://doi.org/10.15446/agron.colomb.v41n1.106936

ACM

[1]
Rodriguez-Ruiz, J.D., Rodríguez-Sandoval, E. and Hernández, M.S. 2023. Influence of modified cassava starch on the physicochemical properties of a fermented soybean beverage. Agronomía Colombiana. 41, 1 (Jan. 2023), e106936. DOI:https://doi.org/10.15446/agron.colomb.v41n1.106936.

ACS

(1)
Rodriguez-Ruiz, J. D.; Rodríguez-Sandoval, E.; Hernández, M. S. Influence of modified cassava starch on the physicochemical properties of a fermented soybean beverage. Agron. Colomb. 2023, 41, e106936.

ABNT

RODRIGUEZ-RUIZ, J. D.; RODRÍGUEZ-SANDOVAL, E.; HERNÁNDEZ, M. S. Influence of modified cassava starch on the physicochemical properties of a fermented soybean beverage. Agronomía Colombiana, [S. l.], v. 41, n. 1, p. e106936, 2023. DOI: 10.15446/agron.colomb.v41n1.106936. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/106936. Acesso em: 14 aug. 2024.

Chicago

Rodriguez-Ruiz, Julian David, Eduardo Rodríguez-Sandoval, and María Soledad Hernández. 2023. “Influence of modified cassava starch on the physicochemical properties of a fermented soybean beverage”. Agronomía Colombiana 41 (1):e106936. https://doi.org/10.15446/agron.colomb.v41n1.106936.

Harvard

Rodriguez-Ruiz, J. D., Rodríguez-Sandoval, E. and Hernández, M. S. (2023) “Influence of modified cassava starch on the physicochemical properties of a fermented soybean beverage”, Agronomía Colombiana, 41(1), p. e106936. doi: 10.15446/agron.colomb.v41n1.106936.

IEEE

[1]
J. D. Rodriguez-Ruiz, E. Rodríguez-Sandoval, and M. S. Hernández, “Influence of modified cassava starch on the physicochemical properties of a fermented soybean beverage”, Agron. Colomb., vol. 41, no. 1, p. e106936, Jan. 2023.

MLA

Rodriguez-Ruiz, J. D., E. Rodríguez-Sandoval, and M. S. Hernández. “Influence of modified cassava starch on the physicochemical properties of a fermented soybean beverage”. Agronomía Colombiana, vol. 41, no. 1, Jan. 2023, p. e106936, doi:10.15446/agron.colomb.v41n1.106936.

Turabian

Rodriguez-Ruiz, Julian David, Eduardo Rodríguez-Sandoval, and María Soledad Hernández. “Influence of modified cassava starch on the physicochemical properties of a fermented soybean beverage”. Agronomía Colombiana 41, no. 1 (January 1, 2023): e106936. Accessed August 14, 2024. https://revistas.unal.edu.co/index.php/agrocol/article/view/106936.

Vancouver

1.
Rodriguez-Ruiz JD, Rodríguez-Sandoval E, Hernández MS. Influence of modified cassava starch on the physicochemical properties of a fermented soybean beverage. Agron. Colomb. [Internet]. 2023 Jan. 1 [cited 2024 Aug. 14];41(1):e106936. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/106936

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

353

Downloads

Download data is not yet available.