Published

2023-04-30

Field management of Phelipanche ramosa on tomatoes by plowing depth or resistance strategies

Manejo en campo de Phelipanche ramosa en tomates por profundidad de arado o estrategias de resistencia

DOI:

https://doi.org/10.15446/agron.colomb.v41n1.107031

Keywords:

branched broomrape, tillage depth, plant resistance, achlorophyllous plant (en)
jopo ramudo común, profundidad de labranza, resistencia de plantas, planta aclorófila (es)

Downloads

Authors

Two separate independent experiments were carried out on agronomic approaches for controlling infestation by Phelipanche ramosa: the evaluation of two soil plowing depths (30 and 50 cm) and determining the resistance of two tomato cultivars (SV5197 and SV8840) to this parasitic plant. The experiments were performed in 2014 and 2018 seasons in naturally heavily infested fields in the province of Foggia (Apulia Region, south-eastern Italy). Based on our results, the 50 cm moldboard plowing depth reduced parasite infestation by 41.2% compared to that of 30 cm depth, commonly adopted by local farmers. Higher attachments to the host plants were observed in SV5197 than in SV8840, which could be correlated with the different level of resistance of the host plant. In both experiments, the highest Phelipanche infestation reduced the tomato yield but did not affect the fruit quality.

Se llevaron a cabo dos experimentos independientes separados sobre enfoques agronómicos para controlar la infestación por Phelipanche ramosa: la evaluación de dos profundidades de arado del suelo (30 y 50 cm) y la determinación de la resistencia de dos cultivares de tomate (SV5197 y SV8840) a esta planta parásita. Los experimentos se realizaron en las temporadas 2014 y 2018 en campos naturales altamente infestados en la provincia de Foggia (región de Apulia, sureste de Italia). Según nuestros resultados, la profundidad de arado con vertedera de 50 cm redujo la infestación de parásitos en un 41.2% en comparación con la profundidad de 30 cm, comúnmente adoptada por los agricultores locales. Se observaron mayores adherencias a las plantas hospedantes en SV5197 que en SV8840, lo que podría estar correlacionado con el diferente nivel de resistencia de la planta hospedante. En ambos experimentos, la mayor infestación de Phelipanche redujo el rendimiento del tomate, pero no afectó la calidad del fruto.

References

Abbes, Z., Kharrat, M., Delavault, P., Chaïbi, W., & Simier, P. (2009). Nitrogen and carbon relationships between the parasitic weed Orobanche foetida and susceptible and tolerant faba bean lines. Plant Physiology and Biochemistry, 47(2), 153–159. https://doi.org/10.1016/j.plaphy.2008.10.004 DOI: https://doi.org/10.1016/j.plaphy.2008.10.004

Abbes, Z., Kharrat, M., Delavault, P., Simier, P., & Chaibi, W. (2007). Field evaluation of the resistance of some faba bean (Vicia faba L.) genotypes to the parasitic weed Orobanche foetida Poiret. Crop Protection, 26(12), 1777-1784. https://doi.org/10.1016/j.cropro.2007.03.012 DOI: https://doi.org/10.1016/j.cropro.2007.03.012

Abbes, Z., Sellami, F., Amri, M., & Kharrat, M. (2011). Variation in the resistance of some faba bean genotypes to Orobanche crenata. Pakistan Journal of Botany, 43(4), 2017–2021.

Albanova, I. A., Zagorchev, L. I., Teofanova, D. R., Odjakova, M. K., Kutueva, L. I., & Ashapkin, V. V. (2023). Host resistance to parasitic plants—current knowledge and future perspectives. Plants, 12(7), Article 1447. https://doi.org/10.3390/plants12071447 DOI: https://doi.org/10.3390/plants12071447

AOAC-Association of Official Analytical Chemists. (1990). Official method of analysis No 934 06: Moisture in dried fruits. Washington, DC.

Bai, J., Wei, Q., Shu, J., Gan, Z., Li, B., Yan, D., Huang, Z., Guo, Y., Wang, X., Zhang, L., Cui, Y., Lu, X., Lu, J., Pan, C., Hu, J., Du, Y., Liu, L. & Li, J. (2020). Exploration of resistance to Phelipanche aegyptiaca in tomato. Pest Management Science, 76(11), 3806–3821. https://doi.org/10.1002/ps.5932 DOI: https://doi.org/10.1002/ps.5932

Benvenuti, S., Macchia, M., & Miele, S. (2001). Quantitative analysis of emergence of seedlings from buried weed seeds with increasing soil depth. Weed Science, 49(4), 528–535. https://doi.org/10.1614/0043-1745(2001)049%5B0528:QAOEOS%5D2.0.CO;2 DOI: https://doi.org/10.1614/0043-1745(2001)049[0528:QAOEOS]2.0.CO;2

Conversa, G., Bonasia, A., & Elia, A. (2017). Chemical control of branched broomrape in processing tomato using sulfonylureas in Southern Italy. Italian Journal of Agronomy, 12(3), Article 939. https://doi.org/10.4081/ija.2017.939 DOI: https://doi.org/10.4081/ija.2017.939

Cubero, J. I. (1991). Breeding for resistance to Orobanche species: A review. In K. Wegmann, & L. J. Musselman (Eds.), Progress in Orobanche research (257–277). Eberhard-Karls Universität Tübingen.

Disciglio, G., Carlucci, A., Tarantino, A., Giuliani, M. M., Gagliardi, A., Frabboni, L., Libutti, A., Raimondi, M. L., Lops, F., & Gatta, G. (2018). Effect of olive-mill wastewater application, organo mineral fertilization, and transplanting date on the control of Phelipanche ramosa in open-field processing tomato crops. Agronomy, 8(6), Article 92. https://doi.org/10.3390/agronomy8060092 DOI: https://doi.org/10.3390/agronomy8060092

Disciglio, G., Lops, F., Carlucci, A., Gatta, G., Tarantino, A., Frabboni, L., Carriero, F. & Tarantino, E. (2016). Effects of different methods to control the parasitic weed Phelipanche ramosa (L.) Pomel in processing tomato crops. Italian Journal of Agronomy, 11(1), 39–46. https://doi.org/10.4081/ija.2016.681 DOI: https://doi.org/10.4081/ija.2016.681

Eizenberg, H., Lande, T., Achdari, G., Roichman, A., & Hershenhorn, J. (2007). Effect of Egyptian broomrape (Orobanche aegyptiaca) seed-burial depth on parasitism dynamics and chemical control in tomato. Weed Science, 55(2), 152–156. https://doi.org/10.1614/WS-06-135 DOI: https://doi.org/10.1614/WS-06-135

Favati, F., Lovelli, S., Galgano, F., Miccolis, V. Di Tommaso, T., & Candido, V. (2009). Processing tomato quality as affected by irrigation scheduling. Scientia Horticulturae, 122(4), 562–571. https://doi.org/10.1016/j.scienta.2009.06.026 DOI: https://doi.org/10.1016/j.scienta.2009.06.026

Fernández-Aparicio, M., Flores, F., & Rubiales, D. (2012). Escape and true resistance to crenate broomrape (Orobanche crenata Forsk.) in grass pea (Lathyrus sativus L.) germplasm. Field Crops Research, 125, 92–97. https://doi.org/10.1016/j.fcr.2011.09.003 DOI: https://doi.org/10.1016/j.fcr.2011.09.003

Fernández-Aparicio, M., Pérez-de-Luque, A., Prats, E., & Rubiales, D. (2008). Variability of interactions between barrel medic (Medicago truncatula) genotypes and Orobanche species. Annals of Applied Biology, 153(1), 117–126. https://doi.org/10.1111/j.1744-7348.2008.00241.x DOI: https://doi.org/10.1111/j.1744-7348.2008.00241.x

Fernández-Aparicio, M., Reboud, X. & Gibot-Leclerc, S. (2016). Broomrape weeds. Underground mechanisms of parasitism and associated strategies for their control: A review. Frontiers in Plant Science, 7, Article 135. https://doi.org/10.3389/fpls.2016.00135 DOI: https://doi.org/10.3389/fpls.2016.00135

Francis, F. J., & Clydesdale, F. M. (1975). Food colorimetry: Theory and applications. AVI Publishing Company.

Gayosso-Barragán, O., López-Benítez, A., Rodríguez-Herrera, S. A., Ek-Maas, J. N., Hidalgo-Ramos, D. M., & Alcala-Rico, J. S. G. J. (2019). Studies on combining ability in tomato (Solanum lycopersicum L.). Agronomy Research, 17(1), 77–85. https://doi.org/10.15159/AR.19.002

Grenz, J. H., & Sauerborn, J. (2007). Mechanisms limiting the geographical range of the parasitic weed Orobanche crenata. Agriculture, Ecosystems & Environment, 122(3), 275–281. https://doi.org/10.1016/j.agee.2007.01.014 DOI: https://doi.org/10.1016/j.agee.2007.01.014

Grundy, A. C., Mead, A., & Burston, S. (2003). Modelling the emergence response of weed seeds to burial depth: interactions with seed density, weight and shape. Journal of Applied Ecology, 40(4), 757–770. https://doi.org/10.1046/j.1365-2664.2003.00836.x DOI: https://doi.org/10.1046/j.1365-2664.2003.00836.x

Habimana, S., Nduwumuremyi, A., & Chinama, J. D. (2014). Management of Orobanche in field crops. A review. Journal of Soil Science and Plant Nutrition, 14(1), 43–62. https://doi.org/10.4067/S0718-95162014005000004 DOI: https://doi.org/10.4067/S0718-95162014005000004

Hamad, E. A., Hamid, S. A., & Babiker, A. G. T. (2014). Effects of seed placement in soil on virulence of Orobanche crenata on faba bean. Journal of Biological, Pharmaceutical and Chemical Research, 1(1), 146–154.

Haussmann, B. I. G., Hess, D. E., Welz, H.-G., & Geiger, H. H. (2000). Improved methodologies for breeding striga-resistant sorghum. Field Crops Research, 66(3), 195–211. https://doi.org/10.1016/S0378-4290(00)00076-9 DOI: https://doi.org/10.1016/S0378-4290(00)00076-9

Hossain, M., & Begum, M. (2016). Soil weed seed bank: Importance and management for sustainable crop production - A Review. Journal of the Bangladesh Agricultural University, 13(2), 221–228. https://doi.org/10.3329/jbau.v13i2.28783 DOI: https://doi.org/10.3329/jbau.v13i2.28783

ISMEA. (2022, March 18). Pomodoro da industria, +17% per la campagna 2021. I dati Ismea. Alimentando. https://www.alimentando.info/pomodoro-da-industria-17-per-la-campagna-2021-i-dati-ismea

Jhu, M.-Y., Farhi, M., Wang, L., Philbrook, R. N., Belcher, M. S., Nakayama, H., Zumstein, K. S., Rowland, S. D., Ron, M., & Shih, P. M. (2022). Heinz-resistant tomato cultivars exhibit a lignin-based resistance to field dodder (Cuscuta campestris) parasitism. Plant Physiology, 189(1), 129–151. https://doi.org/10.1093/plphys/kiac024 DOI: https://doi.org/10.1093/plphys/kiac024

Jhu, M.-Y., & Sinha N. R. (2022). Parasitic plants: An overview of mechanisms by which plants perceive and respond to parasites. Annual Review of Plant Biology, 73, 433–455. https://doi.org/10.1146/annurev-arplant-102820-100635 DOI: https://doi.org/10.1146/annurev-arplant-102820-100635

Joel, D. M., Hershenhorn J., Eizenberg, H., Aly, R., Ejeta, G., Rich, P. J., Ransom, J. K., Sauerborn, J., & Rubiales, D. (2007). Biology and management of weedy root parasites. In J. Janick (Ed.), Horticultural Reviews (vol. 33, pp. 267–349.). http://doi.org/10.1002/9780470168011.ch4 DOI: https://doi.org/10.1002/9780470168011.ch4

Kasrawi, M. A., & Abu-Irmaileh, B. E. (1989). Resistance to branched broomrape (Orobanche ramosa L.) in tomato germplasm. HortScience, 24(5), 822–824. https://doi.org/10.21273/HORTSCI.24.5.822 DOI: https://doi.org/10.21273/HORTSCI.24.5.822

Labrousse, P., Arnaud, M. C., Seryes, H., Bervillé, A., & Thalouarn, P. (2001). Several mechanisms are involved in resistance of Helianthus to Orobanche cumana Wallr. Annals of Botany, 88(5), 859–868. https://doi.org/10.1006/anbo.2001.1520 DOI: https://doi.org/10.1006/anbo.2001.1520

Lops, F., Carlucci, A., Frabboni, L., Tarantino, A., & Disciglio, G. (2021). Use of olive-mill wastewater for the containment of Phelipanche ramosa in open field of processing tomato crop. International Journal of Environmental Science and Development, 12(10), 304–310. https://doi.org/10.18178/ijesd.2021.12.10.1354 DOI: https://doi.org/10.18178/ijesd.2021.12.10.1354

Mariam, E. G., & Suwanketnikom, R. (2004). Screening of tomato (Lycopersicon esculentum Mill.) varieties for resistance to branched broomrape (Orobanche ramosa L.). Agriculture and Natural Resources, 38(4), 434–439. https://li01.tci-thaijo.org/index.php/anres/article/view/243191

Mohammed-Ahmed, A. G. (1995). Parasite-host studied with Orobanche spp. [Doctoral dissertation,. The University of Reading].

Mohler, C. L., & Galford, A. E. (1997). Weed seedling emergence and seed survival: separating the effects of seed position and soil modification by tillage. Weed Research, 37(2), 147–155. https://doi.org/10.1046/j.1365-3180.1997.d01-21.x DOI: https://doi.org/10.1046/j.1365-3180.1997.d01-21.x

Mutuku, J. M., Cui, S., Yoshida, S., & Shirasu, K. (2021). Orobanchaceae parasite-host interactions. New Phytologist, 230(1), 46–59. https://doi.org/10.1111/nph.17083 DOI: https://doi.org/10.1111/nph.17083

Qasem, J. R., & Kasrawi, M. A. (1995). Variation of resistance to broomrape (Orobanche ramosa) in tomatoes. Euphytica, 81(1), 109–114. https://doi.org/10.1007/BF00022464 DOI: https://doi.org/10.1007/BF00022464

Pérez-de-Luque, A., Fondevilla, S., Pérez-Vich, B., Aly, R., Thoiron, S., Simier, P., Castillejo M. A., Fernández-Martínez, J. M., Jorrín, J., Rubiales, D., & Delavault, P. (2009). Understanding Orobanche and Phelipanche–host plant interactions and developing resistance. Weed Research, 49(Supl. 1), 8–22. https://doi.org/10.1111/j.1365-3180.2009.00738.x DOI: https://doi.org/10.1111/j.1365-3180.2009.00738.x

Pérez-de-Luque, A., Moreno, M. T., & Rubiales, D. (2008). Host plant resistance against broomrapes (Orobanche spp.): Defence reactions and mechanisms of resistance. Annals of Applied Biology, 152(2), 131–141. https://doi.org/10.1111/j.1744-7348.2007.00212.x DOI: https://doi.org/10.1111/j.1744-7348.2007.00212.x

Pérez-de-Luque, A., & Rubiales, D. (2009). Nanotechnology for parasitic plant control. Pest Management Science, 65(5), 540–545. https://doi.org/10.1002/ps.1732 DOI: https://doi.org/10.1002/ps.1732

Roberts, H. A., & Feast, P. M. (1972). Fate of seeds of some annual weeds in different depths of cultivated and undisturbed soil. Weed Research, 12(4), 316–324. https://doi.org/10.1111/j.1365-3180.1972.tb01226.x DOI: https://doi.org/10.1111/j.1365-3180.1972.tb01226.x

Rubiales, D., Fernández-Aparicio, M., Wegmann, K., & Joel, D. M. (2009). Revisiting strategies for reducing the seed bank of Orobanche and Phelipanche spp. Weed Research, 49 (Supl. 1), 23–33. https://doi.org/10.1111/j.1365-3180.2009.00742.x DOI: https://doi.org/10.1111/j.1365-3180.2009.00742.x

Rubiales, D., Pérez-de-Luque, A., Fernández-Aparicio, M., Sillero, J. C., Román, B., Kharrat, M., Khalil, S., Joel, D. M., & Riches, C. (2006). Screening techniques and sources of resistance against parasitic weeds in grain legumes. Euphytica, 147, 187–199. https://doi.org/10.1007/s10681-006-7399-1 DOI: https://doi.org/10.1007/s10681-006-7399-1

Rubiales, D., Pérez-de-Luque, A., Joel, D. M., Alcántara, C. & Sillero, J. C. (2003). Characterization of resistance in chickpea to crenate broomrape (Orobanche crenata). Weed Science, 51(5), 702–707. https://doi.org/10.1614/P2002-151 DOI: https://doi.org/10.1614/P2002-151

SAS Institute. (1995). Logistic regression examples using the SAS system. SAS Institute Inc.

Sato, D., Awad, A. A., Chae, S. H., Yokota, T., Sugimoto, Y., Takeuchi, Y., & Yoneyama, K. (2003). Analysis of strigolactones, germination stimulants for Striga and Orobanche by high-performance liquid chromatography/tandem mass spectrometry. Journal of Agricultural and Food Chemistry, 51(5), 1162–1168. https://doi.org/10.1021/jf025997z DOI: https://doi.org/10.1021/jf025997z

Serghini, K., Pérez-de-Luque, A., Castejón-Muñoz, M., García-Torres, L., & Jorrín, J. V. (2001). Sunflower (Helianthus annuus L.) response to broomrape (Orobanche cernua Loefi.) parasitism: induced synthesis and excretion of 7-hydroxylated simple coumarins. Journal of Experimental Botany, 52(364), 2227–2234. https://doi.org/10.1093/jexbot/52.364.2227 DOI: https://doi.org/10.1093/jexbot/52.364.2227

Skuodienė, R., Karčauskienė, D. Čiuberkis, S. Repšienė, R., & Ambrazaitienė, D. (2013). The influence of primary soil tillage on soil weed seed bank and weed incidence in a cereal-grass crop rotation. Zemdirbyste-Agriculture, 100(1), 25–32. https://doi.org/10.13080/z-a.2013.100.004 DOI: https://doi.org/10.13080/z-a.2013.100.004

Tokasi, S., Bannayan Aval, M., Mashhadi, H. R., & Ghanbari, A. (2014). Screening of resistance to egyptian broomrape infection in tomato varieties. Planta Daninha, 32(1), 109–116. https://doi.org/10.1590/S0100-83582014000100012 DOI: https://doi.org/10.1590/S0100-83582014000100012

UNESCO/FAO. (1963). Bioclimatic map of the Mediterranean zone; explanatory notes, arid zone research. UNESCO; FAO.

USDA-NRCS. (1999). Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys (2nd ed.). Agricultural Handbook 436.

Van Delft, G. J., Graves, J. D., Fitter A. H., & Van Ast, A. (2000). Striga seed avoidance by deep planting and no-tillage in sorghum and maize. International Journal of Pest Management, 46(4), 251–256. https://doi.org/10.1080/09670870050206019 DOI: https://doi.org/10.1080/09670870050206019

Van Mourik, T. A., Stomph, T. J., & Murfoch, A. J. (2011). Purple witchweed (Striga hermonthica) germination and seedbank depletion under different crops, fallow, and bare soil. Weed Biology and Management, 11(2), 100–110. https://doi.org/10.1111/j.1445-6664.2011.00409.x DOI: https://doi.org/10.1111/j.1445-6664.2011.00409.x

Van Mourik, T. A., Stomph, T. J., & Westerman, P. R. (2003). Estimating Striga hermonthica seed mortality under field conditions. Aspects of Applied Biology, 69, 187–194.

Ventrella, D., Charfeddine, M., Moriondo, M., Rinaldi, M., & Bindi, M. (2012). Agronomic adaptation strategies under climate change for winter durum wheat and tomato in southern Italy: Irrigation and nitrogen fertilization. Regional Environmental Change, 12, 407–412. https://doi.org/10.1007/s10113-011-0256-3 DOI: https://doi.org/10.1007/s10113-011-0256-3

How to Cite

APA

Disciglio, G., Tarantino, A., Lops, F. & Frabboni, L. (2023). Field management of Phelipanche ramosa on tomatoes by plowing depth or resistance strategies. Agronomía Colombiana, 41(1), e107031. https://doi.org/10.15446/agron.colomb.v41n1.107031

ACM

[1]
Disciglio, G., Tarantino, A., Lops, F. and Frabboni, L. 2023. Field management of Phelipanche ramosa on tomatoes by plowing depth or resistance strategies. Agronomía Colombiana. 41, 1 (Jan. 2023), e107031. DOI:https://doi.org/10.15446/agron.colomb.v41n1.107031.

ACS

(1)
Disciglio, G.; Tarantino, A.; Lops, F.; Frabboni, L. Field management of Phelipanche ramosa on tomatoes by plowing depth or resistance strategies. Agron. Colomb. 2023, 41, e107031.

ABNT

DISCIGLIO, G.; TARANTINO, A.; LOPS, F.; FRABBONI, L. Field management of Phelipanche ramosa on tomatoes by plowing depth or resistance strategies. Agronomía Colombiana, [S. l.], v. 41, n. 1, p. e107031, 2023. DOI: 10.15446/agron.colomb.v41n1.107031. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/107031. Acesso em: 16 nov. 2025.

Chicago

Disciglio, Grazia, Annalisa Tarantino, Francesco Lops, and Laura Frabboni. 2023. “Field management of Phelipanche ramosa on tomatoes by plowing depth or resistance strategies”. Agronomía Colombiana 41 (1):e107031. https://doi.org/10.15446/agron.colomb.v41n1.107031.

Harvard

Disciglio, G., Tarantino, A., Lops, F. and Frabboni, L. (2023) “Field management of Phelipanche ramosa on tomatoes by plowing depth or resistance strategies”, Agronomía Colombiana, 41(1), p. e107031. doi: 10.15446/agron.colomb.v41n1.107031.

IEEE

[1]
G. Disciglio, A. Tarantino, F. Lops, and L. Frabboni, “Field management of Phelipanche ramosa on tomatoes by plowing depth or resistance strategies”, Agron. Colomb., vol. 41, no. 1, p. e107031, Jan. 2023.

MLA

Disciglio, G., A. Tarantino, F. Lops, and L. Frabboni. “Field management of Phelipanche ramosa on tomatoes by plowing depth or resistance strategies”. Agronomía Colombiana, vol. 41, no. 1, Jan. 2023, p. e107031, doi:10.15446/agron.colomb.v41n1.107031.

Turabian

Disciglio, Grazia, Annalisa Tarantino, Francesco Lops, and Laura Frabboni. “Field management of Phelipanche ramosa on tomatoes by plowing depth or resistance strategies”. Agronomía Colombiana 41, no. 1 (January 1, 2023): e107031. Accessed November 16, 2025. https://revistas.unal.edu.co/index.php/agrocol/article/view/107031.

Vancouver

1.
Disciglio G, Tarantino A, Lops F, Frabboni L. Field management of Phelipanche ramosa on tomatoes by plowing depth or resistance strategies. Agron. Colomb. [Internet]. 2023 Jan. 1 [cited 2025 Nov. 16];41(1):e107031. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/107031

Download Citation

CrossRef Cited-by

CrossRef citations1

1. Petra Bakewell-Stone. (2024). https://doi.org/10.1079/cabicompendium.37747.

Dimensions

PlumX

Article abstract page views

485

Downloads

Download data is not yet available.