Effect of genotype-environment interaction on soybean (Glycine max (L.) Merrill) germination, vigor index, and seed yield
Efecto de la interacción genotipo por ambiente sobre la germinación, índice de vigor y rendimiento de la semilla de soya (Glycine max (L.) Merrill)
DOI:
https://doi.org/10.15446/agron.colomb.v41n2.108748Keywords:
environmental adaptation, seed quality, stability, water stress, oilseed crop, viability (en)adaptación ambiental, calidad de semillas, estabilidad, estrés hídrico, cultivo oleaginoso, viabilidad (es)
Downloads
The adverse edaphoclimatic conditions in the Orinoquía region affect the soybean crop cycle, deteriorating seed quality. The aim of this study was to investigate the effect of the genotype (G), the environment (E), and their interaction (GxE) on the yield and seed quality of six soybean varieties (Corpoica Superior 6, Orinoquía 3, Soyica P34, Corpoica Taluma 5, and Agrosavia Primavera 11 of Colombian origin and Barreira of Brazilian origin) in five environments of the Orinoquía Colombia region, two in the second half of 2020 (LIBB: La Libertad and TALB: Taluma) and three in the first half of 2021 (LIBA: La Libertad, TALA: Taluma, and LEONAS), to determine their adaptation domain. Highly significant differences (P<0.01) were observed between G, E, and GxE for germination (GER) and seed yield (SY). A similar situation was shown by the vigor index (VI), although without differences between environments. The GGE biplot for GER, and SY separated environments by year halves. Taluma during the first half was the most discriminating environment for the response variables, useful for genetic breeding programs with a seed quality approach. Only in La Libertad during the second half was GER above 80%. The most stable variety per environment was Soyica P34 in two response variables, and the best with specific adaptation were Corpoica Superior 6 and Orinoquía 3. These last two reached higher average values in GER (69.6%; 63.1%), VI (13.3; 13.4), and SY (1473 kg ha-1; 1404 kg ha-1).
Las condiciones edafoclimáticas adversas en la Orinoquía afectan el ciclo de cultivo de soya deteriorando la calidad de las semillas. El objetivo de este estudio fue investigar el efecto del genotipo-(G), el ambiente-(A) y su interacción-(GxA) sobre el rendimiento y la calidad de las semillas de seis variedades de soya (Corpoica Superior 6, Orinoquía 3, Soyica P34, Corpoica Taluma 5 y Agrosavia Primavera 11 de origen colombiano, y Barreira de origen brasilero) en cinco ambientes de la Orinoquía, Colombia, dos en el segundo semestre de 2020 (LIBB: La Libertad y TALB: Taluma) y tres en el primer semestre de 2021 (LIBA: La Libertad, TALA: Taluma y LEONAS), para determinar el dominio de adaptación. Se observaron diferencias altamente significativas (P<0.01) entre G, A y GxA para germinación (GER) y rendimiento de semillas (RS). Situación similar mostró el índice de vigor (VI), aunque sin diferencias entre ambientes. El biplot-GGA para GER y RS separó ambientes por semestre. Taluma, durante el primer semestre, fue el ambiente más discriminante para las variables respuesta, útil para programas de mejoramiento genético enfocados en calidad de semillas. Solamente en La Libertad durante el segundo semestre, GER estuvo por encima del 80%. La variedad más estable por ambiente fue Soyica P34 en dos variables respuesta, y las mejores con adaptación específica fueron Corpoica Superior 6 y Orinoquia 3. Estas dos últimas alcanzaron valores promedios más altos de GER (69.6%; 63.1%), VI (13.3; 13.4) y RS (1473 kg ha-1; 1404 kg ha-1).
References
Allard, R. W., & Bradshaw, A. D. (1964). Implications of genotypeenvironmental interactions in applied plant breeding. Crop Science 4(5), 503–508. https://doi.org/10.2135/cropsci1964.0011183X000400050021x DOI: https://doi.org/10.2135/cropsci1964.0011183X000400050021x
Bellaloui, N., Reddy, K. N., Bruns, H. A., Gillen, A. M., Mengistu, A., Zobiole, L. H., Fisher, D. K., Abbas, H. K., Zablotowicz, R. M., & Kremer, R. J. (2011). Soybean seed composition and quality: Interactions of environment, genotype, and management practices.Soybeans: Cultivation, Uses and nutrition. Nova Science Publishers, Inc.
Blanche, B., & Myers, G. O. (2006). Identifying discriminating locations for cultivar selection in Louisiana. Crop Science, 46(2), 946–949. https://doi.org/10.2135/cropsci2005.0279 DOI: https://doi.org/10.2135/cropsci2005.0279
Burgueño, J., Crossa, J., & Vargas, M. (2002). SAS Programs for graphing GE and GGE biplots. Biometrics and Statistics Unit, CIMMYT, México D.F.
Carmello, V., Santa, L., & Neto, A. (2016). Rainfall variability and soybean yield in Paraná State, Southern Brazil. International Journal of Agriculture and Environmental Research, 2(1), 86–89.
Crossa, J., Cornelius, P. L., & Yan, W. (2002). Biplots of linear-bilinear models for studying crossover genotype x environment interaction. Crop Science, 42(2), 619–633. https://doi.org/10.2135/cropsci2002.6190 DOI: https://doi.org/10.2135/cropsci2002.6190
Crossa, J., Gauch Jr., H. G., & Zobel, R. W. (1990). Additive main effects and multiplicative interactions analysis of two international maize cultivar trials. Crop Science, 30(3), 493–500. https://doi.org/10.2135/cropsci1990.0011183X003000030003x DOI: https://doi.org/10.2135/cropsci1990.0011183X003000030003x
Egli, D. B., TeKrony, D. M., Heitholt, J. J., & Rupe, J. (2005). Air temperature during seed filling and soybean seed germination and vigor. Crop Science, 45(4), 1329–1335. https://doi.org/10.2135/cropsci2004.0029 DOI: https://doi.org/10.2135/cropsci2004.0029
FAO. (2019). Materiales para capacitación en semillas. Organización de las Naciones Unidas para la Alimentacion y la Agricultura & AfricaSeeds.
Gollob, H. (1968). A statistical model which combines features of factor analytic and analysis of variance techniques. Psychometrika, 33, 73–115. https://doi.org/10.1007/BF02289676 DOI: https://doi.org/10.1007/BF02289676
González, G., Mendoza, F., Covarrubias., J., Vázquez, N., & Acosta, J. (2008). Rendimiento y calidad de semilla de fríjol en dos épocas de siembra en la región del Bajío. Agricultura Técnica en México, 34(4), 421–430.
Ibáñez M., Cavanagh, M., Bonamico, N., & Renzo, M. (2006). Análisis gráfico mediante biplot del comportamiento de híbridos de maíz. Revista de Investigaciones Agropecuarias, 35(3), 83–93.
ISTA. (2016). Reglas Internacionales para el análisis de las semillas. International Seed Testing Association. https://www.studocu.com/es-mx/document/universidad-autonoma-de-sinaloa/fisiologia-vegetal/ista-rules-2016-spanish/39386727
Kempton, R. A. (1984). The use of biplots in interpreting variety by environment interactions. Journal of Agricultural Science, 103(1), 123–135. https://doi.org/10.1017/S0021859600043392 DOI: https://doi.org/10.1017/S0021859600043392
León Castillo, H., Rincón Sánchez, F., Reyes Valdés, M. H., Sámano Garduño, D., Martínez Zambrano, G., Cavazos Cadena, R., & Figueroa Cárdenas, J. D. (2005). Potencial de rendimiento y estabilidad de combinaciones germoplásmicas formadas entre grupos de maíz. Revista Fitotecnia Mexicana, 28(2), 135–143. DOI: https://doi.org/10.35196/rfm.2005.2.135
Marcos Filho, J. (2015). Seed vigor testing: An overview of the past, present and future perspective. Scientia Agricola, 72(4), 363–374. https://doi.org/10.1590/0103-9016-2015-0007 DOI: https://doi.org/10.1590/0103-9016-2015-0007
Ngalamu, T., Ashraf, M., & Meseka, S. (2013). Soybean (Glycine max L) genotype and environment interaction effect on yieldand other related traits. American Journal of Experimental Agriculture, 3(4), 977–987. DOI: https://doi.org/10.9734/AJEA/2013/5069
Pádua, G. P., França-Neto, J. B., Carvalho, M. L. M., Krzyzanowski, F. C., & Guimarães, R. M. (2009). Incidence of green soybean seeds as a function of environmental stresses during seed maturation. Revista Brasileira de Sementes, 31(3), 150–159. https://doi.org/10.1590/S0101-31222009000300017 DOI: https://doi.org/10.1590/S0101-31222009000300017
Purchase, J. L., Hatting, H., & Van Deventer, C. S. (2000). Genotype x environment interaction of winter wheat (Triticum aestivum L.) in South Africa: II. Stability analysis of yield performance. South African Journal of Plant and Soil, 17(3), 101–107. https://doi.org/10.1080/02571862.2000.10634878 DOI: https://doi.org/10.1080/02571862.2000.10634878
Ritchie, H., & Roser, M. (2021). Forests and deforestation. Our World in Data.
Salmerόn, M., Purcell, L. C., Vories, E. D., & Shannon, G. (2017). Simulation of genotype by-environment interactions on irrigated soybean yields in the U.S. Midsouth. Agricultural Systems, 150, 120–129. https://doi.org/10.1016/j.agsy.2016.10.008 DOI: https://doi.org/10.1016/j.agsy.2016.10.008
Sanchez, M. F. R., & Pinchinat, A. M. (1974). Bean seed quality in Costa Rica (Phaseolus vulgaris). Turrialba, 24(1), 72–75.
Shapiro, S. S., & Wilk, M. B. (1965). An analysis of variance test for normality (complete samples). Biometrika, 52(3/4), 591–611. https://doi.org/10.2307/2333709 DOI: https://doi.org/10.1093/biomet/52.3-4.591
Valencia, R. A., & Ligarreto, G. A. (2010). Mejoramiento genético de la soya (Glycine max [L.] Merril) para su cultivo en la altillanura colombiana: una visión conceptual prospectiva. Agronomía Colombiana, 28(2), 155–163. https://revistas.unal.edu.co/index.php/agrocol/article/view/18018
Valencia-Ramírez, R. A., & Ligarreto-Moreno, G. A. (2012). Phenotypic correlation and path analysis for yield in soybean (Glycine max (L.) Merril). Acta Agronómica, 61(4), 322–332.
Vargas Hernández, M., & Crossa, J. (2000). El análisis AMMI y la gráfica del biplot en SAS. CIMMYT. https://repository.cimmyt. org/xmlui/bitstream/handle/10883/3489/73248.pdf
Yan, W., Hunt, L. A., Sheng, Q., & Szlavnics, Z. (2000). Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Science, 40(3), 597–605. https://doi.org/10.2135/cropsci2000.403597x DOI: https://doi.org/10.2135/cropsci2000.403597x
Yan, W., & Kang, M. S. (2003). GGE Biplot analysis: A graphical tool for breeders, geneticists, and agronomists. CRC Press. https://doi.org/10.1201/9781420040371 DOI: https://doi.org/10.1201/9781420040371
Yan, W., & Rajcan, I. (2002). Biplot analysis of test sites and traitrelations of soybean in Ontario. Crop Science, 42(1), 11–20. https://doi.org/10.2135/cropsci2002.0011 DOI: https://doi.org/10.2135/cropsci2002.1100
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)

Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.