Influence of modified cassava starch on the physicochemical properties of a fermented soybean beverage
Influencia del almidón de yuca modificado sobre las propiedades fisicoquímicas de una bebida fermentada de soya
DOI:
https://doi.org/10.15446/agron.colomb.v41n1.106936Keywords:
syneresis, viscosity, physicochemical parameters, fermenting microorganisms, probiotics (en)sinéresis, viscosidad, parámetros fisicoquímicos, microorganismos fermentadores, probióticos (es)
Downloads
Fermented soybean beverages are an alternative for improving intestinal health, and fermentation reduces the anti-nutritional factors of this legume. However, they do show high syneresis and low viscosity. Modified cassava starches could be added as a thickener and/or stabilizer to improve the quality of the product. The aim of this research was to assess the effect of adding modified cassava starch on the physicochemical properties of a fermented soybean beverage. Preliminary tests were carried out varying the concentration (0.8%, 1.0%, and 1.2%) of 3 types of modified cassava starch: octenyl succinic anhydride (OSA), acetylated distarch adipate (ADA) cross-linked starch, and substituted-crosslinked starch (mixed). A commercial culture of starter microorganisms and probiotics was used in the fermentation process. The statistical analysis was carried out with a two-factor (type of starch and concentration) and 3-level design; quality parameters such as pH, acidity, soluble solids, syneresis, and viscosity comparable to commercial fermented dairy beverages were evaluated. OSA starch had a lower syneresis and higher viscosity than the other starches for each concentration. Furthermore, the addition of 1.0% OSA and mixed starch, as well as 1.2% ADA starch, are comparable to the control commercial soybean beverage (SC).
Las bebidas fermentadas de soya son una alternativa para mejorar la salud intestinal y reducir los factores anti-nutricionales de esta leguminosa; no obstante, muestran alta sinéresis y baja viscosidad. Para mejorar estas características de calidad, se podrían adicionar almidones de yuca modificados empleados como espesante y/o estabilizante en el producto. El objetivo de este estudio fue evaluar el efecto de la adición de almidones de yuca modificados en las propiedades fisicoquímicas de una bebida fermentada de soya. Se realizaron pruebas preliminares variando la concentración (0.8%, 1.0% y 1.2%) de 3 tipos de almidón de yuca modificado: anhidirdo octenil succínico (OSA), almidón entrecruzado de adipato de dialmidón acetilado (ADA) y almidón entrecruzado-sustituido (mixto). La fermentación se realizó a partir de un cultivo comercial de microorganismos iniciadores y cultivos probióticos. El análisis estadístico se realizó con un diseño de dos factores (tipo de almidón y concentración) y 3 niveles; se evaluaron parámetros de calidad como pH, acidez, sólidos solubles, sinéresis y viscosidad comparables a los de bebidas lácteas comerciales. El almidón OSA tuvo una sinéresis menor y una viscosidad mayor frente a los otros almidones para cada una de las concentraciones. Por otra parte, la adición del 1.0% del almidón OSA y mixto, así como del almidón ADA al 1.2%, son comparables con el control de bebida comercial de soya (SC).
References
Abbas, K. A., Khalil, S. K., & Meor Hussin, A. S. (2010). Modified starches and their usages in selected food products: A review study. Journal of Agricultural Science, 2(2), 90–100. https://doi.org/10.5539/jas.v2n2p90 DOI: https://doi.org/10.5539/jas.v2n2p90
Aderibigbe, A. S., Cowieson, A. J., Ajuwon, K. M., & Adeola, O. (2021). Contribution of purified soybean trypsin inhibitor and exogenous protease to endogenous amino acid losses and mineral digestibility. Poultry Science, 100(12), Article 101486. https://doi.org/10.1016/j.psj.2021.101486 DOI: https://doi.org/10.1016/j.psj.2021.101486
Bravo-Núñez, Á., Pando, V., & Gómez, M. (2019). Physically and chemically modified starches as texturisers of low-fat milk gels. International Dairy Journal, 92, 21–27. https://doi.org/10.1016/j.idairyj.2019.01.007 DOI: https://doi.org/10.1016/j.idairyj.2019.01.007
Chen, B., Zhao, X., Cai, Y., Jing, X., Zhao, M., Zhao, Q., & Van der Meeren, P. (2023). Incorporation of modified okara-derived insoluble soybean fiber into set-type yogurt: Structural architecture, rheological properties and moisture stability. Food Hydrocolloids, 137, Article 108413. https://doi.org/10.1016/j.foodhyd.2022.108413 DOI: https://doi.org/10.1016/j.foodhyd.2022.108413
Cho, E. R., & Kang, D. H. (2022). Intensified inactivation efficacy of pulsed ohmic heating for pathogens in soybean milk due to sodium lactate. Food Control, 137, Article 108936. https://doi.org/10.1016/j.foodcont.2022.108936 DOI: https://doi.org/10.1016/j.foodcont.2022.108936
Cui, L., Chang, S. K. C., & Nannapaneni, R. (2021). Comparative studies on the effect of probiotic additions on the physicochemical and microbiological properties of yoghurt made from soymilk and cow’s milk during refrigeration storage (R2). Food Control, 119, Article 107474. https://doi.org/10.1016/j.foodcont.2020.107474 DOI: https://doi.org/10.1016/j.foodcont.2020.107474
Devnani, B., Ong, L., Kentish, S. E., Scales, P. J., & Gras, S. L. (2022). Physicochemical and rheological properties of commercial almond-based yoghurt alternatives to dairy and soy yoghurts. Future Foods, 6, Article 100185. https://doi.org/10.1016/j.fufo.2022.100185 DOI: https://doi.org/10.1016/j.fufo.2022.100185
Gao, W., Liu, P., Wang, B., Kang, X., Zhu, J., Cui, B., & Abd El-Aty, A. M. (2021). Synthesis, physicochemical and emulsifying properties of C-3 octenyl succinic anhydride-modified corn starch. Food Hydrocolloids, 120, Article 106961. https://doi.org/10.1016/j.foodhyd.2021.106961 DOI: https://doi.org/10.1016/j.foodhyd.2021.106961
Gomes, J. J. L., Duarte, A. M., Batista, A. S. M., Figueiredo, R. M. F., Sousa, E. P., Souza, E. L., & Queiroga, R. C. R. E. (2013). Physicochemical and sensory properties of fermented dairy beverages made with goat’s milk, cow’s milk and a mixture of the two milks. LWT- Food Science and Technology, 54(1), 18–24. https://doi.org/10.1016/j.lwt.2013.04.022 DOI: https://doi.org/10.1016/j.lwt.2013.04.022
Guerrero-Beltrán, J. A., Estrada-Girón, Y., Swanson, B. G., & Barbosa-Cánovas, G. V. (2009). Pressure and temperature combination for inactivation of soymilk trypsin inhibitors. Food Chemistry, 116(3), 676–679. https://doi.org/10.1016/j.foodchem.2009.03.001 DOI: https://doi.org/10.1016/j.foodchem.2009.03.001
Hosseini, F., & Ansari, S. (2019). Effect of modified tapioca starch on the physicochemical and sensory properties of liquid kashk. Journal of Food Science and Technology, 56(12), 5374–5385. https://doi.org/10.1007/s13197-019-04008-w DOI: https://doi.org/10.1007/s13197-019-04008-w
Huang, K., Liu, Y., Zhang, Y., Cao, H., Luo, D. K., Yi, C., & Guan, X. (2022). Formulation of plant-based yoghurt from soybean and quinoa and evaluation of physicochemical, rheological, sensory and functional properties. Food Bioscience, 49, Article 101831. https://doi.org/10.1016/j.fbio.2022.101831 DOI: https://doi.org/10.1016/j.fbio.2022.101831
Imbachí-Narváez, P. C. (2018). Efecto del almidón de yuca modificado sobre las propiedades fisicoquímicas, reológicas y sensoriales de una bebida láctea elaborada con suero de quesería [Magister dissertation, Universidad Nacional de Colombia]. Repository. https://repositorio.unal.edu.co/handle/unal/62882
Imbachí-Narváez, P. C., Sepúlveda-Valencia, J. U., & Rodríguez-Sabdoval, E. (2018). Effect of modified cassava starch on the rheological and quality properties of a dairy beverage prepared with sweet whey. Food Science and Technology, 39(1), 134–142. https://doi.org/10.1590/1678-457x.28017 DOI: https://doi.org/10.1590/1678-457x.28017
Jia, Y., Fu, Y., Man, H., Yan, X., Huang, Y., Sun, S., Qi, B., & Li, Y. (2022). Comparative study of binding interactions between different dietary flavonoids and soybean β-conglycinin and glycinin: Impact on structure and function of the proteins. Food Research International, 161, Article 111784. https://doi.org/10.1016/j.foodres.2022.111784 DOI: https://doi.org/10.1016/j.foodres.2022.111784
Joon, R., Mishra, S. K., Brar, G. S., Singh, P. K., Mishra, S. K., & Panwar, H. (2017). Instrumental texture and syneresis analysis of yoghurt prepared from goat and cow milk. The Pharma Innovation Journal, 6(7), 971–974.
Kapelko-Zeberska, M., Zięba, T., Spychaj, R., & Gryszkin, A. (2015). Acetylated adipate of retrograded starch as RS 3/4 type resistant starch. Food Chemistry, 188, 365–369. https://doi.org/10.1016/j.foodchem.2015.05.018 DOI: https://doi.org/10.1016/j.foodchem.2015.05.018
Khurshida, S., Das, M. J., Deka, S. C., & Sit, N. (2021). Effect of dual modification sequence on physicochemical, pasting, rheological and digestibility properties of cassava starch modified by acetic acid and ultrasound. International Journal of Biological Macromolecules, 188, 649–656. https://doi.org/10.1016/j.ijbiomac.2021.08.062 DOI: https://doi.org/10.1016/j.ijbiomac.2021.08.062
Kim, B. H., Shewfelt, R. L., Lee, H., & Akoh, C. C. (2005). Sensory evaluation of butterfat-vegetable oil blend spread prepared with structured lipid containing canola oil and caprylic acid. Journal of Food Science, 70(7), s406–s412. https://doi.org/10.1111/j.1365-2621.2005.tb11484.x DOI: https://doi.org/10.1111/j.1365-2621.2005.tb11484.x
León-Méndez, G., León-Méndez, D., Monroy-Arellano, M. R., De La Espriella-Angarita, S., & Herrera Barros, A. (2020). Modificación química de almidones mediante reacciones de esterificación y su potencial uso en la industria cosmética. Archivos Venezolanos de Farmacología y Terapéutica, 39(5), 620–629. https://doi.org/10.5281/zenodo.4263365
Lobato-Calleros, C., Ramírez-Santiago, C., Vernon-Carter, E. J., & Alvarez-Ramirez, J. (2014). Impact of native and chemically modified starches addition as fat replacers in the viscoelasticity of reduced-fat stirred yogurt. Journal of Food Engineering, 131, 110–115. https://doi.org/10.1016/j.jfoodeng.2014.01.019 DOI: https://doi.org/10.1016/j.jfoodeng.2014.01.019
Mahmood, K., Kamilah, H., Shang, P. L., Sulaiman, S., Ariffin, F., & Alias, A. K. (2017). A review: Interaction of starch/nonstarch hydrocolloid blending and the recent food applications. Food Bioscience, 19, 110–120. https://doi.org/10.1016/j.fbio.2017.05.006 DOI: https://doi.org/10.1016/j.fbio.2017.05.006
Marefati, A., Wiege, B., Haase, N. U., Matos, M., & Rayner, M. (2017). Pickering emulsifiers based on hydrophobically modified small granular starches – Part I: Manufacturing and physico-chemical characterization. Carbohydrate Polymers, 175, 473–483. https://doi.org/10.1016/j.carbpol.2017.07.044 DOI: https://doi.org/10.1016/j.carbpol.2017.07.044
McNamee, C. E., Sato, Y., Wiege, B., Furikado, I., Marefati, A., Nylander, T., Kappl, M., & Rayner, M. (2018). Rice starch particle interactions at air/aqueous interfaces-effect of particle hydrophobicity and solution ionic strength. Frontiers in Chemistry, 6, 1–15. https://doi.org/10.3389/fchem.2018.00139 DOI: https://doi.org/10.3389/fchem.2018.00139
Mitra, P., Nepal, K., & Tavade, P. (2022). Effect of whey and soy proteins fortification on the textural and rheological properties of value-added yogurts. Applied Food Research, 2(2), Article 100195. https://doi.org/10.1016/j.afres.2022.100195 DOI: https://doi.org/10.1016/j.afres.2022.100195
Monroy-Arellano, M. R., & Espriella-Angarita, S. D. La. (2020). Modificación química de almidones mediante reacciones de esterificación y su potencial uso en la industria cosmética. Archivos Venezolanos de Farmacología y Terapéutica, 39(5), 620–629.
Ovando-Martinez, M., Whitney, K., Ozsisli, B., & Simsek, S. (2017). Physicochemical properties of octenyl succinic esters of cereal, tuber and root starches. Journal of Food Processing and Preservation, 41(1), 1–9. https://doi.org/10.1111/jfpp.12872 DOI: https://doi.org/10.1111/jfpp.12872
Partheniadis, I., Zarafidou, E., Litinas, K. E., & Nikolakakis, I. (2020). Enteric release essential oil prepared by co‐spray drying methacrylate/polysaccharides – influence of starch type. Pharmaceutics, 12(6), 1–24. https://doi.org/10.3390/pharmaceutics12060571 DOI: https://doi.org/10.3390/pharmaceutics12060571
Peng, X., & Guo, S. (2015). Texture characteristics of soymilk gels formed by lactic fermentation: A comparison of soymilk prepared by blanching soybeans under different temperatures. Food Hydrocolloids, 43, 58–65. https://doi.org/10.1016/j.foodhyd.2014.04.034 DOI: https://doi.org/10.1016/j.foodhyd.2014.04.034
Prochaska, K., Konował, E., Sulej-Chojnacka, J., & Lewandowicz, G. (2009). Physicochemical properties of cross-linked and acetylated starches and products of their hydrolysis in continuous recycle membrane reactor. Colloids and Surfaces B: Biointerfaces, 74(1), 238–243. https://doi.org/10.1016/j.colsurfb.2009.07.034 DOI: https://doi.org/10.1016/j.colsurfb.2009.07.034
Rodríguez Sandoval, E., Sandoval Aldana, A., & Ayala Aponte, A. (2003). Hidrocoloides naturales de origen vegetal. Revista Tecnura, 7(13), 4–13. https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/6179/7703
Saari, H., Heravifar, K., Rayner, M., Wahlgren, M., & Sjöö, M. (2016). Preparation and characterization of starch particles for use in pickering emulsions. Cereal Chemistry, 93(2), 116–124. https://doi.org/10.1094/CCHEM-05-15-0107-R DOI: https://doi.org/10.1094/CCHEM-05-15-0107-R
Santamaria, M., Garzon, R., & Rosell, C. M. (2023). Impact of starch-hydrocolloid interaction on pasting properties and enzymatic hydrolysis. Food Hydrocolloids, 142, Article 108764. https://doi.org/10.1016/j.foodhyd.2023.108764 DOI: https://doi.org/10.1016/j.foodhyd.2023.108764
Sweedman, M. C., Tizzotti, M. J., Schäfer, C., & Gilbert, R. G. (2013). Structure and physicochemical properties of octenyl succinic anhydride modified starches: A review. Carbohydrate Polymers, 92(1), 905–920. https://doi.org/10.1016/j.carbpol.2012.09.040 DOI: https://doi.org/10.1016/j.carbpol.2012.09.040
Vanga, S. K., Wang, J., & Raghavan, V. (2020). Effect of ultrasound and microwave processing on the structure, in-vitro digestibility and trypsin inhibitor activity of soymilk proteins. LWT-Food Science and Technology, 131, Article 109708. https://doi.org/10.1016/j.lwt.2020.109708 DOI: https://doi.org/10.1016/j.lwt.2020.109708
Verfaillie, D., Janssen, F., Van Royen, G., & Wouters, A. G. B. (2023). A systematic study of the impact of the isoelectric precipitation process on the physical properties and protein composition of soy protein isolates. Food Research International, 163, Article 112177. https://doi.org/10.1016/j.foodres.2022.112177 DOI: https://doi.org/10.1016/j.foodres.2022.112177
Wang, L., Zhu, S., Chen, Y., Karthik, P., & Chen, J. (2023). Fabrication and characterization of O/W emulsion stabilized by Octenyl Succinic Anhydride (OSA) modified resistant starch. Food Hydrocolloids, 141, Article 108750. https://doi.org/10.1016/j.foodhyd.2023.108750 DOI: https://doi.org/10.1016/j.foodhyd.2023.108750
Wang, X., Li, X., Chen, L., Xie, F., Yu, L., & Li, B. (2011). Preparation and characterisation of octenyl succinate starch as a delivery carrier for bioactive food components. Food Chemistry, 126(3), 1218–1225. https://doi.org/10.1016/j.foodchem.2010.12.006 DOI: https://doi.org/10.1016/j.foodchem.2010.12.006
Xiao, Z., Kang, Y., Hou, W., Niu, Y., & Kou, X. (2019). Microcapsules based on octenyl succinic anhydride (OSA)-modified starch and maltodextrins changing the composition and release property of rose essential oil. International Journal of Biological Macromolecules, 137, 132–138. https://doi.org/10.1016/j.ijbiomac.2019.06.178 DOI: https://doi.org/10.1016/j.ijbiomac.2019.06.178
Yuan, S. H., & Chang, S. K. C. (2010). Trypsin inhibitor activity in laboratory-produced and commercial soymilk. American Chemical Society. https://www.researchgate.net/publication/287302665_Trypsin_inhibitor_activity_in_laboratoryproduced_and_commercial_soymilk DOI: https://doi.org/10.1021/bk-2010-1059.ch002
Zhang, Y., & Chang, S. K. C. (2022). Trypsin inhibitor activity, phenolic content and antioxidant capacity of soymilk as affected by grinding temperatures, heating methods and soybean varieties. LWT-Food Science and Technology, 153, Article 112424. https://doi.org/10.1016/j.lwt.2021.112424 DOI: https://doi.org/10.1016/j.lwt.2021.112424
Zhang, Y., Guo, S., Liu, Z., & Chang, S. (2012). Off-flavor related volatiles in soymilk as affected by soybean variety, grinding, and heat-processing methods. Journal of Agricultural and Food Chemistry, 60(30), 7457–7462. https://doi.org/10.1021/jf3016199 DOI: https://doi.org/10.1021/jf3016199
Zheng, B., Zhou, H., & McClements, D. J. (2021). Nutraceuticalfortified plant-based milk analogs: Bioaccessibility of curcumin-loaded almond, cashew, coconut, and oat milks. LWT-Food Science and Technology,, 147, Article 111517. https://doi.org/10.1016/j.lwt.2021.111517 DOI: https://doi.org/10.1016/j.lwt.2021.111517
Zięba, T., Gryszkin, A., & Kapelko, M. (2014). Selected properties of acetylated adipate of retrograded starch. Carbohydrate Polymers, 99, 687–691. https://doi.org/10.1016/j.carbpol.2013.08.064 DOI: https://doi.org/10.1016/j.carbpol.2013.08.064
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Julián David Rodriguez‐Ruiz, Eduardo Rodriguez‐Sandoval, María Soledad Hernández. (2025). Influence of Modified Cassava Starches on the Rheological and Structural Properties of a Fermented Soy Beverage During Storage. Starch - Stärke, 77(2) https://doi.org/10.1002/star.202400003.
Dimensions
PlumX
Article abstract page views
Downloads
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)

Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.







