Influence of temperature and solute concentration during osmotic dehydration of apple (Malus domestica) cubes on the stability of probiotics
Influencia de la temperatura y concentración de solutos durante la deshidratación osmótica de cubos de manzana (Malus domestica) sobre la estabilidad de probióticos
DOI:
https://doi.org/10.15446/agron.colomb.v41n2.108868Keywords:
Saccharomyces boulardii, heat treatment, dehydrated fruit, cell viability (en)Saccharomyces boulardii, tratamiento térmico, fruta deshidratada, viabilidad celular (es)
Downloads
Currently, there is an upsurge in preference for the consumption of probiotic-rich foods. Besides their nutritive function, these compounds have demonstrated, in some instances, medicinal properties. The purpose of this study was to evaluate how temperature and sucrose concentration influenced the stability of probiotics (specifically Saccharomyces boulardii) during the osmotic dehydration of Granny Smith apple (Malus domestica) cubes. We prepared osmotic solutions with different sucrose concentrations (40, 50, and 60°Brix). We inoculated S. boulardii (250 mg each) into these solutions, followed by immersion of 1 cm-cubed apple cubes. We exposed these cubes to varying temperatures (37°C, 42°C, and 47°C) for a duration of 80 min. Various parameters were calculated, including the percentage of weight loss, percentage of solid gain, number of generations, and the doubling time. Results indicated that the apple cubes with more extreme dehydration were those treated at 50°Brix and 47°C exhibiting a weight loss of 40%. The treatment at 60°Brix and 42°C stood out, showing an increase of 350% of solid gain compared to other groups. Additionally, the highest number of generations of the strain occurred in the group treated at 50°Brix and 37°C, with a value of 9.32 ± 0.11 CFU/g and a doubling time of 7.50 ± 0.09 min. In conclusion, we deduced that under conditions of elevated temperatures and high solute concentrations, the S. boulardii strain might undergo inhibition and fail to develop adequately in the apple cubes subjected to osmotic dehydration.
En la actualidad, hay un aumento en la preferencia por el consumo de alimentos ricos en probióticos. Estos compuestos, más allá de su función nutritiva, han demostrado en algunos casos poseer propiedades medicinales. En este sentido, el propósito de este estudio consistió en evaluar cómo la temperatura y la concentración de sacarosa influyen en la estabilidad de los probióticos (específicamente Saccharomyces boulardii) durante el proceso de deshidratación osmótica de cubos de manzana (Malus domestica) de la variedad Granny Smith . Para esto, se prepararon soluciones osmóticas con distintas concentraciones de sacarosa (40, 50 y 60°Brix). En estas soluciones se inoculó S. boulardii (250 mg cada una), seguido de la inmersión de cubos de manzana de 1 cm de lado. Estos cubos fueron expuestos a diferentes temperaturas (37, 42 y 47°C) durante un período de 80 min. Se procedió a calcular diversos parámetros, como el porcentaje de pérdida de peso, el porcentaje de ganancia de sólidos, el número de generaciones y el tiempo de duplicación. Los resultados indicaron que los cubos de manzana que experimentaron una mayor deshidratación correspondieron a los tratados a 50°Brix y 47°C, registrando una pérdida de peso del 40%. En cuanto al porcentaje de ganancia de sólidos, se destacó el tratamiento a 60°Brix y 42°C, alcanzando un aumento del 350% en comparación con los demás grupos. Además, el mayor número de generaciones de la cepa ocurrió en el grupo tratado a 50°Brix y 37°C, con un valor de 9.32 ± 0.11 UFC/g y un tiempo de duplicación de 7.50 ± 0.09 min. Se concluyó que en condiciones de temperaturas elevadas y altas concentraciones de soluto, la cepa de S. boulardii podría sufrir inhibición y no desarrollarse adecuadamente en los cubos de manzana sometidos al proceso de deshidratación osmótica.
References
AOAC. (2005). Official methods of analysis. Association of Official Analytical Chemistry. E.U.A. Gaithersburg, MD, USA. Methods 931.12
Al-Tayyar, N. A., Youssef, A. M., & Al-Hindi, R. R. (2020). Edible coatings and antimicrobial nanoemulsions for enhancing shelf life and reducing foodborne pathogens of fruits and vegetables: A review. Sustainable Materials and Technologies 26, Article e00215. https://doi.org/10.1016/j.susmat.2020.e00215 DOI: https://doi.org/10.1016/j.susmat.2020.e00215
Arias, L., Perea, Y., & Zapata, J. E. (2017). Cinética de la transferencia de masa en la deshidratación osmótica de mango (Mangifera indica L.) var. Tommy Atkins en función de la temperatura. Información Tecnológica, 28(3), 47–58. https://doi.org/10.4067/S0718-07642017000300006 DOI: https://doi.org/10.4067/S0718-07642017000300006
Ayala Aponte, A. A., Giraldo Cuartas, C. J., & Serna Cock, L. (2010). Cinéticas de deshidratación osmótica de pitahaya amarilla (Selenicereus megalanthus). Interciencia, 35(7), 539–544. https://www.redalyc.org/pdf/339/33914381012.pdf
Betoret, N., Puente, L., Diaz, M. J., Pagán, M. J., García, M. J., Gras, M. L., Martínez-Monzó, J., & Fito, P. (2003). Development of probiotic-enriched dried fruits by vacuum impregnation. Journal of Food Engineering, 56(2-3), 273–277. https://doi.org/10.1016/S0260-8774(02)00268-6 DOI: https://doi.org/10.1016/S0260-8774(02)00268-6
Cui, L., Niu, L., Li, D., Liu, C., Liu, Y., Liu, C., & Song, J. (2018). Effects of different drying methods on quality, bacterial viability and storage stability of probiotic enriched apple snacks, Journal of Integrative Agriculture, 17(1), 247–255. https://doi.org/10.1016/S2095-3119(17)61742-8 DOI: https://doi.org/10.1016/S2095-3119(17)61742-8
Della Rocca, P., & Mascheroni, R. (2011). Deshidratación de papas por métodos combinados de secado: deshidratación osmótica, secado por microondas y convección con aire caliente. Proyecciones, 9(2), 11–26.
Espírito Santo, A. P., Cartolano, N. S., Silva, T. F., Soares, F. A. S. M., Gioielli, L. A., Perego, P., Converti, A., & Oliveira, M. N. (2012). Fibers from fruit by-products enhance probiotic viability and fatty acid profile and increase CLA content in yogurts. International Journal of Food Microbiology, 154(3), 135–144. https://doi.org/10.1016/j.ijfoodmicro.2011.12.025 DOI: https://doi.org/10.1016/j.ijfoodmicro.2011.12.025
Giraldo, G., Talens, P., Fito, P., & Chiralt, A. (2003). Influence of sucrose solution concentration on kinetics and yield during osmotic dehydration of mango. Journal of Food Engineering, 58(1), 33–43. https://doi.org/10.1016/S0260-8774(02)00331-X DOI: https://doi.org/10.1016/S0260-8774(02)00331-X
Giraldo, G. A., Duque, A. L., & García, C. L. (2005). Combining drying methods for candy mango (Mangifera indica) var. Kent. Vitae, 12(2), 5–12.
Gupta, V., & Garg, R. (2009). Probiotics. Indian Journal of Medical Microbiology, 27(3), 202–209. https://doi.org/10.4103/0255-0857.53201 DOI: https://doi.org/10.4103/0255-0857.53201
Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Berni Canani, R., Flint, H. J., Salminen, S., Calder, P. C., & Sanders, M. E. (2014). The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, 11, 506–514. https://doi.org/10.1038/nrgastro.2014.66 DOI: https://doi.org/10.1038/nrgastro.2014.66
Huerta Vera, K. (2021). Chayote osmodeshidratado y enriquecido con oleorresina de pimienta negra [Doctoral dissertation, Postgraduate College - Institution for Teaching and Research in Agricultural Sciences]. http://colposdigital.colpos.mx:8080/jspui/bitstream/10521/4753/1/Huerta_Vera_K_DC_Fruticultura_2021.pdf
Huerta-Vera, K., Flores-Andrade, E., Pérez-Sato, J. A., Morales-Ramos, V., Pascual-Pineda, L. A., & Contreras-Oliva, A. (2017). Enrichment of banana with Lactobacillus rhamnosus using double emulsion and osmotic dehydration. Food and Bioprocess Technology, 10(6), 1053–1062. https://doi.org/10.1007/s11947-017-1879-2 DOI: https://doi.org/10.1007/s11947-017-1879-2
Kourkoutas Y., Kanellaki, M., & Koutinas, A. A. (2006). Apple pieces as immobilization support of various microorganisms. LWT-Food Science and Technology, 39(9), 980–986. https://doi.org/10.1016/j.lwt.2006.02.024 DOI: https://doi.org/10.1016/j.lwt.2006.02.024
Kumar B. V., Vijayendra S. V. N., & Reddy, O. V. S. (2015). Trends in dairy and non-dairy probiotic products – a review. Journal of Food Science and Technology, 52(10), 6112–6124. https://doi.org/10.1007/S13197-015-1795-2 DOI: https://doi.org/10.1007/s13197-015-1795-2
Li, Y., Xia, S., Jiang, X., Feng, C., Gong, S., Ma, J., Fang, Z., Yin, J., & Yin, Y. (2021). Gut microbiota and diarrhea: An updated review. Frontiers in Cellular and Infection Microbiology, 11, Article 625210. https://doi.org/10.3389/fcimb.2021.625210 DOI: https://doi.org/10.3389/fcimb.2021.625210
Li, Z., Zhu, G., Li, C., Lai, H., Liu, X., & Zhang, L. (2021). Which probiotic is the most effective for treating acute diarrhea in children? A Bayesian network meta-analysis of randomized controlled trials. Nutrients, 13(12), Article 4319. https://doi.org/10.3390/nu13124319 DOI: https://doi.org/10.3390/nu13124319
Liu, G., Pilla, G., & Tang, C. M. (2019). Shigella host: Pathogen interactions: Keeping bacteria in the loop. Cellular Microbiology, 21(11), Article e13062. https://doi.org/10.1111/cmi.13062 DOI: https://doi.org/10.1111/cmi.13062
Makinen, O. E., Wanhalinna, V., Zannini, E., & Arendt, E. K. (2016). Foods for special dietary needs: Non-dairy plant-based milk substitutes and fermented dairy-type products. Critical Reviews in Food Science and Nutrition, 56(3), 339–349. https://doi.org/10.1080/10408398.2012.761950 DOI: https://doi.org/10.1080/10408398.2012.761950
Mejía-Barajas, J., Montoya-Peréz, R., Cortés-Rojo, C., & Saavedra-Molina, A. (2016). Levaduras termotolerantes: aplicaciones industriales, estrés oxidativo y respuesta antioxidante. Información Tecnológica, 27(4), 3–16. https://doi.org/10.4067/S0718-07642016000400002 DOI: https://doi.org/10.4067/S0718-07642016000400002
Neffe-Skocińska, K., Rzepkowska, A., Szydłowska, A., & Kołozyn-Krajewska, D. (2018). Trends and possibilities of the use of probiotics in food production. In A. M. Holban, & A. Mihal (Eds.), Alternative and replacement foods. A volume in Handbook of food bioengineering (pp. 65–94). Academic Press. https://doi.org/10.1016/B978-0-12-811446-9.00003-4 DOI: https://doi.org/10.1016/B978-0-12-811446-9.00003-4
Ochoa-Martínez, C. I., Ramaswamy H. S., & Ayala-Aponte, A. A. (2009). Suitability of Crank’s solutions to Fick’s second law for water diffusivity calculation and moisture loss prediction in osmotic dehydration of fruits. Journal of Food Process Engineering, 32(6), 933–943. https://doi.org/10.1111/j.1745-4530.2008.00254.x DOI: https://doi.org/10.1111/j.1745-4530.2008.00254.x
Parra Palacios, D. (2020). Determinación de parámetros de osmodeshidratación y deshidratación convectiva de la variedad de piña samba de Chanchamayo (Ananas comosus L. mer cv. Samba de Chanchamayo) [Undergraduate thesis, San Martin de Porres University]. https://hdl.handle.net/20.500.12727/6777
Peña, A. S. (2007). Flora intestinal, probióticos, prebióticos, simbióticos y alimentos novedosos. Revista Española de Enfermedades Digestivas, 99(11), 653–658. https://doi.org/10.4321/s1130-01082007001100006 DOI: https://doi.org/10.4321/S1130-01082007001100006
Rascón, M. P., Huerta-Vera, K., Pascual-Pineda, L. A., Contreras-Oliva, A., Flores-Andrade, E., Castillo-Morales, M., Bonilla, E., & González-Morales, I. (2018). Osmotic dehydration assisted impregnation of Lactobacillus rhamnosus in banana and effect of water activity on the storage stability of probiotic in the freeze-dried product. LWT-Food Science and Technology, 92, 490–496. https://doi.org/10.1016/j.lwt.2018.02.074 DOI: https://doi.org/10.1016/j.lwt.2018.02.074
Rêgo, A., Freixo, R., Silva, J., Gibbs, P., Morais, A. M. M. B., & Teixeira, P. A. (2013). A functional dried fruit matrix incorporated with probiotic strains: Lactobacillus plantarum and Lactobacillus kefir. Focusing on Modern Food Industry, 2(3), 138–143. DOI: https://doi.org/10.7455/ijfs/3.1.2014.a6
Rodrígues, S., Silva, L. C. A., Mulet, A., Cárcel, J. A., & Fernandes, F. A. N. (2018). Development of dried probiotic apple cubes incorporated with Lactobacillus casei NRRL B-442. Journal of Functional Foods, 41, 48–54. https://doi.org/10.1016/j.jff.2017.12.042 DOI: https://doi.org/10.1016/j.jff.2017.12.042
Sen, S., & Mansell, T. J. (2020). Yeasts as probiotics: Mechanisms, outcomes, and future potential. Fungal Genetics and Biology, 137, Article 103333. https://doi.org/10.1016/j.fgb.2020.103333 DOI: https://doi.org/10.1016/j.fgb.2020.103333
Vinderola G., Burns, P., & Reinheimer, J. (2017). Probiotics in non-dairy products. In F. Mariotti (Ed.), Vegetarian and plant-based diets in health and disease prevention (pp. 809–835), Academic Press. https://doi.org/10.1016/B978-0-12-803968-7.00044-7 DOI: https://doi.org/10.1016/B978-0-12-803968-7.00044-7
Wais, N. (2011). Secado combinado de frutas: deshidratación osmótica y microondas [PhD disertation, Universidad Nacional de La Plata, Argentina]. https://doi.org/10.35537/10915/38494 DOI: https://doi.org/10.35537/10915/38494
Yousuf, B., Shafiq Qadri, O., & Kumar Srivastava, A. (2018). Recent developments in shelf-life extension of fresh-cut fruits and vegetables by application of different edible coatings: A review. LWT-Food Science and Technology, 89, 198–209. https://doi.org/10.1016/j.lwt.2017.10.051 DOI: https://doi.org/10.1016/j.lwt.2017.10.051
Zamora-Vega, R., Martínez-Flores, H. E., Montañez-Soto, J. L., & Rodiles-López, J. O. (2015). Viability of Saccharomyces boulardii in fresh cheese under acidic conditions “in vitro”. Nova Scientia, 7(15), 68–80. DOI: https://doi.org/10.21640/ns.v7i15.351
Zhang, J., Wan, S., & Gui, Q. (2021). Comparison of safety, effectiveness and serum inflammatory factor indexes of Saccharomyces boulardii versus Bifidobacterium triple viable in treating children with chronic diarrhea: a randomized trial. Translational Pediatrics, 10(6), 1677–1685. https://doi.org/10.21037/tp-21-195 DOI: https://doi.org/10.21037/tp-21-195
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)

Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.