Published

2023-12-31

Structural, physicochemical, and pasting properties of native cassava (Manihot esculenta) and yam (Dioscorea alata) starch blends

Propiedades estructurales, fisicoquímicas y de empastamiento de mezclas de almidones nativos de yuca (Manihot esculenta) y ñame (Dioscorea alata)

DOI:

https://doi.org/10.15446/agron.colomb.v41n3.110111

Keywords:

tuber starch, crystallinity index, non-additive effect, digestibility (en)
almidón de tubérculos, índice de cristalinidad, efecto no aditivo, digestibilidad (es)

Downloads

Authors

  • Eduardo David Arroyo-Dagobeth Universidad Nacional de Colombia - Medellín - Facultad de Ciencias - Posgrado en Biotecnología https://orcid.org/0000-0003-1347-7732
  • Jorge Antonio Figueroa-Flórez Universidad Nacional de Colombia - Medellín - Facultad de Ciencias - Posgrado en Biotecnología / Universidad de Sucre - Facultad de Ingeniería - Departamento de Ingeniería Agroindustrial - Sincelejo, Sucre - Colombia https://orcid.org/0000-0003-1050-0677
  • Edith Cadena-Chamorro Universidad Nacional de Colombia - Medellín - Facultad de Ciencias Agrarias - Departamento de Ingeniería Agrícola y Alimentos https://orcid.org/0000-0002-7143-2009
  • Eduardo Rodríguez-Sandoval Universidad Nacional de Colombia - Medellín - Facultad de Ciencias Agrarias - Departamento de Ingeniería Agrícola y Alimentos https://orcid.org/0000-0001-9146-2419
  • Jairo Guadalupe Salcedo-Mendoza Universidad de Sucre - Facultad de Ingeniería - Departamento de Ingeniería Agroindustrial - Sincelejo, Sucre - Colombia https://orcid.org/0000-0002-9901-9793
  • Manuel Antonio Cervera-Ricardo Universidad de Sucre - Facultad de Ingeniería - Departamento de Ingeniería Agroindustrial - Sincelejo, Sucre - Colombia https://orcid.org/0000-0002-6871-7636

Starch blends are a technological alternative aimed at the development of starchy matrices that exhibit improvements in some physicochemical properties from interactions between their individual components. Native cassava and yam starches were mixed in different proportions and the effect of the blend on the structural, physicochemical, and pasting properties was evaluated. The viscosity behavior as a function of temperature revealed a significant non-additive effect on the pasting parameters of all the blends with respect to the individual native starches. Similarly, non-additive variations were evident in the crystallinity index of some mix ratios (NSB-2: 40.11%). Likewise, the difference in the amylose content of each native starch (20.88-25.66%) possibly exerted an effect on the resulting semicrystalline characteristics of the blends and the gelatinization behavior. Hence, the botanical origin and the proportion of starch blends play an important role in the behavior of the resulting physicochemical properties and in vitro digestibility. Polymeric blends were obtained with a low tendency to retrogradation and lower crystallinity index values compared to their native counterparts and a regulated water absorption capacity, all potentially desirable characteristics in the food industry.

Las mezclas de almidones son una alternativa tecnológica dirigida al desarrollo de matrices amiláceas que presenten mejoras en algunas propiedades fisicoquímicas a partir de interacciones entre sus componentes individuales. Por lo tanto, se mezclaron almidones nativos de yuca y ñame en diferentes proporciones y se evaluó el efecto de la mezcla sobre las propiedades estructurales, fisicoquímicas y de empastamiento. El comportamiento de la viscosidad en función de la temperatura reveló un efecto no aditivo significativo sobre los parámetros de pasta de todas las mezclas con respecto a los almidones nativos individuales. De manera similar, las variaciones no aditivas fueron evidentes en el índice de cristalinidad de algunas proporciones de mezcla (NSB-2: 40.11%). Asimismo, la diferencia en el contenido de amilosa de cada almidón nativo (20.88-25.66%) posiblemente ejerció un efecto sobre las características semicristalinas resultantes de las mezclas y el comportamiento de gelatinización. Por lo tanto, el origen botánico y la proporción de mezcla de almidón juegan un papel importante en el comportamiento de las propiedades fisicoquímicas resultantes y la digestibilidad in vitro. Se obtuvieron mezclas poliméricas con una baja tendencia a la retrogradación y valores de índice de cristalinidad más bajos en comparación con sus homólogos nativos y una capacidad de absorción de agua regulada, todas ellas características potencialmente deseables en la industria alimentaria.

References

Ai, Y., & Jane, J. L. (2015). Gelatinization and rheological properties of starch. Starch, 67(3-4), 213–224. https://doi.org/10.1002/star.201400201

Ayetigbo, O., Latif, S., Abass, A., & Müller, J. (2018). Comparing characteristics of root, flour and starch of biofortified yellow-flesh and white-flesh cassava variants, and sustainability considerations: A review. Sustainability, 10(9), Article 3089. https://doi.org/10.3390/su10093089

Chakraborty, I., Pallen, S., Shetty, Y., Roy, N., & Mazumder, N. (2020). Advanced microscopy techniques for revealing molecular structure of starch granules. Biophysical Reviews, 12(1), 105–122. https://doi.org/10.1007/s12551-020-00614-7

Chen, Y., Huang, S., Tang, Z., Chen, X., & Zhang, Z. (2011). Structural changes of cassava starch granules hydrolyzed by a mixture of α-amylase and glucoamylase. Carbohydrate Polymers, 85(1), 272–275. https://doi.org/10.1016/j.carbpol.2011.01.047

Colussi, R., Kringel, D., Kaur, L., da Rosa Zavareze, E., Dias, A. R. G., & Singh, J. (2020). Dual modification of potato starch: Effects of heat-moisture and high pressure treatments on starch structure and functionalities. Food Chemistry, 318, Article 126475. https://doi.org/10.1016/j.foodchem.2020.126475

Cruz-Benítez, M. M., Gómez-Aldapa, C. A., Castro-Rosas, J., Hernández-Hernández, E., Gómez Hernández, E., & Fonseca-Florido, H. A. (2019). Effect of amylose content and chemical modification of cassava starch on the microencapsulation of Lactobacillus pentosus. LWT - Food Science and Technology, 105, 110–117. https://doi.org/10.1016/j.lwt.2019.01.069

Dolas, K. A., Ranveer, R. C., Tapre, A. R., Nandane, A. S., & Sahoo, A. K. (2020). Effect of starch modification on physicochemical, functional and structural characterization of cassava starch (Manihot esculenta Crantz). Food Research, 4(4), 1265–1271. https://doi.org/10.26656/FR.2017.4(4).075

Donaldben, N. S., Tanko, O. O., & Hussaina, T. O. (2020). Physico-chemical properties of starches from two varieties of sweet potato and yam tubers available in Nigeria. Asian Food Science Journal, 14(4), 28–38. https://doi.org/10.9734/afsj/2020/v14i430136

Duan, X., Han, H., Deng, R., & Wu, P. (2020). Drying treatments on Chinese yam (Dioscorea spp.) prior to wet milling influence starch molecular structures and physicochemical properties. Food Hydrocolloids, 102, Article 105599. https://doi.org/10.1016/j.foodhyd.2019.105599

Dupuis, J. H., & Liu, Q. (2019). Potato starch: A review of physicochemical, functional and nutritional properties. American Journal of Potato Research, 96(2), 127–138. https://doi.org/10.1007/s12230-018-09696-2

Ee, K. Y., Eng, M. K., & Lee, M. L. (2020). Physicochemical, thermal and rheological properties of commercial wheat flours and corresponding starches. Food Science and Technology, 40(S1), 51–59. https://doi.org/10.1590/fst.39718

Englyst, H. N., Kingman, S. M., & Cummings, J. H. (1992). Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition, 46(S2), S33–S50. https://pubmed.ncbi.nlm.nih.gov/1330528

Figueroa-Flórez, J. A., Cadena-Chamorro, E. M., Rodríguez-Sandoval, E., Salcedo-Mendoza, J., & Ciro-Velásquez, H. J. (2019). Cassava starches modified by enzymatic biocatalysis: Effect of reaction time and drying method. Dyna, 86(208), 162–170. https://doi.org/10.15446/dyna.v86n208.72976

Fonseca-Florido, H. A., Hernández-Ávilab, J., Rodríguez-Hernández, A. I., Castro-Rosas, J., Acevedo-Sandoval, O. A., Chavarria-Hernández, N., & Gómez-Aldapa, C. A. (2017). Thermal, rheological, and mechanical properties of normal corn and potato starch blends. International Journal of Food Properties, 20(3), 611–622. https://doi.org/10.1080/10942912.2016.1171779

Gomes, D. S., Cordoba, L. P., Rosa, L. S., Spier, M. R., Schnitzler, E., & Waszczynskyj, N. (2018). Thermal, pasting properties and morphological characterization of pea starch (Pisum sativum L.), rice starch (Oryza sativa) and arracacha starch (Arracacia xanthorrhiza) blends, established by simplex-centroid design. Thermochimica Acta, 662, 90–99. https://doi.org/10.1016/j.tca.2018.02.011

Hagenimana, A., & Ding, X. (2005). A comparative study on pasting and hydration properties of native rice starches and their mixtures. Cereal Chemistry, 82(1), 70–76. https://doi.org/10.1094/CC-82-0070

He, W., & Wei, C. (2017). Progress in C-type starches from different plant sources. Food Hydrocolloids, 73, 162–175. https://doi.org/10.1016/j.foodhyd.2017.07.003

Hornung, P. S., Ávila, S., Lazzarotto, M., Lazzarotto, S. R. S., Siqueira, G. L. A., Schnitzler, E., & Ribani, R. H. (2017). Enhancement of the functional properties of Dioscoreaceas native starches: Mixture as a green modification process. Thermochimica Acta, 649, 31–40. https://doi.org/10.1016/j.tca.2017.01.006

Huang, C. C., Lin, M. C., & Wang, C. C. R. (2006). Changes in morphological, thermal and pasting properties of yam (Dioscorea alata) starch during growth. Carbohydrate Polymers, 64(4), 524–531. https://doi.org/10.1016/j.carbpol.2005.11.009

Ikegwu, O. J., Nwobasi, V. N, Odoh, M. O., & Oledinma, N. U. (2009). Evaluation of the pasting and some functional properties of starch isolated from some improved cassava varieties in Nigeria. African Journal of Biotechnology, 8(10), 2310–2315. https://www.ajol.info/index.php/ajb/article/view/60579

Jyothi, A. N., Rajasekharan, K. N., Moorthy, S. N., & Sreekumar, J. (2005). Microwave-assisted synthesis and characterization of succinate derivatives of cassava (Manihot esculenta Crantz) starch. Starch, 57(11), 556–563. https://doi.org/10.1002/star.200500429

Karam, L. B., Ferrero, C., Martino, M. N., Zaritzky, N. E., & Grossmann, M. V. E. (2006). Thermal, microstructural and textural characterisation of gelatinised corn, cassava and yam starch blends. International Journal of Food Science and Technology, 41(7), 805–812. https://doi.org/10.1111/j.1365-2621.2005.01110.x

Khoomtong, A., & Noomhorm, A. (2015). Development of a simple portable amylose content meter for rapid determination of amylose content in milled rice. Food and Bioprocess Technology, 8(9), 1938–1946. https://doi.org/10.1007/s11947-015-1550-8

Li, S., Ye, F., Zhou, Y., Lei, L., & Zhao, G. (2019). Rheological and textural insights into the blending of sweet potato and cassava starches: In hot and cooled pastes as well as in fresh and dried gels. Food Hydrocolloids, 89, 901–911. https://doi.org/10.1016/j.foodhyd.2018.11.041

Lin, J. H., Kao, W. T., Tsai, Y. C., & Chang, Y. H. (2013). Effect of granular characteristics on pasting properties of starch blends. Carbohydrate Polymers, 98(2), 1553–1560. https://doi.org/10.1016/j.carbpol.2013.07.039

Lin, R. H., Fan, Y. Y., Liu, T., Yang, H., Ma, L. J., Huang, X. J., & Liu, Y. (2020). Structural characterization of controlled decrystallization of cassava starch. Starch, 72(1–2), Article 1900049. https://doi.org/10.1002/star.201900049

Ma, M., Liu, Y., Chen, X., Brennan, C., Xu, X., Sui, Z., & Corke, H. (2020). Thermal and pasting properties and digestibility of blends of potato and rice starches differing in amylose content. International Journal of Biological Macromolecules, 165(Part A), 321–332. https://doi.org/10.1016/j.ijbiomac.2020.09.189

Majzoobi, M., & Farahnaky, A. (2021). Granular cold-water swelling starch; properties, preparation and applications, a review. Food Hydrocolloids, 111, Article 106393. https://doi.org/10.1016/j.foodhyd.2020.106393

Maniglia, B. C., Castanha, N., Le-Bail, P., Le-Bail, A., & Augusto, P. E. D. (2021). Starch modification through environmentally friendly alternatives: A review. Critical Reviews in Food Science and Nutrition, 61(15), 2482–2505. https://doi.org/10.1080/10408398.2020.1778633

Monroy, Y., Rivero, S., & García, M. A. (2018). Microstructural and techno-functional properties of cassava starch modified by ultrasound. Ultrasonics Sonochemistry, 42, 795–804. https://doi.org/10.1016/j.ultsonch.2017.12.048

Novelo-Cen, L., & Betancur-Ancona, D. (2005). Chemical and functional properties of Phaseolus lunatus and Manihot esculenta starch blends. Starch, 57(9), 431–441. https://doi.org/10.1002/star.200500398

Obanni, M., & Bemiller, J. N. (1997). Properties of some starch blends. Cereal Chemistry, 74(4), 431–436. https://doi.org/10.1094/cchem.1997.74.4.431

Oliveira, A. R., Ribeiro, A. E. C., Gondim, Í. C., Santos, E. A., Oliveira, É. R., Coutinho, G. S. M., Soares Júnior, M. S., & Caliari, M. (2021). Isolation and characterization of yam (Dioscorea alata L.) starch from Brazil. Food Science and Technology-LWT, 149, Article 111843. https://doi.org/10.1016/j.lwt.2021.111843

Oliveira, C. S., Bet, C. D., Bisinella, R. Z. B., Waiga, L. H., Colman, T. A. D., & Schnitzler, E. (2018). Heat-moisture treatment (HMT) on blends from potato starch (PS) and sweet potato starch (SPS). Journal of Thermal Analysis and Calorimetry, 133(3), 1491–1498. https://doi.org/10.1007/s10973-018-7196-9

Park, S., & Kim, Y. R. (2021). Clean label starch: production, physicochemical characteristics, and industrial applications. Food Science and Biotechnology, 30(1), 1–17. https://doi.org/10.1007/s10068-020-00834-3

Pérez, S., & Bertoft, E. (2010). The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review. Starch, 62(8), 389-420. https://doi.org/10.1002/star.201000013

Reyes-Atrizco, J. N., Agama-Acevedo, E., Bello-Perez, L. A., & Alvarez-Ramírez, J. (2019). Morphological, molecular evolution an in vitro digestibility of filamentous granules of banana starch during fruit development. International Journal of Biological Macromolecules, 132, 119–125. https://doi.org/10.1016/j.ijbiomac.2019.03.181

Salcedo Mendoza, J., Hernández RuyDíaz, J., & Fernández Quintero, A. (2016). Effect of the acetylation process on native starches of yam (Dioscorea spp.). Revista Facultad Nacional de Agronomía Medellin, 69(2), 7997–8006. https://doi.org/10.15446/rfna.v69n2.59144

Sangian, H. F., Telleng, R., Aruan, I., Mosey, H. I. R., & Tamuntuan, G. H. (2018). The structural modification of cassava starch using a saline water pretreatment. Food Science and Technology, 38(S1), 215–220. https://doi.org/10.1590/1678-457x.18517

Tester, R. F., Karkalas, J., & Qi, X. (2004). Starch - Composition, fine structure and architecture. Journal of Cereal Science, 39(2), 151–165. https://doi.org/10.1016/j.jcs.2003.12.001

Wang, H., Zhu, Q., Wu, T., & Zhang, M. (2020). Glass transition temperature, rheological, and gelatinization properties of high amylose corn starch and waxy cassava starch blends. Journal of Food Processing and Preservation, 44(9), Article e14682. https://doi.org/10.1111/jfpp.14682

Waterschoot, J., Gomand, S. V., & Delcour, J. A. (2016). Impact of swelling power and granule size on pasting of blends of potato, waxy rice and maize starches. Food Hydrocolloids, 52, 69–77. https://doi.org/10.1016/j.foodhyd.2015.06.012

Waterschoot, J., Gomand, S. V., Fierens, E., & Delcour, J. A. (2015). Starch blends and their physicochemical properties. Starch, 67(1-2). 1–13. https://doi.org/10.1002/star.201300214

Waterschoot, J., Gomand, S. V., Willebrords, J. K., Fierens, E., & Delcour, J. A. (2014). Pasting properties of blends of potato, rice and maize starches. Food Hydrocolloids, 41, 298–308. https://doi.org/10.1016/j.foodhyd.2014.04.033

Wu, K., Dai, S., Gan, R., Corke, H., & Zhu, F. (2016). Thermal and rheological properties of mung bean starch blends with potato, sweet potato, rice, and sorghum starches. Food and Bioprocess Technology, 9(8), 1408–1421. https://doi.org/10.1007/s11947-016-1730-1

Yadav, R. B., Kumar, N., & Yadav, B. S. (2016). Characterization of banana, potato, and rice starch blends for their physicochemical and pasting properties. Cogent Food & Agriculture, 2(1), Article 1127873. https://doi.org/10.1080/23311932.2015.1127873

Zhang, Y., Gu, Z., Hong, Y., Li, Z., & Cheng, L. (2011). Pasting and rheologic properties of potato starch and maize starch mixtures. Starch, 63(1), 11–16. https://doi.org/10.1002/star.200900255

Zhou, R., & Kang, Y. H. (2018). Synergistic interaction of Auricularia auricula-judae polysaccharide with yam starch: effects on physicochemical properties and in vitro starch digestibility. Food Science and Biotechnology, 27(6), 1579–1588. https://doi.org/10.1007/s10068-018-0419-9

Zhu, F., Hua, Y., & Li, G. (2020). Physicochemical properties of potato, sweet potato and quinoa starch blends. Food Hydrocolloids, 100, Article 105278. https://doi.org/10.1016/j.foodhyd.2019.105278

Zia-ud-Din, Xiong, H., & Fei, P. (2017). Physical and chemical modification of starches: A review. Critical Reviews in Food Science and Nutrition, 57(12), 2691–2705. https://doi.org/10.1080/10408398.2015.1087379

How to Cite

APA

Arroyo-Dagobeth, E. D., Figueroa-Flórez, J. A., Cadena-Chamorro, E., Rodríguez-Sandoval, E., Salcedo-Mendoza, J. G. and Cervera-Ricardo, M. A. (2023). Structural, physicochemical, and pasting properties of native cassava (Manihot esculenta) and yam (Dioscorea alata) starch blends. Agronomía Colombiana, 41(3), e110111. https://doi.org/10.15446/agron.colomb.v41n3.110111

ACM

[1]
Arroyo-Dagobeth, E.D., Figueroa-Flórez, J.A., Cadena-Chamorro, E., Rodríguez-Sandoval, E., Salcedo-Mendoza, J.G. and Cervera-Ricardo, M.A. 2023. Structural, physicochemical, and pasting properties of native cassava (Manihot esculenta) and yam (Dioscorea alata) starch blends. Agronomía Colombiana. 41, 3 (Sep. 2023), e110111. DOI:https://doi.org/10.15446/agron.colomb.v41n3.110111.

ACS

(1)
Arroyo-Dagobeth, E. D.; Figueroa-Flórez, J. A.; Cadena-Chamorro, E.; Rodríguez-Sandoval, E.; Salcedo-Mendoza, J. G.; Cervera-Ricardo, M. A. Structural, physicochemical, and pasting properties of native cassava (Manihot esculenta) and yam (Dioscorea alata) starch blends. Agron. Colomb. 2023, 41, e110111.

ABNT

ARROYO-DAGOBETH, E. D.; FIGUEROA-FLÓREZ, J. A.; CADENA-CHAMORRO, E.; RODRÍGUEZ-SANDOVAL, E.; SALCEDO-MENDOZA, J. G.; CERVERA-RICARDO, M. A. Structural, physicochemical, and pasting properties of native cassava (Manihot esculenta) and yam (Dioscorea alata) starch blends. Agronomía Colombiana, [S. l.], v. 41, n. 3, p. e110111, 2023. DOI: 10.15446/agron.colomb.v41n3.110111. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/110111. Acesso em: 20 aug. 2024.

Chicago

Arroyo-Dagobeth, Eduardo David, Jorge Antonio Figueroa-Flórez, Edith Cadena-Chamorro, Eduardo Rodríguez-Sandoval, Jairo Guadalupe Salcedo-Mendoza, and Manuel Antonio Cervera-Ricardo. 2023. “Structural, physicochemical, and pasting properties of native cassava (Manihot esculenta) and yam (Dioscorea alata) starch blends”. Agronomía Colombiana 41 (3):e110111. https://doi.org/10.15446/agron.colomb.v41n3.110111.

Harvard

Arroyo-Dagobeth, E. D., Figueroa-Flórez, J. A., Cadena-Chamorro, E., Rodríguez-Sandoval, E., Salcedo-Mendoza, J. G. and Cervera-Ricardo, M. A. (2023) “Structural, physicochemical, and pasting properties of native cassava (Manihot esculenta) and yam (Dioscorea alata) starch blends”, Agronomía Colombiana, 41(3), p. e110111. doi: 10.15446/agron.colomb.v41n3.110111.

IEEE

[1]
E. D. Arroyo-Dagobeth, J. A. Figueroa-Flórez, E. Cadena-Chamorro, E. Rodríguez-Sandoval, J. G. Salcedo-Mendoza, and M. A. Cervera-Ricardo, “Structural, physicochemical, and pasting properties of native cassava (Manihot esculenta) and yam (Dioscorea alata) starch blends”, Agron. Colomb., vol. 41, no. 3, p. e110111, Sep. 2023.

MLA

Arroyo-Dagobeth, E. D., J. A. Figueroa-Flórez, E. Cadena-Chamorro, E. Rodríguez-Sandoval, J. G. Salcedo-Mendoza, and M. A. Cervera-Ricardo. “Structural, physicochemical, and pasting properties of native cassava (Manihot esculenta) and yam (Dioscorea alata) starch blends”. Agronomía Colombiana, vol. 41, no. 3, Sept. 2023, p. e110111, doi:10.15446/agron.colomb.v41n3.110111.

Turabian

Arroyo-Dagobeth, Eduardo David, Jorge Antonio Figueroa-Flórez, Edith Cadena-Chamorro, Eduardo Rodríguez-Sandoval, Jairo Guadalupe Salcedo-Mendoza, and Manuel Antonio Cervera-Ricardo. “Structural, physicochemical, and pasting properties of native cassava (Manihot esculenta) and yam (Dioscorea alata) starch blends”. Agronomía Colombiana 41, no. 3 (September 1, 2023): e110111. Accessed August 20, 2024. https://revistas.unal.edu.co/index.php/agrocol/article/view/110111.

Vancouver

1.
Arroyo-Dagobeth ED, Figueroa-Flórez JA, Cadena-Chamorro E, Rodríguez-Sandoval E, Salcedo-Mendoza JG, Cervera-Ricardo MA. Structural, physicochemical, and pasting properties of native cassava (Manihot esculenta) and yam (Dioscorea alata) starch blends. Agron. Colomb. [Internet]. 2023 Sep. 1 [cited 2024 Aug. 20];41(3):e110111. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/110111

Download Citation

CrossRef Cited-by

CrossRef citations1

1. Raphael Lucas Jacinto Almeida, Newton Carlos Santos, Shênia Santos Monteiro, Nathália Saraiva Rios, Everaldo Silvino dos Santos. (2024). Exploring the potential of native and modified starch and starch nanocrystals in Pickering emulsions: current advances, future perspectives, and challenges. Food Bioscience, 61, p.104675. https://doi.org/10.1016/j.fbio.2024.104675.

Dimensions

PlumX

Article abstract page views

301

Downloads

Download data is not yet available.