Impact of waterlogging on fruit crops in the era of climate change, with emphasis on tropical and subtropical species: A review
Impacto del anegamiento sobre los frutales en la era del cambio climático, con énfasis en especies tropicales y subtropicales: una revisión
DOI:
https://doi.org/10.15446/agron.colomb.v41n2.108351Keywords:
flooding, hypoxia, aerenchyma, photosynthesis, adaptation, tolerance (en)inundación, hipocia, aerénquima, fotosíntesis, adaptación, tolerancia (es)
Downloads
Incidents of flooding in tropical and subtropical fruit trees have increased as a result of climate change. Because of flooding, the anaerobic conditions of the rhizosphere increase the conditions for phytotoxicity and infection by pathogenic fungi and bacteria. Due to oxygen depletion in waterlogged soils, growth, functions of the roots and of the entire plant are impaired. The decrease in the photosynthetic rate is considerable because of the reduced functional leaf area because of chlorosis, necrosis, leaf drop and stomatal closure, as well as chlorophyll degradation. Plants have developed different morphological, physiological, and biochemical adaptations to survive hypoxic stress. Some fruit trees form an aerenchyma in roots for the diffusion of oxygen from the aerial parts. Induced aerenchyma-containing adventitious roots, rapidly elongate stems into deeply flooded soils; or they form hypertrophied lenticels, like some mango varieties. Measures for better adaptations and tolerance of tropical fruit trees to climatic impact include the following: adaptations of the cultivated terrain, selection of varieties, rootstocks more tolerant to hypoxic stress, pruning to reestablish the balance of the aerial part/roots, and foliar applications (e.g., of glycine betaine or hydrogen peroxide (H2O2)). Mycorrhizal colonization of roots can increase tolerance to waterlogging, while the application of fertilizers, such as CaO or MgO, can improve the redox potential of flooded soils. We present results of studies on this problem for the following fruits: yellow passion fruit (Passiflora edulis f. flavicarpa) and purple passion fruit (P. edulis f. edulis), cape gooseberry (Physalis peruviana), lulo or naranjilla (Solanum quitoense), tree tomato (Solanum betaceum), citrus (Citrus spp.), guava (Psidium guajava), papaya (Carica papaya), and mango (Mangifera indica).
Los incidentes por inundaciones en los frutales tropicales y subtropicales han aumentado como resultado del cambio climático. En consecuencia, las condiciones anaeróbicas de la rizosfera aumentan las condiciones de fitotoxicidad y contagio por hongos y bacterias patógenos. Debido al agotamiento del oxígeno en suelos anegados, el crecimiento, las funciones de las raíces y finalmente de toda la planta resultan perjudicados. Se presenta disminución de la tasa fotosintética, debido a la reducida área foliar efectiva como consecuencia de la clorosis, necrosis y caída foliar, además del cierre estomático y la degradación de la clorofila. Las plantas han desarrollado diferentes adaptaciones de tipo morfológico, fisiológico y bioquímico para sobrevivir al estrés por hipoxia. Algunos frutales forman un aerénquima en raíces para facilitar el transporte del oxígeno desde las partes aéreas, inducen raíces adventicias que contienen aerénquima, alargan rápidamente los tallos hacia suelos inundados más profundos o forman lenticelas hipertrofiadas, como en las variedades de mango. Dentro de las medidas para una mejor adaptación y tolerancia de los frutales tropicales a esta adversidad climática se recomiendan una adecuada preparación del suelo, la selección de variedades y patrones más tolerantes al estrés por hipoxia, podas, para reestablecer el equilibrio de la relación parte aérea/raíz en los árboles, aplicaciones foliares como por ejemplo de glicina betaína o peróxido de hidrogeno (H2O2). La colonización micorrícica en las raíces puede aumentar la tolerancia al anegamiento y el potencial redox en suelos inundados puede mejorarse con la aplicación de enmiendas como CaO o MgO. Se presentan resultados de estudios sobre esta adversidad en maracuyá (Passiflora edulis f. flavicarpa), gulupa (P. edulis f. edulis), uchuva (Physalis peruviana), lulo o naranjilla (Solanum quitoense), tomate de árbol (Solanum betaceum), cítricos (Citrus spp.), guayaba (Psidium guajava), papaya (Carica papaya) y mango (Mangifera indica).
References
Aldana, F., García, P. N, & Fischer, G. (2014). Effect of waterlogging stress on the growth, development and symptomatology of cape gooseberry (Physalis peruviana L.) plants. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 38(149), 393–400. https://doi.org/10.18257/raccefyn.114 DOI: https://doi.org/10.18257/raccefyn.114
Bai, T., Li, C., Ma, F., Feng, F., & Shu, H. (2010). Responses of growth and antioxidant system to root-zone hypoxia stress in two Malus species. Plant and Soil, 327, 95–105. https://doi.org/10.1007/s11104-009-0034-x DOI: https://doi.org/10.1007/s11104-009-0034-x
Bailey-Serres, J., & Voesenek, L. A. C. J. (2008). Flooding stress: Acclimations and genetic diversity. Annual Review of Plant Biology, 59, 313–339. https://doi.org/10.1146/annurev.arplant.59.032607.092752 DOI: https://doi.org/10.1146/annurev.arplant.59.032607.092752
Baracaldo, A., Carvajal, R., Romero, A. P., Prieto, A. M., García, F. J., Fischer, G., & Miranda, D. (2014). El anegamiento afecta el crecimiento y producción de biomasa en tomate chonto (Solanum lycopersicum L.), cultivado bajo sombrío. Revista Colombiana de Ciencias Hortícolas, 8(1), 92–102. https://doi.org/10.17584/rcch.2014v8i1.2803 DOI: https://doi.org/10.17584/rcch.2014v8i1.2803
Basso, C., Rodríguez, G., Rivero, G., León, R., Barrios, M., & Díaz, G. (2019). Respuesta del cultivo de maracuyá (Passiflora edulis Sims) a condiciones de estrés por inundación. Bioagro, 31(3), 185–192.
Betancourt-Osorio, J., Sánchez-Canro, D., & Restrepo-Diaz, H. (2016). Effect of nitrogen nutritional statuses and waterlogging conditions on growth parameters, nitrogen use efficiency and chlorophyll fluorescence in tamarillo seedlings. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 44(2), 375–381. https://doi.org/10.15835/nbha44210438 DOI: https://doi.org/10.15835/nbha44210438
Bisbis, M. B., Gruda, N., & Blanke, M. (2018). Potential impacts of climate change on vegetable production and product quality. Journal of Cleaner Production, 170, 1602–1620. https://doi.org/10.1016/j.jclepro.2017.09.224 DOI: https://doi.org/10.1016/j.jclepro.2017.09.224
Blanco-Canqui, H., Shaver, T. M., Lindquist, J. L., Shapiro, C. A., Elmore, R. W., Francis, C. A., & Hergert, G. W. (2015). Cover crops and ecosystem services: Insights from studies in temperate soils. Agronomy Journal, 107(6), 2449–2474. https://doi.org/10.2134/agronj15.0086 DOI: https://doi.org/10.2134/agronj15.0086
Blanke, M. M., & Cooke, D. T. (2004). Effects of flooding and drought on stomatal activity, transpiration, photosynthesis, water potential and water channel activity in strawberry stolons and leaves. Plant Growth Regulation, 42, 153–160. https://doi.org/10.1023/B:GROW.0000017489.21970.d4 DOI: https://doi.org/10.1023/B:GROW.0000017489.21970.d4
Blom, C. W. P. M.., & Voesenek, L. A. C. J. (1996). Flooding: the survival strategies of plants. Trends in Ecology & Evolution, 11(7), 290–295. https://doi.org/10.1016/0169-5347(96)10034-3 DOI: https://doi.org/10.1016/0169-5347(96)10034-3
Bolaños, E. (2019). Efecto de las inundaciones en las plantaciones bananeras del Caribe de Costa Rica. Corbana, 45(65), 131–140.
Cardona, W. A., Bautista-Montealegre, L. G., Flórez-Velasco, N., & Fischer, G. (2016). Biomass and root development response of lulo (Solanum quitoense var. septentrionale) plants to shading and waterlogging. Revista Colombiana de Ciencias Hortícolas, 10(1), 53–65. https://doi.org/10.17584/rcch.2016v10i1.5124 DOI: https://doi.org/10.17584/rcch.2016v10i1.5124
Casierra-Posada, F., & Vargas, Y. A. (2007). Growth and yield of strawberry cultivars (Fragaria sp.) affected by flooding. Revista Colombiana de Ciencias Hortícolas, 1(1), 21–32. https://doi.org/10.17584/rcch.2007v1i1.1142 DOI: https://doi.org/10.17584/rcch.2007v1i1.1142
Castro-Duque, N. E., Chávez-Arias, C. C., & Restrepo-Díaz, H. (2020). Foliar glycine betaine or hydrogen peroxide sprays ameliorate waterlogging stress in cape gooseberry. Plants, 9(5), Article 644. https://doi.org/10.3390/plants9050644 DOI: https://doi.org/10.3390/plants9050644
Chávez-Arias, C. C., Gómez-Caro, S., & Restrepo-Díaz, H. (2019). Physiological, biochemical and chlorophyll fluorescence parameters of Physalis peruviana L. seedlings exposed to different short-term waterlogging periods and Fusarium wilt infection. Agronomy, 9(5), Article 213. https://doi.org/10.3390/agronomy9050213 DOI: https://doi.org/10.3390/agronomy9050213
Chebet, D., Kariuki, W., Wamocho, L., & Rimberia, F. (2020). Effect of arbuscular mycorrhizal inoculation on growth, biochemical characteristics and nutrient uptake of passion fruit seedlings under flooding stress. International Journal of Agronomy and Agricultural Research, 16(4), 24–31.
Chmielewski, F.-M., Blümel, K., Henniges, Y., & Müller, A. (2008). Vulnerability of fruit growers to climate change observed impacts and assessments. Italian Journal of Agronomy, 3(3), 605–606.
Crane, J. H., Balerdi, C. F., & Schaffer, B. (2020). Managing your tropical fruit grove under changing water table levels. Doc. HS957. Horticultural Sciences Department, UF/IFAS Extension, Gainesville, FL.
Davies, F. S., & Flore, J. A. (1986). Short-term flooding effects on gas exchange and quantum yield of rabbiteye blueberry (Vaccinium ashei Reade). Plant Physiology, 81(1), 289–293. https://doi.org/10.1104/pp.81.1.289 DOI: https://doi.org/10.1104/pp.81.1.289
Dey, K., Ghosh, A., Priya, B., Dutta, P., & Das, S. (2016). Impact of climate change and mitigation strategies on fruit production. Advances in Life Sciences, 5(7), 2588–2596.
Drew, M. C. (1997). Oxygen deficiency and root metabolism. Injury and acclimation under hypoxia and anoxia. Annual Review of Plant Physiology and Plant Molecular Biology, 48, 223–250. https://doi.org/10.1146/annurev.arplant.48.1.223 DOI: https://doi.org/10.1146/annurev.arplant.48.1.223
Drogoudi, P., Kazantzis., K., Kunz, A., & Blanke, M. M. (2020). Effects of climate change on cherry production in Naoussa, Greece and Bonn, Germany: adaptation strategies. Euro-Mediterranean Journal for Environmental Integration, 5, Article 12. https://doi.org/10.1007/s41207-020-0146-5 DOI: https://doi.org/10.1007/s41207-020-0146-5
Dubey, S. S., Kuruwanshi, V. B., Bhagat, K. P., & Ghodke, P. H. (2021). Impact of excess moisture in onion genotypes (Allium cepa L.) under climate change. International Journal of Current Microbiology and Applied Sciences, 10(03), 166–175.
Else, M. A., Hall, K. C., Arnold, G. M., Davies, W. J., & Jackson, M. B. (1995). Export of abscisic acid, 1-aminocyclopropane-1-carboxylic acid, phosphate, and nitrate from roots to shoots of flooded tomato plants. Plant Physiology, 107(2), 377–384. https://doi.org/10.1104/pp.107.2.377 DOI: https://doi.org/10.1104/pp.107.2.377
Faria, L. O., Souza, A. G. V., Alvarenga, F. P., Silva, F. C. M., Junior, J. S. R., Amorim, V. A., Borges, L. P., & Matos, F S. (2020). Passiflora edulis growth under different water regimes. Journal of Agricultural Science, 12(4), 231–238. https://doi.org/10.5539/jas.v12n4p231 DOI: https://doi.org/10.5539/jas.v12n4p231
Fischer, G. (Ed.). (2012). Manual para el cultivo de frutales en el trópico. Produmedios.
Fischer, G. (2021). El aumento de las inundaciones generado por el cambio climático afectará nuestros cultivos. Revista Facultad Nacional de Agronomía Medellín, 74(3), 9619-9620.
Fischer, G., Balaguera-López, H. E., & Magnitskiy, S. (2021). Review on the ecophysiology of important Andean fruits: Solanaceae. Revista U.D.C.A Actualidad & Divulgación Científica, 24(1), Article e1701. http://doi.org/10.31910/rudca.v24.n1.2021.1701 DOI: https://doi.org/10.31910/rudca.v24.n1.2021.1701
Fischer, G., & Melgarejo, L. M. (2020). The ecophysiology of cape gooseberry (Physalis peruviana L.) - an Andean fruit crop. A review. Revista Colombiana de Ciencias Hortícolas, 14(1), 76–89. https://doi.org/10.17584/rcch.2020v14i1.10893 DOI: https://doi.org/10.17584/rcch.2020v14i1.10893
Fischer, G., Melgarejo, L. M., & Balaguera-López, H. E. (2022). Review on the impact of elevated CO2 concentrations on fruit species in the face of climate change. Ciencia y Tecnología Agropecuaria, 23(2), Article e2475. https://doi.org/10.21930/rcta.vol23_num2_art:2475 DOI: https://doi.org/10.21930/rcta.vol23_num2_art:2475
Fischer, G., & Miranda, D. (2021). Review on the ecophysiology of important Andean fruits: Passiflora L. Revista Facultad Nacional de Agronomía Medellín, 74(2), 9471–9481. https://doi.org/10.15446/rfnam.v74n2.91828 DOI: https://doi.org/10.15446/rfnam.v74n2.91828
Fischer, G., & Orduz-Rodríguez, J. O. (2012). Ecofisiología en frutales. In G. Fischer (Ed.). Manual para el cultivo de frutales en el trópico (pp. 54–72). Produmedios, Bogotá.
Fischer, G., Orduz-Rodríguez, J. O., & Amarante, C. V. T. (2022). Sunburn disorder in tropical and subtropical fruits. A review. Revista Colombiana de Ciencias Hortícolas, 16(3), Article e15703. https://doi.org/10.17584/rcch.2022v16i3.15703 DOI: https://doi.org/10.17584/rcch.2022v16i3.15703
Fischer, G., & Parra-Coronado, A. (2020). Influence of some environmental factors on the feijoa (Acca sellowiana [Berg] Burret) crop. A review. Agronomía Colombiana, 38(3), 388–397. https://doi.org/10.15446/agron.colomb.v38n3.88982 DOI: https://doi.org/10.15446/agron.colomb.v38n3.88982
Fischer, G., Parra-Coronado, A., & Balaguera-López, H. E. (2020). Aspectos del cultivo y de la fisiología de feijoa (Acca sellowiana [Berg] Burret). Una revisión. Ciencia y Agricultura, 17(3), 11–24. https://doi.org/10.19053/01228420.v17.n3.2020.11386 DOI: https://doi.org/10.19053/01228420.v17.n3.2020.11386
Fischer, G., Ramírez, F., & Casierra-Posada, F. (2016). Ecophysiological aspects of fruit crops in the era of climate change. A review. Agronomía Colombiana, 34(2), 190–199. https://doi.org/10.15446/agron.colomb.v34n2.56799 DOI: https://doi.org/10.15446/agron.colomb.v34n2.56799
Flórez-Velasco, N., Balaguera-López H. E., & Restrepo-Díaz, H. (2015). Effects of foliar urea application on lulo (Solanum quitoense cv. septentrionale) plants grown under different waterlogging and nitrogen conditions. Scientia Horticulturae, 186, 154–162. https://doi.org/10.101/j.scienta.2015.02.021 DOI: https://doi.org/10.1016/j.scienta.2015.02.021
Friedrich, G., & Fischer, M. (2000). Physiologische Grundlagen des Obstbaues. Verlag Eugen Ulmer, Stuttgart.
Govêa, K. P., Neto, A. R. C., Resck, N. M., Moreira, L. L., Júnior, V. V., Pereira, F. L., Polo, M., & Souza, T. C. (2018). Morphoanatomical and physiological aspects of Passiflora edulis Sims (passion fruit) subjected to flooded conditions during early developmental stages. Biotemas, 31(3), 15–23. https://doi.org/10.5007/2175-7925.2018v31n3p15 DOI: https://doi.org/10.5007/2175-7925.2018v31n3p15
Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., Kim, H., & Kanae, S. (2013). Global flood risk under climate change. Nature Climate Change, 3, 816–821. https://doi.org/10.1038/nclimate1911 DOI: https://doi.org/10.1038/nclimate1911
Hossain, A., & Uddin, S. N. (2011). Mechanisms of waterlogging tolerance in wheat: morphological and metabolic adaptations under hypoxia or anoxia. Australian Journal of Crop Science, 5(9), 1094–1101.
Iacona, C., Cirilli, M., Zega, A., Frioni, E., Silvestri, C., & Muleo, R. (2013). A somaclonal myrobalan rootstock increases waterlogging tolerance to peach cultivar in controlled conditions. Scientia Horticulturae, 156, 1–8. https://doi.org/10.1016/j.scienta.2013.03.014 DOI: https://doi.org/10.1016/j.scienta.2013.03.014
Insausti, P., & Gorjón, S. (2013). Floods affect physiological and growth variables of peach trees (Prunus persica (L.) Batsch), as well as the postharvest behavior of fruits. Scientia Horticulturae, 152, 56–60. https://doi.org/10.1016/j.scienta.2013.01.005 DOI: https://doi.org/10.1016/j.scienta.2013.01.005
IPCC. (2019). Summary for Policymakers. In Climate change and land: an IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. Intergovernmental Panel on Climate Change, Geneva, Switzerland.
Jackson, M. B., & Colmer, T. D. (2005). Response and adaptation by plants to flooding stress. Annals of Botany, 96(4), 501–505. https://doi.org/10.1093/aob/mci205 DOI: https://doi.org/10.1093/aob/mci205
Jiménez, J. C., Moreno, L. P., & Magnitskiy, S. (2012). Respuesta de las plantas a estrés por inundación. Una revisión. Revista Colombiana de Ciencias Hortícolas, 6(1), 96–109. https://doi.org/10.17584/rcch.2012v6i1.1287 DOI: https://doi.org/10.17584/rcch.2012v6i1.1287
Jones, G. V., White, M. A., Cooper, O. R., & Storchmann, K. (2005). Climate change and global wine quality. Climatic Change, 73, 319–343. https://doi.org/10.1007/s10584-005-4704-2 DOI: https://doi.org/10.1007/s10584-005-4704-2
Kaur, G., Singh, G., Motavalli, P. P., Nelson, K. A., Orlowski, J. M., & Golden, B. R. (2020). Impacts and management strategies for crop production in waterlogged or flooded soils: A review. Agronomy Journal, 112(3), 1475–1501. https://doi.org/10.1002/agj2.20093 DOI: https://doi.org/10.1002/agj2.20093
Khondaker, N. A., & Ozawa, K. (2007). Papaya plant growth as affected by soil air oxygen deficiency. Acta Horticulturae, 740, 225–232. https://doi.org/10.17660/ActaHortic.2007.740.27 DOI: https://doi.org/10.17660/ActaHortic.2007.740.27
Kläring, H. P., & Zude, M. (2009). Sensing of tomato plant response to hypoxia in the root environment. Scientia Horticulturae, 122, 17–25. https://doi.org/10.1016/j.scienta.2009.03.029 DOI: https://doi.org/10.1016/j.scienta.2009.03.029
Kongsri, S., Nartvaranant, P., & Boonprakob, U. (2020). A comparison of flooding tolerance of guava tree propagated from shoot layering and seedling. Acta Horticulturae, 1298, 625–632. https://doi.org/10.17660/ActaHortic.2020.1298.86 DOI: https://doi.org/10.17660/ActaHortic.2020.1298.86
Koul, B., Pudhavai, B., Sharma, C., Kumar, A., Sharma, V., Yadav, D., & Jin, J.-O. (2022). Carica papaya L.: A tropical fruit with benefits beyond the tropics. Diversity, 14(8), Article 683. https://doi.org/10.3390/d14080683 DOI: https://doi.org/10.3390/d14080683
Kozlowski, T., & Pallardy, S. (1997). Physiology of woody plants (2nd ed.). Academic Press, London.
Kreuzwieser, J., & Rennenberg, H. (2014). Molecular and physiological responses of trees to waterlogging stress. Plant, Cell & Environment, 37(10), 2245–2259. https://doi.org/10.1111/pce.12310 DOI: https://doi.org/10.1111/pce.12310
Kunz, A., & Blanke, M. (2022). ”60 years on”- effects of climate change on tree phenology – A case study using pome fruit. Horticulturae, 8(2), Article 110. https://doi.org/10.3390/horticulturae8020110 DOI: https://doi.org/10.3390/horticulturae8020110
Lambers, H., & Oliveira, R. S. (2019). Plant physiological ecology (3rd ed.). Springer Nature Switzerland AG, Cham, Switzerland. https://doi.org/10.1007/978-3-030-29639-1 DOI: https://doi.org/10.1007/978-3-030-29639-1
Larcher, W. (2003). Physiological plant ecology. Springer-Verlag. Lenz, F. (2009). Fruit effects on the dry matter and carbohydrate distribution in apple tree. Acta Horticulturae, 835, 21–38. https://doi.org/10.17660/ActaHortic.2009.835.2 DOI: https://doi.org/10.17660/ActaHortic.2009.835.2
León-Burgos, A. F., Unigarro, C. A., & Balaguera-López, H. E. (2022). Soil waterlogging conditions affect growth, water status, and chlorophyll “a” fluorescence in coffee plants (Coffea arabica L.). Agronomy, 12(6), Article 1270. https://doi.org/10.3390/agronomy12061270 DOI: https://doi.org/10.3390/agronomy12061270
Liu, G., & Porterfield, D. M. (2014). Oxygen enrichment with magnesium peroxide for minimizing hypoxic stress of flooded corn. Journal of Plant Nutrition and Soil Science, 177, 733–740. DOI: https://doi.org/10.1002/jpln.201300424
Malik, A. I., Colmer T. D., Lambers, H., & Schortemeyer, M. (2003). Aerenchyma formation and radial O2 loss along adventitious roots of wheat with only the apical root portion exposed to O2 deficiency. Plant, Cell & Environment, 26(10), 1713–1722. https://doi.org/10.1046/j.1365-3040.2003.01089.x DOI: https://doi.org/10.1046/j.1365-3040.2003.01089.x
Martínez-Alcántara, B., Jover, S., Quiñones, A., Forner-Giner, M. Á., Rodríguez-Gamir, J., Legaz, F., Primo-Millo, E., & Iglesia, D. J. (2012). Flooding affects uptake and distribution of carbon and nitrogen in citrus seedlings. Journal of Plant Physiology, 169(12), 1150–1157. https://doi.org/10.1016/j.jplph.2012.03.016 DOI: https://doi.org/10.1016/j.jplph.2012.03.016
Menezes‐Silva, P. E., Loram‐Lourenço, L., Alves, R. D. F. B., Sousa, L. F., Almeida, S. E. S., & Farnese, F. S. (2019). Different ways to die in a changing world: Consequences of climate change for tree species performance and survival through an ecophysiological perspective. Ecology and Evolution, 9(20), 11979–11999. https://doi.org/10.1002/ece3.5663 DOI: https://doi.org/10.1002/ece3.5663
Mielke, M., & Schaffer, B. (2010). Photosynthetic and growth responses of Eugenia uniflora L. seedlings to soil flooding and light intensity. Environmental and Experimental Botany, 68(2), 113–121. https://doi.org/10.1016/j.envexpbot.2009.11.007 DOI: https://doi.org/10.1016/j.envexpbot.2009.11.007
Moreno, A., & Fischer, G. (2014). Efectos del anegamiento en los frutales. Una revisión. Temas Agrarios, 19(1), 108–125. https://doi.org/10.21897/rta.v19i1.729 DOI: https://doi.org/10.21897/rta.v19i1.729
Moreno, D., Useche, D. C., & Balaguera, H. E. (2019). Respuesta fisiológica de especies arbóreas al anegamiento. Nuevo conocimiento sobre especies de interés en el arbolado urbano de Bogotá. Colombia Forestal, 22(1), 51–67. https://doi.org/10.14483/2256201X.13453 DOI: https://doi.org/10.14483/2256201X.13453
Orazem, P., Stampar, F., & Hudina, M. (2011). Quality analysis of ‘Redhaven’ peach fruit grafted on 11 rootstocks of different genetic origin in a replant soil. Food Chemistry, 124(4), 1691–1698. https://doi.org/10.1016/j.foodchem.2010.07.078 DOI: https://doi.org/10.1016/j.foodchem.2010.07.078
Orduz-Rodríguez, J. O. (2012). Cítricos (Citrus spp.). In G. Fischer (Ed.), Manual para el cultivo de frutales en el trópico (pp. 393–420). Produmedios, Bogotá.
Pallardy, S. G. (2008). Physiology of woody plants (3rd ed.). Elsevier.
Pan, J., Sharif, R., Xu, X., & Chen, X. (2021). Mechanisms of waterlogging tolerance in plants: research progress and prospects. Frontiers in Plant Science, 11, Article 627331. https://doi.org/10.3389/fpls.2020.627331 DOI: https://doi.org/10.3389/fpls.2020.627331
Panda, D., & Barik, J. (2021). Flooding tolerance in rice: Focus on mechanisms and approaches. Rice Science, 28(1), 43–57. https://doi.org/10.1016/j.rsci.2020.11.006 DOI: https://doi.org/10.1016/j.rsci.2020.11.006
Parent, C., Capelli, N., Berger, A., Crèvecoeur, M., & Dat, J. F. (2008). An overview of plant responses to soil waterlogging. Plant Stress, 2(1), 20–27.
Paull, R. E., & Duarte, O. (2012). Tropical fruits (2nd ed.). (Vol. 2). CAB International.
Pedersen, O., Sauter, M., Colmer, T. D., & Nakazono, M. (2020). Regulation of root adaptive anatomical and morphological traits during low soil oxygen. New Phytologist, 229(1), 42–49. https://doi.org/10.1111/nph.16375 DOI: https://doi.org/10.1111/nph.16375
Peña-Fronteras, J. T., Villalobos, M. C., Baltazar, A. M., Merca, F. E., Ismail, A. M., & Johnson, D. E. (2008). Adaptation to flooding in upland and lowland ecotypes of Cyperus rotundus, a troublesome sedge weed of rice: tuber morphology and carbohydrate metabolism. Annals of Botany, 103, 295–302. DOI: https://doi.org/10.1093/aob/mcn085
Pérez-Jiménez, M., & Pérez-Tornero, O. (2021). Short-term waterlogging in Citrus rootstocks. Plants, 10(12), Article 2772. https://doi.org/10.3390/plants10122772 DOI: https://doi.org/10.3390/plants10122772
Potopová, V., Zahradníček, P., Türkott, L., Štěpánek, P., & Soukup, J. (2015). The effects of climate change on variability of the growing seasons in the Elbe River lowland, Czech Republic. Advances in Meteorology, 2015, Article 546920. https://doi.org/10.1155/2015/546920 DOI: https://doi.org/10.1155/2015/546920
Pucciariello, C., & Perata, P. (2012). Flooding tolerance in plants. In S. Shabala (Ed.), Plant stress physiology (pp. 148–170). CAB International. DOI: https://doi.org/10.1079/9781845939953.0148
Rankenberg, T., Geldhof, B., Veen, H., Holsteens, K., Poel, B., & Sasidharan, R. (2021). Age-dependent abiotic stress resilience in plants. Trends in Plant Science, 26(7), 692–705. https://doi.org/10.1016/j.tplants.2020.12.016 DOI: https://doi.org/10.1016/j.tplants.2020.12.016
Reeksting, B. J., Taylor, N. J., & van den Berg, N. (2014). Flooding and Phytophthora cinnamomi: Effects on photosynthesis and chlorophyll fluorescence in shoots of non-grafted Persea americana (Mill.) rootstocks differing in tolerance to Phytophthora root rot. South African Journal of Botany, 95, 40–53. https://doi.org/10.1016/j.sajb.2014.08.004 DOI: https://doi.org/10.1016/j.sajb.2014.08.004
Reig, G., Zarrouk, O., Font i Forcada, C., & Moreno, M. Á. (2018). Anatomical graft compatibility study between apricot cultivars and different plum based rootstocks. Scientia Horticulturae, 237, 67–73. https://doi.org/10.1016/j.scienta.2018.03.035 DOI: https://doi.org/10.1016/j.scienta.2018.03.035
Revelo, R. (2020). Indicadores físicos e hídricos y uso del suelo en los frutales. Suelos Ecuatoriales, 50(1–2), 40–53. DOI: https://doi.org/10.47864/SE(50)2020p40-53_119
Robinson, J. C., & Galán-Sauco, V. (2010). Bananas and plantains (2nd ed.). Series Crop Production Science in Horticulture. CAB International. DOI: https://doi.org/10.1079/9781845936587.0000
Rodríguez, G., Schaffer, B., Basso, C., & Vargas, A. (2014). Efecto del tiempo de inundación del sistema radical sobre algunos aspectos fisiológicos y desarrollo del cultivo de lechosa (Carica papaya L.). Revista Facultad de Agronomía UCV, 40(3), 89–98.
Rutto, K. L., Mizutania, F., & Kadoya, K. (2002). Effect of root-zone flooding on mycorrhizal and non-mycorrhizal peach (Prunus persica Batsch) seedlings. Scientia Horticulturae, 94, 285–295. DOI: https://doi.org/10.1016/S0304-4238(02)00008-0
Saavedra, R., Vásquez, H. D., & Mejía, E. (2012). Aguacate (Persea americana Mill.). In G. Fischer (Ed.), Manual para el cultivo de frutales en el trópico (pp. 319–348). Produmedios.
Sánchez-Reinoso, A. D., Jiménez-Pulido, Y., Martínez-Pérez, J. P., Pinilla, C. S., & Fischer, G. (2019). Chlorophyll fluorescence and other physiological parameters as indicators of waterlogging and shadow stress in lulo (Solanum quitoense var. septentrionale) seedlings. Revista Colombiana de Ciencias Hortícolas, 13(3), 325–335. https://doi.org/10.17584/rcch.2019v13i3.10017 DOI: https://doi.org/10.17584/rcch.2019v13i3.10017
Sanclemente, M. A., Schaffer, B., Gil, P. M., Vargas, A. I., & Davies, F. S. (2014). Pruning after flooding hastens recovery of flood-stressed avocado (Persea americana Mill.) trees. Scientia Horticulturae, 169, 27–35. https://doi.org/10.1016/j.scienta.2014.01.034 DOI: https://doi.org/10.1016/j.scienta.2014.01.034
Sathi, K. S., Masud, A. A. C., Anee, T. I., Rahman, K., Ahmed, N., & Hasanuzzaman, M. (2022). Soybean plants under waterlogging stress: responses and adaptation mechanisms. In M. Hasanuzzaman, G. J. Ahammed, & K. Nahar (Eds.), Managing plant production under changing environment (pp. 103–134). Springer Nature. https://doi.org/10.1007/978-981-16-5059-8_5 DOI: https://doi.org/10.1007/978-981-16-5059-8_5
Schaffer, B., Davies, F., & Crane, J. H. (2006). Responses to tropical and subtropical fruit trees to flooding in calcareous soil. HortScience, 41(3), 549–555. https://doi.org/10.21273/HORTSCI.41.3.549 DOI: https://doi.org/10.21273/HORTSCI.41.3.549
Schaffer, B., Urban, L., Lu, P., & Whiley, A. (2009). Ecophysiology. In R. E. Litz (Ed.), The mango. botany, production and uses (pp. 170–209) (2nd ed.). CAB International. DOI: https://doi.org/10.1079/9781845934897.0170
Schopfer, P., & Brennicke, A. (2010). Pflanzenphysiologie. 7. Auflage. Spektrum Akademischer Verlag, Heidelberg. DOI: https://doi.org/10.1007/978-3-8274-2352-8
Schwarz, D., Rouphael, Y., Colla, G., & Venema, J. (2010). Grafting as a tool to improve tolerance of vegetables to abiotic stresses: Thermal stress, water stress and organic pollutants. Scientia Horticulturae, 127(2), 162–171. https://doi.org/10.1016/j.scienta.2010.09.016 DOI: https://doi.org/10.1016/j.scienta.2010.09.016
Singh, A., Krause, P., Panda, S., & Flugel, W. A. (2010). Rising water table: A threat to sustainable agriculture in an irrigated semiarid region of Haryana, India. Agricultural Water Management, 97, 1443–1451. DOI: https://doi.org/10.1016/j.agwat.2010.04.010
Sthapit, B. R., Rao, V. R., & Sthapit, S. R. (2012). Tropical fruit tree species and climate change. Bioversity International, New Delhi.
Taiz, L., & Zeiger, E. (2010). Plant physiology (5th ed.). Sinauer Associates, Sunderland, MA.
Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (2017). Fisiologia e desenvolvimento vegetal (6th ed.). Artmed.
Thani, Q. A., Vargas, A. I., Schaffer, B., Liu, G., & Crane, J. D. (2016). Responses of papaya plants in a potting medium in containers to flooding and solid oxygen fertilization. Proceedings of the Florida State Horticultural Society, 129, 27–34.
Tuheteru, F. D., & Wu, Q.-S. (2017). Arbuscular mycorrhizal fungi and tolerance of waterlogging stress in plants. In Q.-S. Wu (Ed.), Arbuscular mycorrhizas and stress tolerance of plants (pp. 43–66). Springer. https://doi.org/10.1007/978-981-10-4115-0_3 DOI: https://doi.org/10.1007/978-981-10-4115-0_3
Unger, I. M., Kennedy, A. C., & Muzika, R.-M. (2009). Flooding effects on soil microbial communities. Applied Soil Ecology, 42(1), 1–8. https://doi.org/10.1016/j.apsoil.2009.01.007 DOI: https://doi.org/10.1016/j.apsoil.2009.01.007
Unger, I. M., Motavalli, P. P., & Muzika, R.-M. (2009). Changes in soil chemical properties with flooding: A field laboratory approach. Agriculture, Ecosystems and Environment, 131(1-2), 105–110. https://doi.org/10.1016/j.agee.2008.09.013 DOI: https://doi.org/10.1016/j.agee.2008.09.013
Villarreal-Navarrete, A., Fischer, G., Melgarejo, L. M., Correa, G., & Hoyos-Carvajal, L. (2017). Growth response of the cape gooseberry (Physalis peruviana L.) to waterlogging stress and Fusarium oxysporum infection. Acta Horticulturae, 1178, 161–168. https://doi.org/10.17660/ActaHortic.2017.1178.28 DOI: https://doi.org/10.17660/ActaHortic.2017.1178.28
Wang, X.-C.., & Lu, Q. (2006). Effect of waterlogged and aerobic incubation on enzyme activities in paddy soil. Pedosphere, 16(4), 532–539. https://doi.org/10.1016/S1002-0160(06)60085-4 DOI: https://doi.org/10.1016/S1002-0160(06)60085-4
Wood, S., Sebastian, K., & Scherr, S. (2000). Pilot analysis of global ecosystems: Agroecosystems. International Food Policy Research Institute and the World Resources Institute, Washington, D.C.
Xie, L.-J., Zhou, Y., Chen, Q.-F., & Xiao, S. (2021). New insights into the role of lipids in plant hypoxia responses. Progress in Lipid Research, 81, Article 101072. https://doi.org/10.1016/j.plipres.2020.101072 DOI: https://doi.org/10.1016/j.plipres.2020.101072
Yohannes, H. (2016). A review on relationship between climate change and agriculture. Journal of Earth Science & Climatic Change, 7(2), Article 335. https://doi.org/10.4172/2157-7617.1000335 DOI: https://doi.org/10.4172/2157-7617.1000335
Zandalinas, S. I., Fritschi, F. B., & Mittler, R. (2021). Global warming, climate change, and environmental pollution: Recipe for a multifactorial stress combination disaster. Trends in Plant Science, 26(6), 588–599. https://doi.org/10.1016/j.tplants.2021.02.011 DOI: https://doi.org/10.1016/j.tplants.2021.02.011
Zeng, F., Konnerup, D., Shabala, L., Zhou, M., Colmer, T. D., Zhang, G., & Shabala, S. (2014). Linking oxygen availability with membrane potential maintenance and K+ retention of barley roots: implications for waterlogging stress tolerance. Plant, Cell & Environment, 37(10), 2325–2338. https://doi.org/10.1111/pce.12422 DOI: https://doi.org/10.1111/pce.12422
Zhang, Y., Liu, G., Dong, H., & Li, C. (2021). Waterlogging stress in cotton: Damage, adaptability, alleviation strategies, and mechanisms. The Crop Journal, 9(2), 257–270. https://doi.org/10.1016/j.cj.2020.08.005 DOI: https://doi.org/10.1016/j.cj.2020.08.005
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Christina Topali, Chrysovalantou Antonopoulou, Christos Chatzissavvidis. (2024). Effect of Waterlogging on Growth and Productivity of Fruit Crops. Horticulturae, 10(6), p.623. https://doi.org/10.3390/horticulturae10060623.
2. Fánor Casierra-Posada, Gerhard Fischer. (2024). Achieving Food Security Through Sustainable Agriculture. Advances in Environmental Engineering and Green Technologies. , p.343. https://doi.org/10.4018/979-8-3693-4240-4.ch014.
3. Gerhard Fischer, Franz Leonard Fischer-García. (2023). Heavy metal contamination of vegetables in urban and peri-urban areas. An overview. Revista Colombiana de Ciencias Hortícolas, 17(2) https://doi.org/10.17584/rcch.2023v17i2.16099.
Dimensions
PlumX
Article abstract page views
Downloads
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)

Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.