Published

2023-08-31

Influence of temperature and solute concentration during osmotic dehydration of apple (Malus domestica) cubes on the stability of probiotics

Influencia de la temperatura y concentración de solutos durante la deshidratación osmótica de cubos de manzana (Malus domestica) sobre la estabilidad de probióticos

DOI:

https://doi.org/10.15446/agron.colomb.v41n2.108868

Keywords:

Saccharomyces boulardii, heat treatment, dehydrated fruit, cell viability (en)
Saccharomyces boulardii, tratamiento térmico, fruta deshidratada, viabilidad celular (es)

Downloads

Authors

Currently, there is an upsurge in preference for the consumption of probiotic-rich foods. Besides their nutritive function, these compounds have demonstrated, in some instances, medicinal properties. The purpose of this study was to evaluate how temperature and sucrose concentration influenced the stability of probiotics (specifically Saccharomyces boulardii) during the osmotic dehydration of Granny Smith apple (Malus domestica) cubes. We prepared osmotic solutions with different sucrose concentrations (40, 50, and 60°Brix). We inoculated S. boulardii (250 mg each) into these solutions, followed by immersion of 1 cm-cubed apple cubes. We exposed these cubes to varying temperatures (37°C, 42°C, and 47°C) for a duration of 80 min. Various parameters were calculated, including the percentage of weight loss, percentage of solid gain, number of generations, and the doubling time. Results indicated that the apple cubes with more extreme dehydration were those treated at 50°Brix and 47°C exhibiting a weight loss of 40%. The treatment at 60°Brix and 42°C stood out, showing an increase of 350% of solid gain compared to other groups. Additionally, the highest number of generations of the strain occurred in the group treated at 50°Brix and 37°C, with a value of 9.32 ± 0.11 CFU/g and a doubling time of 7.50 ± 0.09 min. In conclusion, we deduced that under conditions of elevated temperatures and high solute concentrations, the S. boulardii strain might undergo inhibition and fail to develop adequately in the apple cubes subjected to osmotic dehydration.

En la actualidad, hay un aumento en la preferencia por el consumo de alimentos ricos en probióticos. Estos compuestos, más allá de su función nutritiva, han demostrado en algunos casos poseer propiedades medicinales. En este sentido, el propósito de este estudio consistió en evaluar cómo la temperatura y la concentración de sacarosa influyen en la estabilidad de los probióticos (específicamente Saccharomyces boulardii) durante el proceso de deshidratación osmótica de cubos de manzana (Malus domestica) de la variedad Granny Smith . Para esto, se prepararon soluciones osmóticas con distintas concentraciones de sacarosa (40, 50 y 60°Brix). En estas soluciones se inoculó S. boulardii (250 mg cada una), seguido de la inmersión de cubos de manzana de 1 cm de lado. Estos cubos fueron expuestos a diferentes temperaturas (37, 42 y 47°C) durante un período de 80 min. Se procedió a calcular diversos parámetros, como el porcentaje de pérdida de peso, el porcentaje de ganancia de sólidos, el número de generaciones y el tiempo de duplicación. Los resultados indicaron que los cubos de manzana que experimentaron una mayor deshidratación correspondieron a los tratados a 50°Brix y 47°C, registrando una pérdida de peso del 40%. En cuanto al porcentaje de ganancia de sólidos, se destacó el tratamiento a 60°Brix y 42°C, alcanzando un aumento del 350% en comparación con los demás grupos. Además, el mayor número de generaciones de la cepa ocurrió en el grupo tratado a 50°Brix y 37°C, con un valor de 9.32 ± 0.11 UFC/g y un tiempo de duplicación de 7.50 ± 0.09 min. Se concluyó que en condiciones de temperaturas elevadas y altas concentraciones de soluto, la cepa de S. boulardii podría sufrir inhibición y no desarrollarse adecuadamente en los cubos de manzana sometidos al proceso de deshidratación osmótica.

References

AOAC. (2005). Official methods of analysis. Association of Official Analytical Chemistry. E.U.A. Gaithersburg, MD, USA. Methods 931.12

Al-Tayyar, N. A., Youssef, A. M., & Al-Hindi, R. R. (2020). Edible coatings and antimicrobial nanoemulsions for enhancing shelf life and reducing foodborne pathogens of fruits and vegetables: A review. Sustainable Materials and Technologies 26, Article e00215. https://doi.org/10.1016/j.susmat.2020.e00215 DOI: https://doi.org/10.1016/j.susmat.2020.e00215

Arias, L., Perea, Y., & Zapata, J. E. (2017). Cinética de la transferencia de masa en la deshidratación osmótica de mango (Mangifera indica L.) var. Tommy Atkins en función de la temperatura. Información Tecnológica, 28(3), 47–58. https://doi.org/10.4067/S0718-07642017000300006 DOI: https://doi.org/10.4067/S0718-07642017000300006

Ayala Aponte, A. A., Giraldo Cuartas, C. J., & Serna Cock, L. (2010). Cinéticas de deshidratación osmótica de pitahaya amarilla (Selenicereus megalanthus). Interciencia, 35(7), 539–544. https://www.redalyc.org/pdf/339/33914381012.pdf

Betoret, N., Puente, L., Diaz, M. J., Pagán, M. J., García, M. J., Gras, M. L., Martínez-Monzó, J., & Fito, P. (2003). Development of probiotic-enriched dried fruits by vacuum impregnation. Journal of Food Engineering, 56(2-3), 273–277. https://doi.org/10.1016/S0260-8774(02)00268-6 DOI: https://doi.org/10.1016/S0260-8774(02)00268-6

Cui, L., Niu, L., Li, D., Liu, C., Liu, Y., Liu, C., & Song, J. (2018). Effects of different drying methods on quality, bacterial viability and storage stability of probiotic enriched apple snacks, Journal of Integrative Agriculture, 17(1), 247–255. https://doi.org/10.1016/S2095-3119(17)61742-8 DOI: https://doi.org/10.1016/S2095-3119(17)61742-8

Della Rocca, P., & Mascheroni, R. (2011). Deshidratación de papas por métodos combinados de secado: deshidratación osmótica, secado por microondas y convección con aire caliente. Proyecciones, 9(2), 11–26.

Espírito Santo, A. P., Cartolano, N. S., Silva, T. F., Soares, F. A. S. M., Gioielli, L. A., Perego, P., Converti, A., & Oliveira, M. N. (2012). Fibers from fruit by-products enhance probiotic viability and fatty acid profile and increase CLA content in yogurts. International Journal of Food Microbiology, 154(3), 135–144. https://doi.org/10.1016/j.ijfoodmicro.2011.12.025 DOI: https://doi.org/10.1016/j.ijfoodmicro.2011.12.025

Giraldo, G., Talens, P., Fito, P., & Chiralt, A. (2003). Influence of sucrose solution concentration on kinetics and yield during osmotic dehydration of mango. Journal of Food Engineering, 58(1), 33–43. https://doi.org/10.1016/S0260-8774(02)00331-X DOI: https://doi.org/10.1016/S0260-8774(02)00331-X

Giraldo, G. A., Duque, A. L., & García, C. L. (2005). Combining drying methods for candy mango (Mangifera indica) var. Kent. Vitae, 12(2), 5–12.

Gupta, V., & Garg, R. (2009). Probiotics. Indian Journal of Medical Microbiology, 27(3), 202–209. https://doi.org/10.4103/0255-0857.53201 DOI: https://doi.org/10.4103/0255-0857.53201

Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Berni Canani, R., Flint, H. J., Salminen, S., Calder, P. C., & Sanders, M. E. (2014). The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, 11, 506–514. https://doi.org/10.1038/nrgastro.2014.66 DOI: https://doi.org/10.1038/nrgastro.2014.66

Huerta Vera, K. (2021). Chayote osmodeshidratado y enriquecido con oleorresina de pimienta negra [Doctoral dissertation, Postgraduate College - Institution for Teaching and Research in Agricultural Sciences]. http://colposdigital.colpos.mx:8080/jspui/bitstream/10521/4753/1/Huerta_Vera_K_DC_Fruticultura_2021.pdf

Huerta-Vera, K., Flores-Andrade, E., Pérez-Sato, J. A., Morales-Ramos, V., Pascual-Pineda, L. A., & Contreras-Oliva, A. (2017). Enrichment of banana with Lactobacillus rhamnosus using double emulsion and osmotic dehydration. Food and Bioprocess Technology, 10(6), 1053–1062. https://doi.org/10.1007/s11947-017-1879-2 DOI: https://doi.org/10.1007/s11947-017-1879-2

Kourkoutas Y., Kanellaki, M., & Koutinas, A. A. (2006). Apple pieces as immobilization support of various microorganisms. LWT-Food Science and Technology, 39(9), 980–986. https://doi.org/10.1016/j.lwt.2006.02.024 DOI: https://doi.org/10.1016/j.lwt.2006.02.024

Kumar B. V., Vijayendra S. V. N., & Reddy, O. V. S. (2015). Trends in dairy and non-dairy probiotic products – a review. Journal of Food Science and Technology, 52(10), 6112–6124. https://doi.org/10.1007/S13197-015-1795-2 DOI: https://doi.org/10.1007/s13197-015-1795-2

Li, Y., Xia, S., Jiang, X., Feng, C., Gong, S., Ma, J., Fang, Z., Yin, J., & Yin, Y. (2021). Gut microbiota and diarrhea: An updated review. Frontiers in Cellular and Infection Microbiology, 11, Article 625210. https://doi.org/10.3389/fcimb.2021.625210 DOI: https://doi.org/10.3389/fcimb.2021.625210

Li, Z., Zhu, G., Li, C., Lai, H., Liu, X., & Zhang, L. (2021). Which probiotic is the most effective for treating acute diarrhea in children? A Bayesian network meta-analysis of randomized controlled trials. Nutrients, 13(12), Article 4319. https://doi.org/10.3390/nu13124319 DOI: https://doi.org/10.3390/nu13124319

Liu, G., Pilla, G., & Tang, C. M. (2019). Shigella host: Pathogen interactions: Keeping bacteria in the loop. Cellular Microbiology, 21(11), Article e13062. https://doi.org/10.1111/cmi.13062 DOI: https://doi.org/10.1111/cmi.13062

Makinen, O. E., Wanhalinna, V., Zannini, E., & Arendt, E. K. (2016). Foods for special dietary needs: Non-dairy plant-based milk substitutes and fermented dairy-type products. Critical Reviews in Food Science and Nutrition, 56(3), 339–349. https://doi.org/10.1080/10408398.2012.761950 DOI: https://doi.org/10.1080/10408398.2012.761950

Mejía-Barajas, J., Montoya-Peréz, R., Cortés-Rojo, C., & Saavedra-Molina, A. (2016). Levaduras termotolerantes: aplicaciones industriales, estrés oxidativo y respuesta antioxidante. Información Tecnológica, 27(4), 3–16. https://doi.org/10.4067/S0718-07642016000400002 DOI: https://doi.org/10.4067/S0718-07642016000400002

Neffe-Skocińska, K., Rzepkowska, A., Szydłowska, A., & Kołozyn-Krajewska, D. (2018). Trends and possibilities of the use of probiotics in food production. In A. M. Holban, & A. Mihal (Eds.), Alternative and replacement foods. A volume in Handbook of food bioengineering (pp. 65–94). Academic Press. https://doi.org/10.1016/B978-0-12-811446-9.00003-4 DOI: https://doi.org/10.1016/B978-0-12-811446-9.00003-4

Ochoa-Martínez, C. I., Ramaswamy H. S., & Ayala-Aponte, A. A. (2009). Suitability of Crank’s solutions to Fick’s second law for water diffusivity calculation and moisture loss prediction in osmotic dehydration of fruits. Journal of Food Process Engineering, 32(6), 933–943. https://doi.org/10.1111/j.1745-4530.2008.00254.x DOI: https://doi.org/10.1111/j.1745-4530.2008.00254.x

Parra Palacios, D. (2020). Determinación de parámetros de osmodeshidratación y deshidratación convectiva de la variedad de piña samba de Chanchamayo (Ananas comosus L. mer cv. Samba de Chanchamayo) [Undergraduate thesis, San Martin de Porres University]. https://hdl.handle.net/20.500.12727/6777

Peña, A. S. (2007). Flora intestinal, probióticos, prebióticos, simbióticos y alimentos novedosos. Revista Española de Enfermedades Digestivas, 99(11), 653–658. https://doi.org/10.4321/s1130-01082007001100006 DOI: https://doi.org/10.4321/S1130-01082007001100006

Rascón, M. P., Huerta-Vera, K., Pascual-Pineda, L. A., Contreras-Oliva, A., Flores-Andrade, E., Castillo-Morales, M., Bonilla, E., & González-Morales, I. (2018). Osmotic dehydration assisted impregnation of Lactobacillus rhamnosus in banana and effect of water activity on the storage stability of probiotic in the freeze-dried product. LWT-Food Science and Technology, 92, 490–496. https://doi.org/10.1016/j.lwt.2018.02.074 DOI: https://doi.org/10.1016/j.lwt.2018.02.074

Rêgo, A., Freixo, R., Silva, J., Gibbs, P., Morais, A. M. M. B., & Teixeira, P. A. (2013). A functional dried fruit matrix incorporated with probiotic strains: Lactobacillus plantarum and Lactobacillus kefir. Focusing on Modern Food Industry, 2(3), 138–143. DOI: https://doi.org/10.7455/ijfs/3.1.2014.a6

Rodrígues, S., Silva, L. C. A., Mulet, A., Cárcel, J. A., & Fernandes, F. A. N. (2018). Development of dried probiotic apple cubes incorporated with Lactobacillus casei NRRL B-442. Journal of Functional Foods, 41, 48–54. https://doi.org/10.1016/j.jff.2017.12.042 DOI: https://doi.org/10.1016/j.jff.2017.12.042

Sen, S., & Mansell, T. J. (2020). Yeasts as probiotics: Mechanisms, outcomes, and future potential. Fungal Genetics and Biology, 137, Article 103333. https://doi.org/10.1016/j.fgb.2020.103333 DOI: https://doi.org/10.1016/j.fgb.2020.103333

Vinderola G., Burns, P., & Reinheimer, J. (2017). Probiotics in non-dairy products. In F. Mariotti (Ed.), Vegetarian and plant-based diets in health and disease prevention (pp. 809–835), Academic Press. https://doi.org/10.1016/B978-0-12-803968-7.00044-7 DOI: https://doi.org/10.1016/B978-0-12-803968-7.00044-7

Wais, N. (2011). Secado combinado de frutas: deshidratación osmótica y microondas [PhD disertation, Universidad Nacional de La Plata, Argentina]. https://doi.org/10.35537/10915/38494 DOI: https://doi.org/10.35537/10915/38494

Yousuf, B., Shafiq Qadri, O., & Kumar Srivastava, A. (2018). Recent developments in shelf-life extension of fresh-cut fruits and vegetables by application of different edible coatings: A review. LWT-Food Science and Technology, 89, 198–209. https://doi.org/10.1016/j.lwt.2017.10.051 DOI: https://doi.org/10.1016/j.lwt.2017.10.051

Zamora-Vega, R., Martínez-Flores, H. E., Montañez-Soto, J. L., & Rodiles-López, J. O. (2015). Viability of Saccharomyces boulardii in fresh cheese under acidic conditions “in vitro”. Nova Scientia, 7(15), 68–80. DOI: https://doi.org/10.21640/ns.v7i15.351

Zhang, J., Wan, S., & Gui, Q. (2021). Comparison of safety, effectiveness and serum inflammatory factor indexes of Saccharomyces boulardii versus Bifidobacterium triple viable in treating children with chronic diarrhea: a randomized trial. Translational Pediatrics, 10(6), 1677–1685. https://doi.org/10.21037/tp-21-195 DOI: https://doi.org/10.21037/tp-21-195

How to Cite

APA

Ccaza–Cari, M. Y. and Chambi-Rodriguez, A. D. (2023). Influence of temperature and solute concentration during osmotic dehydration of apple (Malus domestica) cubes on the stability of probiotics. Agronomía Colombiana, 41(2), e108868. https://doi.org/10.15446/agron.colomb.v41n2.108868

ACM

[1]
Ccaza–Cari, M.Y. and Chambi-Rodriguez, A.D. 2023. Influence of temperature and solute concentration during osmotic dehydration of apple (Malus domestica) cubes on the stability of probiotics. Agronomía Colombiana. 41, 2 (May 2023), e108868. DOI:https://doi.org/10.15446/agron.colomb.v41n2.108868.

ACS

(1)
Ccaza–Cari, M. Y.; Chambi-Rodriguez, A. D. Influence of temperature and solute concentration during osmotic dehydration of apple (Malus domestica) cubes on the stability of probiotics. Agron. Colomb. 2023, 41, e108868.

ABNT

CCAZA–CARI, M. Y.; CHAMBI-RODRIGUEZ, A. D. Influence of temperature and solute concentration during osmotic dehydration of apple (Malus domestica) cubes on the stability of probiotics. Agronomía Colombiana, [S. l.], v. 41, n. 2, p. e108868, 2023. DOI: 10.15446/agron.colomb.v41n2.108868. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/108868. Acesso em: 10 mar. 2025.

Chicago

Ccaza–Cari, Maritza Yola, and Alex Danny Chambi-Rodriguez. 2023. “Influence of temperature and solute concentration during osmotic dehydration of apple (Malus domestica) cubes on the stability of probiotics”. Agronomía Colombiana 41 (2):e108868. https://doi.org/10.15446/agron.colomb.v41n2.108868.

Harvard

Ccaza–Cari, M. Y. and Chambi-Rodriguez, A. D. (2023) “Influence of temperature and solute concentration during osmotic dehydration of apple (Malus domestica) cubes on the stability of probiotics”, Agronomía Colombiana, 41(2), p. e108868. doi: 10.15446/agron.colomb.v41n2.108868.

IEEE

[1]
M. Y. Ccaza–Cari and A. D. Chambi-Rodriguez, “Influence of temperature and solute concentration during osmotic dehydration of apple (Malus domestica) cubes on the stability of probiotics”, Agron. Colomb., vol. 41, no. 2, p. e108868, May 2023.

MLA

Ccaza–Cari, M. Y., and A. D. Chambi-Rodriguez. “Influence of temperature and solute concentration during osmotic dehydration of apple (Malus domestica) cubes on the stability of probiotics”. Agronomía Colombiana, vol. 41, no. 2, May 2023, p. e108868, doi:10.15446/agron.colomb.v41n2.108868.

Turabian

Ccaza–Cari, Maritza Yola, and Alex Danny Chambi-Rodriguez. “Influence of temperature and solute concentration during osmotic dehydration of apple (Malus domestica) cubes on the stability of probiotics”. Agronomía Colombiana 41, no. 2 (May 1, 2023): e108868. Accessed March 10, 2025. https://revistas.unal.edu.co/index.php/agrocol/article/view/108868.

Vancouver

1.
Ccaza–Cari MY, Chambi-Rodriguez AD. Influence of temperature and solute concentration during osmotic dehydration of apple (Malus domestica) cubes on the stability of probiotics. Agron. Colomb. [Internet]. 2023 May 1 [cited 2025 Mar. 10];41(2):e108868. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/108868

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

378

Downloads