Structural, physicochemical, and pasting properties of native cassava (Manihot esculenta) and yam (Dioscorea alata) starch blends
Propiedades estructurales, fisicoquímicas y de empastamiento de mezclas de almidones nativos de yuca (Manihot esculenta) y ñame (Dioscorea alata)
DOI:
https://doi.org/10.15446/agron.colomb.v41n3.110111Keywords:
tuber starch, crystallinity index, non-additive effect, digestibility (en)almidón de tubérculos, índice de cristalinidad, efecto no aditivo, digestibilidad (es)
Downloads
Starch blends are a technological alternative aimed at the development of starchy matrices that exhibit improvements in some physicochemical properties from interactions between their individual components. Native cassava and yam starches were mixed in different proportions and the effect of the blend on the structural, physicochemical, and pasting properties was evaluated. The viscosity behavior as a function of temperature revealed a significant non-additive effect on the pasting parameters of all the blends with respect to the individual native starches. Similarly, non-additive variations were evident in the crystallinity index of some mix ratios (NSB-2: 40.11%). Likewise, the difference in the amylose content of each native starch (20.88-25.66%) possibly exerted an effect on the resulting semicrystalline characteristics of the blends and the gelatinization behavior. Hence, the botanical origin and the proportion of starch blends play an important role in the behavior of the resulting physicochemical properties and in vitro digestibility. Polymeric blends were obtained with a low tendency to retrogradation and lower crystallinity index values compared to their native counterparts and a regulated water absorption capacity, all potentially desirable characteristics in the food industry.
Las mezclas de almidones son una alternativa tecnológica dirigida al desarrollo de matrices amiláceas que presenten mejoras en algunas propiedades fisicoquímicas a partir de interacciones entre sus componentes individuales. Por lo tanto, se mezclaron almidones nativos de yuca y ñame en diferentes proporciones y se evaluó el efecto de la mezcla sobre las propiedades estructurales, fisicoquímicas y de empastamiento. El comportamiento de la viscosidad en función de la temperatura reveló un efecto no aditivo significativo sobre los parámetros de pasta de todas las mezclas con respecto a los almidones nativos individuales. De manera similar, las variaciones no aditivas fueron evidentes en el índice de cristalinidad de algunas proporciones de mezcla (NSB-2: 40.11%). Asimismo, la diferencia en el contenido de amilosa de cada almidón nativo (20.88-25.66%) posiblemente ejerció un efecto sobre las características semicristalinas resultantes de las mezclas y el comportamiento de gelatinización. Por lo tanto, el origen botánico y la proporción de mezcla de almidón juegan un papel importante en el comportamiento de las propiedades fisicoquímicas resultantes y la digestibilidad in vitro. Se obtuvieron mezclas poliméricas con una baja tendencia a la retrogradación y valores de índice de cristalinidad más bajos en comparación con sus homólogos nativos y una capacidad de absorción de agua regulada, todas ellas características potencialmente deseables en la industria alimentaria.
References
Ai, Y., & Jane, J. L. (2015). Gelatinization and rheological properties of starch. Starch, 67(3-4), 213–224. https://doi.org/10.1002/star.201400201
Ayetigbo, O., Latif, S., Abass, A., & Müller, J. (2018). Comparing characteristics of root, flour and starch of biofortified yellow-flesh and white-flesh cassava variants, and sustainability considerations: A review. Sustainability, 10(9), Article 3089. https://doi.org/10.3390/su10093089
Chakraborty, I., Pallen, S., Shetty, Y., Roy, N., & Mazumder, N. (2020). Advanced microscopy techniques for revealing molecular structure of starch granules. Biophysical Reviews, 12(1), 105–122. https://doi.org/10.1007/s12551-020-00614-7
Chen, Y., Huang, S., Tang, Z., Chen, X., & Zhang, Z. (2011). Structural changes of cassava starch granules hydrolyzed by a mixture of α-amylase and glucoamylase. Carbohydrate Polymers, 85(1), 272–275. https://doi.org/10.1016/j.carbpol.2011.01.047
Colussi, R., Kringel, D., Kaur, L., da Rosa Zavareze, E., Dias, A. R. G., & Singh, J. (2020). Dual modification of potato starch: Effects of heat-moisture and high pressure treatments on starch structure and functionalities. Food Chemistry, 318, Article 126475. https://doi.org/10.1016/j.foodchem.2020.126475
Cruz-Benítez, M. M., Gómez-Aldapa, C. A., Castro-Rosas, J., Hernández-Hernández, E., Gómez Hernández, E., & Fonseca-Florido, H. A. (2019). Effect of amylose content and chemical modification of cassava starch on the microencapsulation of Lactobacillus pentosus. LWT - Food Science and Technology, 105, 110–117. https://doi.org/10.1016/j.lwt.2019.01.069
Dolas, K. A., Ranveer, R. C., Tapre, A. R., Nandane, A. S., & Sahoo, A. K. (2020). Effect of starch modification on physicochemical, functional and structural characterization of cassava starch (Manihot esculenta Crantz). Food Research, 4(4), 1265–1271. https://doi.org/10.26656/FR.2017.4(4).075
Donaldben, N. S., Tanko, O. O., & Hussaina, T. O. (2020). Physico-chemical properties of starches from two varieties of sweet potato and yam tubers available in Nigeria. Asian Food Science Journal, 14(4), 28–38. https://doi.org/10.9734/afsj/2020/v14i430136
Duan, X., Han, H., Deng, R., & Wu, P. (2020). Drying treatments on Chinese yam (Dioscorea spp.) prior to wet milling influence starch molecular structures and physicochemical properties. Food Hydrocolloids, 102, Article 105599. https://doi.org/10.1016/j.foodhyd.2019.105599
Dupuis, J. H., & Liu, Q. (2019). Potato starch: A review of physicochemical, functional and nutritional properties. American Journal of Potato Research, 96(2), 127–138. https://doi.org/10.1007/s12230-018-09696-2
Ee, K. Y., Eng, M. K., & Lee, M. L. (2020). Physicochemical, thermal and rheological properties of commercial wheat flours and corresponding starches. Food Science and Technology, 40(S1), 51–59. https://doi.org/10.1590/fst.39718
Englyst, H. N., Kingman, S. M., & Cummings, J. H. (1992). Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition, 46(S2), S33–S50. https://pubmed.ncbi.nlm.nih.gov/1330528
Figueroa-Flórez, J. A., Cadena-Chamorro, E. M., Rodríguez-Sandoval, E., Salcedo-Mendoza, J., & Ciro-Velásquez, H. J. (2019). Cassava starches modified by enzymatic biocatalysis: Effect of reaction time and drying method. Dyna, 86(208), 162–170. https://doi.org/10.15446/dyna.v86n208.72976
Fonseca-Florido, H. A., Hernández-Ávilab, J., Rodríguez-Hernández, A. I., Castro-Rosas, J., Acevedo-Sandoval, O. A., Chavarria-Hernández, N., & Gómez-Aldapa, C. A. (2017). Thermal, rheological, and mechanical properties of normal corn and potato starch blends. International Journal of Food Properties, 20(3), 611–622. https://doi.org/10.1080/10942912.2016.1171779
Gomes, D. S., Cordoba, L. P., Rosa, L. S., Spier, M. R., Schnitzler, E., & Waszczynskyj, N. (2018). Thermal, pasting properties and morphological characterization of pea starch (Pisum sativum L.), rice starch (Oryza sativa) and arracacha starch (Arracacia xanthorrhiza) blends, established by simplex-centroid design. Thermochimica Acta, 662, 90–99. https://doi.org/10.1016/j.tca.2018.02.011
Hagenimana, A., & Ding, X. (2005). A comparative study on pasting and hydration properties of native rice starches and their mixtures. Cereal Chemistry, 82(1), 70–76. https://doi.org/10.1094/CC-82-0070
He, W., & Wei, C. (2017). Progress in C-type starches from different plant sources. Food Hydrocolloids, 73, 162–175. https://doi.org/10.1016/j.foodhyd.2017.07.003
Hornung, P. S., Ávila, S., Lazzarotto, M., Lazzarotto, S. R. S., Siqueira, G. L. A., Schnitzler, E., & Ribani, R. H. (2017). Enhancement of the functional properties of Dioscoreaceas native starches: Mixture as a green modification process. Thermochimica Acta, 649, 31–40. https://doi.org/10.1016/j.tca.2017.01.006
Huang, C. C., Lin, M. C., & Wang, C. C. R. (2006). Changes in morphological, thermal and pasting properties of yam (Dioscorea alata) starch during growth. Carbohydrate Polymers, 64(4), 524–531. https://doi.org/10.1016/j.carbpol.2005.11.009
Ikegwu, O. J., Nwobasi, V. N, Odoh, M. O., & Oledinma, N. U. (2009). Evaluation of the pasting and some functional properties of starch isolated from some improved cassava varieties in Nigeria. African Journal of Biotechnology, 8(10), 2310–2315. https://www.ajol.info/index.php/ajb/article/view/60579
Jyothi, A. N., Rajasekharan, K. N., Moorthy, S. N., & Sreekumar, J. (2005). Microwave-assisted synthesis and characterization of succinate derivatives of cassava (Manihot esculenta Crantz) starch. Starch, 57(11), 556–563. https://doi.org/10.1002/star.200500429
Karam, L. B., Ferrero, C., Martino, M. N., Zaritzky, N. E., & Grossmann, M. V. E. (2006). Thermal, microstructural and textural characterisation of gelatinised corn, cassava and yam starch blends. International Journal of Food Science and Technology, 41(7), 805–812. https://doi.org/10.1111/j.1365-2621.2005.01110.x
Khoomtong, A., & Noomhorm, A. (2015). Development of a simple portable amylose content meter for rapid determination of amylose content in milled rice. Food and Bioprocess Technology, 8(9), 1938–1946. https://doi.org/10.1007/s11947-015-1550-8
Li, S., Ye, F., Zhou, Y., Lei, L., & Zhao, G. (2019). Rheological and textural insights into the blending of sweet potato and cassava starches: In hot and cooled pastes as well as in fresh and dried gels. Food Hydrocolloids, 89, 901–911. https://doi.org/10.1016/j.foodhyd.2018.11.041
Lin, J. H., Kao, W. T., Tsai, Y. C., & Chang, Y. H. (2013). Effect of granular characteristics on pasting properties of starch blends. Carbohydrate Polymers, 98(2), 1553–1560. https://doi.org/10.1016/j.carbpol.2013.07.039
Lin, R. H., Fan, Y. Y., Liu, T., Yang, H., Ma, L. J., Huang, X. J., & Liu, Y. (2020). Structural characterization of controlled decrystallization of cassava starch. Starch, 72(1–2), Article 1900049. https://doi.org/10.1002/star.201900049
Ma, M., Liu, Y., Chen, X., Brennan, C., Xu, X., Sui, Z., & Corke, H. (2020). Thermal and pasting properties and digestibility of blends of potato and rice starches differing in amylose content. International Journal of Biological Macromolecules, 165(Part A), 321–332. https://doi.org/10.1016/j.ijbiomac.2020.09.189
Majzoobi, M., & Farahnaky, A. (2021). Granular cold-water swelling starch; properties, preparation and applications, a review. Food Hydrocolloids, 111, Article 106393. https://doi.org/10.1016/j.foodhyd.2020.106393
Maniglia, B. C., Castanha, N., Le-Bail, P., Le-Bail, A., & Augusto, P. E. D. (2021). Starch modification through environmentally friendly alternatives: A review. Critical Reviews in Food Science and Nutrition, 61(15), 2482–2505. https://doi.org/10.1080/10408398.2020.1778633
Monroy, Y., Rivero, S., & García, M. A. (2018). Microstructural and techno-functional properties of cassava starch modified by ultrasound. Ultrasonics Sonochemistry, 42, 795–804. https://doi.org/10.1016/j.ultsonch.2017.12.048
Novelo-Cen, L., & Betancur-Ancona, D. (2005). Chemical and functional properties of Phaseolus lunatus and Manihot esculenta starch blends. Starch, 57(9), 431–441. https://doi.org/10.1002/star.200500398
Obanni, M., & Bemiller, J. N. (1997). Properties of some starch blends. Cereal Chemistry, 74(4), 431–436. https://doi.org/10.1094/cchem.1997.74.4.431
Oliveira, A. R., Ribeiro, A. E. C., Gondim, Í. C., Santos, E. A., Oliveira, É. R., Coutinho, G. S. M., Soares Júnior, M. S., & Caliari, M. (2021). Isolation and characterization of yam (Dioscorea alata L.) starch from Brazil. Food Science and Technology-LWT, 149, Article 111843. https://doi.org/10.1016/j.lwt.2021.111843
Oliveira, C. S., Bet, C. D., Bisinella, R. Z. B., Waiga, L. H., Colman, T. A. D., & Schnitzler, E. (2018). Heat-moisture treatment (HMT) on blends from potato starch (PS) and sweet potato starch (SPS). Journal of Thermal Analysis and Calorimetry, 133(3), 1491–1498. https://doi.org/10.1007/s10973-018-7196-9
Park, S., & Kim, Y. R. (2021). Clean label starch: production, physicochemical characteristics, and industrial applications. Food Science and Biotechnology, 30(1), 1–17. https://doi.org/10.1007/s10068-020-00834-3
Pérez, S., & Bertoft, E. (2010). The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review. Starch, 62(8), 389-420. https://doi.org/10.1002/star.201000013
Reyes-Atrizco, J. N., Agama-Acevedo, E., Bello-Perez, L. A., & Alvarez-Ramírez, J. (2019). Morphological, molecular evolution an in vitro digestibility of filamentous granules of banana starch during fruit development. International Journal of Biological Macromolecules, 132, 119–125. https://doi.org/10.1016/j.ijbiomac.2019.03.181
Salcedo Mendoza, J., Hernández RuyDíaz, J., & Fernández Quintero, A. (2016). Effect of the acetylation process on native starches of yam (Dioscorea spp.). Revista Facultad Nacional de Agronomía Medellin, 69(2), 7997–8006. https://doi.org/10.15446/rfna.v69n2.59144
Sangian, H. F., Telleng, R., Aruan, I., Mosey, H. I. R., & Tamuntuan, G. H. (2018). The structural modification of cassava starch using a saline water pretreatment. Food Science and Technology, 38(S1), 215–220. https://doi.org/10.1590/1678-457x.18517
Tester, R. F., Karkalas, J., & Qi, X. (2004). Starch - Composition, fine structure and architecture. Journal of Cereal Science, 39(2), 151–165. https://doi.org/10.1016/j.jcs.2003.12.001
Wang, H., Zhu, Q., Wu, T., & Zhang, M. (2020). Glass transition temperature, rheological, and gelatinization properties of high amylose corn starch and waxy cassava starch blends. Journal of Food Processing and Preservation, 44(9), Article e14682. https://doi.org/10.1111/jfpp.14682
Waterschoot, J., Gomand, S. V., & Delcour, J. A. (2016). Impact of swelling power and granule size on pasting of blends of potato, waxy rice and maize starches. Food Hydrocolloids, 52, 69–77. https://doi.org/10.1016/j.foodhyd.2015.06.012
Waterschoot, J., Gomand, S. V., Fierens, E., & Delcour, J. A. (2015). Starch blends and their physicochemical properties. Starch, 67(1-2). 1–13. https://doi.org/10.1002/star.201300214
Waterschoot, J., Gomand, S. V., Willebrords, J. K., Fierens, E., & Delcour, J. A. (2014). Pasting properties of blends of potato, rice and maize starches. Food Hydrocolloids, 41, 298–308. https://doi.org/10.1016/j.foodhyd.2014.04.033
Wu, K., Dai, S., Gan, R., Corke, H., & Zhu, F. (2016). Thermal and rheological properties of mung bean starch blends with potato, sweet potato, rice, and sorghum starches. Food and Bioprocess Technology, 9(8), 1408–1421. https://doi.org/10.1007/s11947-016-1730-1
Yadav, R. B., Kumar, N., & Yadav, B. S. (2016). Characterization of banana, potato, and rice starch blends for their physicochemical and pasting properties. Cogent Food & Agriculture, 2(1), Article 1127873. https://doi.org/10.1080/23311932.2015.1127873
Zhang, Y., Gu, Z., Hong, Y., Li, Z., & Cheng, L. (2011). Pasting and rheologic properties of potato starch and maize starch mixtures. Starch, 63(1), 11–16. https://doi.org/10.1002/star.200900255
Zhou, R., & Kang, Y. H. (2018). Synergistic interaction of Auricularia auricula-judae polysaccharide with yam starch: effects on physicochemical properties and in vitro starch digestibility. Food Science and Biotechnology, 27(6), 1579–1588. https://doi.org/10.1007/s10068-018-0419-9
Zhu, F., Hua, Y., & Li, G. (2020). Physicochemical properties of potato, sweet potato and quinoa starch blends. Food Hydrocolloids, 100, Article 105278. https://doi.org/10.1016/j.foodhyd.2019.105278
Zia-ud-Din, Xiong, H., & Fei, P. (2017). Physical and chemical modification of starches: A review. Critical Reviews in Food Science and Nutrition, 57(12), 2691–2705. https://doi.org/10.1080/10408398.2015.1087379
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Aditi Varshney, Mahek Rawat, Arun Kumar Gupta, Rohan Kandpal, Aditya Choudhary, Avinash Kumar Jha, Bindu Naik, Vijay Kumar, Sarvesh Rustagi. (2024). Structural and functional insights into Dioscorea esculenta (Suthni) flour: a comparative analysis with potato flour for potential application in bakery product. Journal of Food Measurement and Characterization, 18(11), p.9307. https://doi.org/10.1007/s11694-024-02880-5.
2. Karen Seña-Rambauth, Jorge Figueroa-Flórez, Jorge Hernández-Ruydíaz, Jairo Salcedo-Mendoza, Fabian Ortega-Quintana, Luisa Hernández-Vanegas. (2025). Hydrothermal modification of starch-rich flour blends derived from tubers: Physicochemical and textural impacts on muffin quality. Applied Food Research, 5(2), p.101068. https://doi.org/10.1016/j.afres.2025.101068.
3. Raphael Lucas Jacinto Almeida, Newton Carlos Santos, Shênia Santos Monteiro, Nathália Saraiva Rios, Everaldo Silvino dos Santos. (2024). Exploring the potential of native and modified starch and starch nanocrystals in Pickering emulsions: current advances, future perspectives, and challenges. Food Bioscience, 61, p.104675. https://doi.org/10.1016/j.fbio.2024.104675.
4. E.D. Arroyo-Dagobeth, E.M. Cadena-Chamorro, J.A. Figueroa-Flórez, J.G. Salcedo-Mendoza, T.Y. Serna-Fadul, F. Ortega-Quintana. (2025). Synergistic heat-moisture and enzymatic modification of starch blends: a case study on structuring cassava-based gluten-free baked goods. Applied Food Research, 5(2), p.101206. https://doi.org/10.1016/j.afres.2025.101206.
5. Nedys Acevedo-Viloria, Jorge Figueroa-Flórez, Jairo Salcedo-Mendoza, Jorge Hernández-Ruydiaz, Fabian Ortega-Quintana. (2025). Effect of hydrothermal processing on the native starches of cassava (Manihot esculenta) and yam (Dioscorea alata). Revista Facultad Nacional de Agronomía Medellín, 78(1), p.10977. https://doi.org/10.15446/rfnam.v78n1.112802.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2023 Agronomía Colombiana

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)

Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.







