Published

2023-08-30

Use of quinoa (Chenopodium quinoa Willd.) flour in a couscous-type product as a substitute for wheat couscous

Uso de harina de quinua (Chenopodium quinoa Willd.) en un producto tipo cuscús como sustituto del cuscús de trigo

DOI:

https://doi.org/10.15446/agron.colomb.v41n2.107440

Keywords:

Andean cereal, agglomeration, new product technology. (en)
cereal andino, aglomeración, tecnología para nuevos productos (es)

Downloads

Authors

  • Carlos Burbano-Agreda Escuela Politécnica Nacional - Facultad de Ingeniería Química y Agroindustria - Departamento de Ciencia de Alimentos y Biotecnología - Quito, Pichincha - Ecuador https://orcid.org/0000-0002-8458-7165
  • Cristina Sotomayor-Grijalva Escuela Politécnica Nacional - Facultad de Ingeniería Química y Agroindustria - Departamento de Ciencia de Alimentos y Biotecnología - Quito, Pichincha - Ecuador https://orcid.org/0000-0002-6732-8487
  • Cristina Romero-Granja Escuela Politécnica Nacional - Facultad de Ingeniería Química y Agroindustria - Departamento de Ciencia de Alimentos y Biotecnología - Quito https://orcid.org/0000-0002-2188-3696
  • Jenny Ávila-Vélez Escuela Politécnica Nacional - Facultad de Ingeniería Química y Agroindustria - Departamento de Ciencia de Alimentos y Biotecnología - Quito https://orcid.org/0000-0002-7156-3850

Quinoa (Chenopodium quinoa Willd.) couscous is a new nutritional product that can replace wheat couscous. The processes of agglomeration, steam-cooking, and drying for its preparation were analyzed. The output variable for the agglomeration process was yield and the factors studied were ratio of fine/coarse quinoa flour, moisture of the mixture, use of a binding agent, and temperature of the binding agent solution. The conditions for the highest agglomeration yield (48.62%) were: 70/30 flour ratio, moisture of 40%, no binding agent, and a temperature of 70°C. The output variables for the cooking and drying processes were Water Absorption Index (WAI), Swelling Power (SP), and Water Solubility Index (WSI). The factors studied were steam-cooking time and drying time and temperature. The conditions maximizing the WAI and SP and minimizing the WSI were: 30 min of steam-cooking time, 120 min of drying time, and 70°C for the drying temperature. Finally, a paired comparison was carried out between the functional, chemical, and sensory properties of the quinoa and a commercial wheat couscous. The chemical properties of the quinoa couscous were better and this product was preferred by 42% of the panelists. However, in the sensorial characteristics, the new product scored lower.

El cuscús de quinua (Chenopodium quinoa Willd.) se presenta como un nuevo producto nutricional que puede reemplazar al cuscús de trigo. Para su preparación se analizaron los procesos de aglomeración, cocción y secado. La variable de salida para el proceso de aglomeración fue el rendimiento y los factores estudiados fueron: relación harina de quinua fina/gruesa, humedad de la mezcla, uso de un agente aglutinante y temperatura de la solución aglutinante. Las condiciones para el mayor rendimiento de aglomeración (48.62%) fueron: 70/30 relación de harina, humedad de 40%, sin agente aglutinante, y temperatura de 70°C. Las variables de salida para los procesos de cocción y secado fueron: Índice de Absorción de Agua (IAA), Poder de Hinchamiento (PH) e Índice de Solubilidad en Agua (ISA). Los factores estudiados fueron: tiempo de cocción y tiempo y temperatura de secado. Las condiciones que maximizaron IAA y PH y minimizaron ISA fueron: 30 min de cocción, y 120 min y 70°C en el proceso de secado. Finalmente, se realizó una comparación por pares entre las propiedades funcionales, químicas y sensoriales del cuscús de quinua y un cuscús comercial de trigo. Las características químicas del cuscús de quinua fueron mejores y este producto fue preferido por el 42% de los panelistas. Sin embargo, en las características sensoriales el nuevo producto obtuvo una puntuación más baja.

References

Aboubacar, A., & Hamaker, B. R. (1999). Physicochemical properties of flours that relate to sorghum couscous quality. Cereal Chemists, 76(2), 308–313. https://doi.org/10.1094/cchem.1999.76.2.308

Abugoch James, L. E. (2009). Quinoa (Chenopodium quinoa Willd.): composition, chemistry, nutritional, and functional properties. In S. L. Taylor (Ed.), Advances in Food and Nutrition Research, 58,1–31. Elsevier. https://doi.org/10.1016/S1043-4526(09)58001-1

Anderson, R. A., Conway, H. F., Pfeifer, V. F., Griffin, E. L., Pfeifer, U. F., & Griffin Jr., V. F. (1969). Roll and extrusion-cooking of grain sorghum grits. Cereal Science Today, 14(11), 373–381.

AOAC. (2005). Official methods of analysis of AOAC international (18th ed.). AOAC International.

Arzapalo Quinto, D., Huamán Cóndor, K., Quispe Solano, M., & Espinoza Silva, C. (2015). Extracción y caracterización del almidón de tres variedades de quinua (Chenopodium quinoa Willd) negra collana, pasankalla roja y blanca Junín. Revista de la Sociedad Química del Perú, 81(1), 44–54. https://doi.org/10.37761/rsqp.v81i1.9

Barkouti, A., Rondet, E., Delalonde, M., & Ruiz, T. (2012). Influence of physicochemical binder properties on agglomeration of wheat powder in couscous grain. Journal of Food Engineering, 111(2), 234–240. https://doi.org/10.1016/j.jfoodeng.2012.02.028

Bazile, D., Bertero, D., & Nieto, C. (Eds.). (2015). State of the art report on quinoa around the world in 2013. FAO & CIRAD Roma. https://www.fao.org/3/i4042e/i4042e.pdf

Benatallah, L., Agli, A., & Zidoune, M. (2008). Gluten-free couscous preparation: traditional procedure description and technological feasibility for three rice-leguminous supplemented formulae. Journal of Food, Agriculture & Environment, 6(2), 105–112.

Butt, M., & Batool, R. (2010). Nutritional and functional properties of some promising legumes protein isolates. Pakistan Journal of Nutrition, 9(4), 373–379. https://doi.org/10.3923/pjn.2010.373.379

Boukid, F., Folloni, S., Sforza, S., Vittadini, E., & Prandi, B. (2017). Current trends in ancient grains‐based foodstuffs: Insights into nutritional aspects and technological applications. Comprehensive Reviews in Food Science and Food Safety, 17(1), 123–136. https://doi.org/10.1111/1541-4337.12315

Cankurtaran, T., & Bilgiçli, N. (2021). Improvement of functional couscous formulation using ancient wheat and pseudocereals. International Journal of Gastronomy and Food Science, 25, Article 100400. https://doi.org/10.1016/j.ijgfs.2021.100400

Cerón-Fernández, C., Guerra-Morcillo, L., Legarda-Quintero, J., Enríquez-Collazos, M., & Pismag Portilla, Y. (2016). Efecto de la extrusión sobre las características físico-químicas de harina de quinua (Chenopodium quinoa Willd). Biotecnología en el Sector Agropecuario y Agroindustrial, 14(2), 92–99.

Chemache, L., Lecoq, O., Namoune, H., & Oulahna, D. (2019). Agglomeration properties of gluten-free flours under water addition and shearing conditions. LWT– Food Science and Technology, 110, 40–47. https://doi.org/10.1016/j.lwt.2019.04.058

Coskun, F. (2013). Production of couscous using the traditional method in Turkey and couscous in the world. African Journal of Agricultural Research, 8(22), 2609–2615.

Cuq, B., Mandato, S., Jeantet, R., Saleh, K., & Ruiz, T. (2013). Agglomeration/granulation in food powder production. In B. Bhandari, N. Bansal, M. Zhang, & P. Schuck (Eds.), Handbook of food powders. Processes and properties (pp. 150–177). Woodhead Publishing Limited. https://doi.org/10.1533/9780857098672.1.150

Cuq, B., Rondet, E., & Abecassis, J. (2011). Food powders engineering, between knowhow and science: Constraints, stakes and opportunities. Powder Technology, 208(2), 244–251. https://doi.org/10.1016/j.powtec.2010.08.012

Debbouz, A., & Donnelly, B. (1996). Process effect on couscous quality. Cereal Chemistry, 73(6), 668–671.

Demir, B., Bilgiçli, N., Elgün, A., & Demir, M. K. (2010). The effect of partial substitution of wheat flour with chickpea flour on the technological, nutritional and sensory properties of couscous. Journal of Food Quality, 33(6), 728–741. https://doi.org/10.1111/j.1745-4557.2010.00359.x

FAO. (2004). El arroz y la nutrición humana. https://www.fao.org/3/y4875s/y4875s02.pdf

FAO, & OMS. (2007). Codex Alimentarius. Cereales, legumbres, leguminosas y productos proteínicos vegetales (1st ed.). https://www.fao.org/publications/card/es/c/a016272e-

Giovanelli, G., Bresciani, A., Benedetti, S., Chiodaroli, G., Ratti, S., Buratti, S., & Marti, A. (2023). Reformulating couscous with sprouted buckwheat: Physico-chemical properties and sensory characteristics assessed by e-senses. Foods, 12(19), Article e3578. https://doi.org/10.3390/foods12193578

Hafsa, I., Mandato, S., Ruiz, T., Schuck, P., Jeantet, R., Mejean, S., Chevallier, S., & Cuq, B. (2015). Impact of the agglomeration process on structure and functional properties of the agglomerates based on the durum wheat semolina. Journal of Food Engineering, 145, 25–36. https://doi.org/10.1016/j.jfoodeng.2014.08.005

Hernández, E. (2005). Evaluación sensorial: pruebas analíticas discriminativas. UNAD – Universidad Nacional Abierta y a Distancia https://www.coursehero.com/file/45917368/Hernandez-2005-evaluacion-sensorialpdf/

Hernández Rodríguez, J. (2015). La quinua, una opción para la nutrición del paciente con diabetes mellitus. Revista Cubana de Endocrinología, 26(3), 304–312.

ICC. (1972). Determination of crude fibre value. Quality Assurance and Safety of Crops and Foods. ICC Standard No. 113. International Association for Cereal Science and Technology. https://icc.or.at/store/113-determination-of-crude-fibre-value-pdf

INEN. (1981). Norma Técnica Ecuatoriana 517: Harinas de origen vegetal. Determinación del tamaño de las partículas. INEN. https://archive.org/details/ec.nte.0517.1981/page/n5/mode/2up

Jacobsen, S. E. (2003). The worldwide potential for quinoa (Chenopodium quinoa Willd.). Food Reviews International, 19(1-2), 167–177. https://doi.org/10.1081/FRI-120018883

Kaushik, R., Kumar, N., Sihag, M. K., & Ray, A. (2015). Isolation, characterization of wheat gluten and its regeneration properties. Journal of Food Science and Technology, 52(9), 5930–5937. https://doi.org/10.1007%2Fs13197-014-1690-2

Koziol, M. J. (1992). Chemical composition and nutritional evaluation of quinoa (Chenopodium quinoa Willd.). Journal of Food Composition and Analysis, 5(1), 35–68. https://doi.org/10.1016/0889-1575(92)90006-6

Laya, A., Siewe, F. B., Wangso, H., Falama, D., Djibrilla, H., & Koubala, B. B. (2022). Effect of different processing methods on maize, sorghum and millet flours on couscous quality consumed in the Far North region of Cameroon. Journal of Agriculture and Food Research, 9, Article 100328. https://doi.org/10.1016/j.jafr.2022.100328

Li, G., & Zhu, F. (2018). Quinoa starch: Structure, properties, and applications. Carbohydrate Polymers,181, 851–861. https://doi.org/10.1016/j.carbpol.2017.11.067

Navruz-Varli, S., & Sanlier, N. (2016). Nutritional and health benefits of quinoa (Chenopodium quinoa Willd.). Journal of Cereal Science, 69, 371–376. https://doi.org/10.1016/j.jcs.2016.05.004

Repo-Carrasco, R., Espinoza, C., & Jacobsen, S. E. (2003). Nutritional value and use of the Andean crops quinoa (Chenopodium quinoa) and kañiwa (Chenopodium pallidicaule). Food Reviews International, 19(1-2), 179–189. https://doi.org/10.1081/FRI-120018884

Ruiz, K. B., Biondi, S., Oses, R., Acuña-Rodríguez, I. S., Antognoni, F., Martinez-Mosqueira, E. A., Coulibaly, A., Canahua-Murillo, A., Pinto, M., Zurita-Silva, A., Bazile, D., Jacobsen, S. E., & Molina-Montenegro, M. A. (2014). Quinoa biodiversity and sustainability for food security under climate change. A review. Agronomy for Sustainable Development, 34(2), 349–359. https://doi.org/10.1007/s13593-013-0195-0

Sánchez Almaraz, R., Martín Fuentes, M., Palma Milla, S., López Plaza, B., Bermejo López, L. M., & Gómez Candela, C. (2015). Indicaciones de diferentes tipos de fibra en distintas patologías. Nutrición Hospitalaria, 31(6), 2371–2383. https://doi.org/10.3305/nh.2015.31.6.9023

Santra, D. K., & Schoenlechner, R. (2017). Chapter 16 - Amaranth part 2—Sustainability, processing, and applications of amaranth. In N. Sudarshan, J. P. D. Wanasundara, & L. Scanlin (Eds.), Sustainable protein sources (pp. 257–264). Academic Press. https://doi.org/10.1016/B978-0-12-802778-3.00016-0

Silva Castro, M. S. (2014). Estudio del rendimiento y calidad de un producto de sémola de trigo (Triticum durum) en función del procedimiento de aglomeración y su estructura [Doctoral dissertation, Universidad Austral de Chile]. http://cybertesis.uach.cl/tesis/uach/2014/fas586e/doc/fas586e.pdf

How to Cite

APA

Burbano-Agreda, C., Sotomayor-Grijalva, C., Romero-Granja, C. and Ávila-Vélez, J. (2023). Use of quinoa (Chenopodium quinoa Willd.) flour in a couscous-type product as a substitute for wheat couscous. Agronomía Colombiana, 41(2), e107440. https://doi.org/10.15446/agron.colomb.v41n2.107440

ACM

[1]
Burbano-Agreda, C., Sotomayor-Grijalva, C., Romero-Granja, C. and Ávila-Vélez, J. 2023. Use of quinoa (Chenopodium quinoa Willd.) flour in a couscous-type product as a substitute for wheat couscous. Agronomía Colombiana. 41, 2 (May 2023), e107440. DOI:https://doi.org/10.15446/agron.colomb.v41n2.107440.

ACS

(1)
Burbano-Agreda, C.; Sotomayor-Grijalva, C.; Romero-Granja, C.; Ávila-Vélez, J. Use of quinoa (Chenopodium quinoa Willd.) flour in a couscous-type product as a substitute for wheat couscous. Agron. Colomb. 2023, 41, e107440.

ABNT

BURBANO-AGREDA, C.; SOTOMAYOR-GRIJALVA, C.; ROMERO-GRANJA, C.; ÁVILA-VÉLEZ, J. Use of quinoa (Chenopodium quinoa Willd.) flour in a couscous-type product as a substitute for wheat couscous. Agronomía Colombiana, [S. l.], v. 41, n. 2, p. e107440, 2023. DOI: 10.15446/agron.colomb.v41n2.107440. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/107440. Acesso em: 10 mar. 2025.

Chicago

Burbano-Agreda, Carlos, Cristina Sotomayor-Grijalva, Cristina Romero-Granja, and Jenny Ávila-Vélez. 2023. “Use of quinoa (Chenopodium quinoa Willd.) flour in a couscous-type product as a substitute for wheat couscous”. Agronomía Colombiana 41 (2):e107440. https://doi.org/10.15446/agron.colomb.v41n2.107440.

Harvard

Burbano-Agreda, C., Sotomayor-Grijalva, C., Romero-Granja, C. and Ávila-Vélez, J. (2023) “Use of quinoa (Chenopodium quinoa Willd.) flour in a couscous-type product as a substitute for wheat couscous”, Agronomía Colombiana, 41(2), p. e107440. doi: 10.15446/agron.colomb.v41n2.107440.

IEEE

[1]
C. Burbano-Agreda, C. Sotomayor-Grijalva, C. Romero-Granja, and J. Ávila-Vélez, “Use of quinoa (Chenopodium quinoa Willd.) flour in a couscous-type product as a substitute for wheat couscous”, Agron. Colomb., vol. 41, no. 2, p. e107440, May 2023.

MLA

Burbano-Agreda, C., C. Sotomayor-Grijalva, C. Romero-Granja, and J. Ávila-Vélez. “Use of quinoa (Chenopodium quinoa Willd.) flour in a couscous-type product as a substitute for wheat couscous”. Agronomía Colombiana, vol. 41, no. 2, May 2023, p. e107440, doi:10.15446/agron.colomb.v41n2.107440.

Turabian

Burbano-Agreda, Carlos, Cristina Sotomayor-Grijalva, Cristina Romero-Granja, and Jenny Ávila-Vélez. “Use of quinoa (Chenopodium quinoa Willd.) flour in a couscous-type product as a substitute for wheat couscous”. Agronomía Colombiana 41, no. 2 (May 1, 2023): e107440. Accessed March 10, 2025. https://revistas.unal.edu.co/index.php/agrocol/article/view/107440.

Vancouver

1.
Burbano-Agreda C, Sotomayor-Grijalva C, Romero-Granja C, Ávila-Vélez J. Use of quinoa (Chenopodium quinoa Willd.) flour in a couscous-type product as a substitute for wheat couscous. Agron. Colomb. [Internet]. 2023 May 1 [cited 2025 Mar. 10];41(2):e107440. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/107440

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

  • Captures
  • Mendeley - Readers: 5
  • Mendeley - Readers: 2

Article abstract page views

168

Downloads