Relationship between spectral response and manganese concentrations for assessment of the nutrient status in rose crop
Relación entre la respuesta espectral y las concentraciones de manganeso para evaluar el estado nutricional en el cultivo de rosa
DOI:
https://doi.org/10.15446/agron.colomb.v42n2.110294Keywords:
crop nutritrion, reflectance spectra, spectral indices, spectroradiometer, simple linear regression (en)nutrición de cultivos, espectro de reflectancia, índices espectrales, espectroradiómetro, regresión lineal simple (es)
Downloads
The present research was conducted on a Freedom rose (Rosa sp.) variety grown in greenhouses in the municipality of Tocancipá, Cundinamarca department (Colombia), to assess the relationship between reflectance and manganese content in leaves. A randomized complete block design was implemented, including five treatments with different manganese doses (0%, 25%, 50%, 75%, and 100% of the commercial dose, which is 2 mg L-1), each with five replicates. Samplings at five phenological stages were carried out, with 10 plants analyzed per treatment for each sampling, totaling 50 plants per sampling. Spectral responses were taken from the adaxial surface of the leaves using a FieldSpec® 4 spectroradiometer, covering a wavelength range from 350 to 2500 nm. As the concentration of manganese in the leaves decreased, the reflectance values increased, showing an inverse relationship between these two parameters. The increase in reflectance values was particularly pronounced in the spectral regions between 560 nm and 840 nm. Among the vegetation indices evaluated, GNDVI, DATT4, DATT2, and D1 stood out; DATT4 and GNDVI showed the most promising results. DATT4 exhibited correlations greater than 0.6 during the “palmiche” (induction of the floral primordium) and “rice” (flower bud less than 4 mm in diameter) phenological stages, while GNDVI presented correlations of 0.64 in the “chickpea” (peduncle with an average length of 4 cm) phenological stage and 0.52 in the “scratch color” (the color of the petals could be observed) phenological stages.
La presente investigación se realizó en rosa (Rosa sp.), variedad Freedom, cultivada bajo invernaderos en el municipio de Tocancipá, departamento de Cundinamarca (Colombia), para evaluar la relación entre la reflectancia y el contenido de manganeso en las hojas. Se implementó un diseño experimental de bloques completos al azar, que incluyó cinco tratamientos con diferentes dosis de manganeso (0%, 25%, 50%, 75% y 100% de la dosis comercial, que es de 2 mg L-1), cada uno con cinco repeticiones. Se realizaron muestreos en cinco etapas fenológicas, analizándose 10 plantas por tratamiento para cada muestreo, totalizando 50 plantas por muestreo. Las respuestas espectrales se tomaron de la superficie adaxial de las hojas utilizando el espectrorradiómetro FieldSpec® 4, cubriendo un rango de longitud de onda de 350 nm a 2500 nm. A medida que disminuía la concentración de manganeso en las hojas, los valores de reflectancia aumentaban, mostrando una relación inversa entre estos dos parámetros. El aumento de los valores de reflectancia se observó particularmente en las regiones espectrales entre 560 nm y 840 nm. Entre los índices de vegetación evaluados destacaron GNDVI, DATT4, DATT2 y D1; DATT4 y GNDVI mostraron los resultados más prometedores. DATT4 exhibió correlaciones superiores a 0,6 durante las etapas fenológicas de “palmiche” (inducción del primordio floral) y “arroz” (botón floral de menos de 4 mm de diámetro), mientras que GNDVI presentó correlaciones de 0,64 en el estado fenológico ”garbanzo“ (pedúnculo con una longitud media de 4 cm) y de 0,52 en los estados fenológicos “color de rayado” (el color de los pétalos podía observarse).
References
ASD. (2012). FieldSpec 4 user guide. ASD document 6000979. Malvern Panalytical, Malvern, UK. https://www.malvernpanalytical.com/en/learn/knowledge-center/user-manuals/fieldspec-4-user-guide
Boshkovski, B., Tzerakis, C., Doupis, G., Zapolska, A., Kalaitzidis, C., & Koubouris, G. (2020). Relationships of spectral reflectance with plant tissue mineral elements of common bean (Phaseolus vulgaris L.) under drought and salinity stresses.Communications in Soil Science and Plant Analysis, 51(5), 675–686. https://doi.org/10.1080/00103624.2020.1729789
Camo Software SA. (2006). The unscrambler methods. Aspenthec. https://www.camo.com/downloads/U9.6%20pdf%20manual/The%20Unscrambler%20Methods.pdf
Gamon, J. A., & Surfus, J. S. (1999). Assessing leaf pigment content and activity with a reflectometer. The New Phytologist, 143(1), 105–117. https://doi.org/10.1046/j.1469-8137.1999.00424.x
Ghosh, S., Prasanna, V. L., Sowjanya, B., Srivani, P., Alagaraja, M., & Banji, D. (2013). Inductively coupled plasma–optical emisión spectroscopy: A review. Asian Journal of Pharmaceutical Analysis, 3(1), 24–33. https://ajpaonline.com/HTMLPaper.aspx?Journal=Asian%20Journal%20of%20Pharmaceutical%20Analysis;PID=2013-3-1-6
González Hurtado, M., Hernandez Díaz, M. I., Dupeyrón Martell, D., Rieumont Briones, J., Rodriguez Acosta, C., Cuesta, E., & Sardiña, C. (2007). Síntesis y comportamiento de un material polimérico aplicado como recubrimiento en un fertilizante de liberación controlada. Revista Iberoamericana de Polímeros, 8(4), 275–286. https://reviberpol.files.wordpress.com/2019/08/2007-gonzalez.pdf
Gould, K., Davies, K. M., & Winefield, C. (Eds.). (2008). Anthocyanins: biosynthesis, functions, and applications. Springer Science & Business Media.
Hariyadi, B. W., Nizak, F., Nurmalasari, I. R., & Kogoya, Y. (2019). Effect of dose and time of NPK fertilizer application on the growth and yield of tomato plants (Lycopersicum esculentum Mill). Agricultural Science, 2(2), 101–111. https://core.ac.uk/download/pdf/230412842.pdf
Humphries, J. M., Stangoulis, J. C. R., & Graham, R. D. (2016). Manganese. In A. V. Barker, & D. J. Pilbeam (Eds.), Handbook of plant nutrition (pp. 367–390). CRC Press.
ICA – Instituto Colombiano Agropecuario. (2024). Con 700 millones de tallos, Colombia aporta variedad, color y belleza a la celebración de San Valentín. https://www.ica.gov.co/noticias/ica-colombia-exporta-flores-san-valentin-2024
Lehnert, L. W., Meyer, H., & Bendix, J. (2016). Package ‘hsdar’. https://www.researchgate.net/profile/Lukas-Lehnert/publication/312599704_Package_’hsdar’_Manage_Analyse_and_Simulate_Hyperspectral_Data/links/5885f9dfaca272b7b44ca3e5/Package-hsdar-Manage-Analyse-and-Simulate-Hyperspectral-Data.pdf
Marin, D. B., Ferraz, G. A. S., Guimarães, P. H. S., Schwerz, F., Santana, L. S., Barbosa, B. D. S., Barata, R. A. P., Faria, R. O., Dias, J. E. L., Conti, L., & Rossi, G. (2021). Remotely piloted aircraft and random forest in the evaluation of the spatial variability of foliar nitrogen in coffee crop. Remote Sensing, 13(8), Article 1471. https://doi.org/10.3390/rs13081471
Mulyadi, T., Hariyandi, Sudradjat., & Kustiyo. (2017). Nitrogen content and carbon stock prediction in oil palm using satellite image analysis. Asian Journal of Applied Sciences, 5(4), 677–683. https://www.ajouronline.com/index.php/AJAS/article/view/4899
Padilla, F. M., Peña-Fleitas, M. T., Gallardo, M., & Thompson, R. B. (2015). Threshold values of canopy reflectance indices and chlorophyll meter readings for optimal nitrogen nutrition of tomato. Annals of Applied Biology, 166(2), 271–285. https://doi.org/10.1111/aab.12181
Peng, Y., Nguy-Robertson, A., Arkebauer, T., & Gitelson, A. A. (2017). Assessment of canopy chlorophyll content retrieval in maize and soybean: Implications of hysteresis on the development of generic algorithms. Remote Sensing, 9(3), Article 226. https://doi.org/10.3390/rs9030226
Rashed, M. H., Hoque, T. S., Jahangir, M. M. R., & Hashem, M. A. (2019). Manganese as a micronutrient in agriculture: Crop requirement and management. Journal of Environmental Science and Natural Resources, 12(1–2), 225–242. https://doi.org/10.3329/jesnr.v12i1-2.52040
Ruppenthal, V., & Conte e Castro, A. M. (2005). Efeito do composto de lixo urbano na nutrição e produção de gladíolo. Revista Brasileira de Ciência do Solo, 29(1), 145–150. https://doi.org/10.1590/S0100-06832005000100016
Santoso, H., Tani, H., Wang, X., & Segah, H. (2019). Predicting oil palm leaf nutrient contents in Kalimantan, Indonesia by measuring reflectance with a spectroradiometer. International Journal of Remote Sensing, 40(19), 7581–7602. https://doi.org/10.1080/01431161.2018.1516323
Savitzky, A., & Golay, M. J. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 36(8), 1627–1639. https://pubs.acs.org/doi/pdf/10.1021/ac60214a047
Schepers, J. S., Blackmer, T. M., Wilhelm, W., & Resende, M. (1996).Transmittance and reflectance measurements of corn leaves from plants with different nitrogen and water supply. Journal of Plant Physiology, 148(5), 523–529. https://doi.org/10.1016/S0176-1617(96)80071-X
Schmidt, S. B., Jensen, P. E., & Husted, S. (2016). Manganese deficiency in plants: The impact on photosystem II. Trends in Plant Science, 21(7), 622–632. https://doi.org/10.1016/j.tplants.2016.03.001
Valencia, J., Vélez, J., & Arévalo, J. (2018). Evaluation of irrigation in roses in a suitable substrate with three water depths and the percentage of drainage. Agronomía Colombiana, 36(3), 266–273. https://doi.org/10.15446/agron.colomb.v36n3.73912
Yu, E., Zhao, R., Cai, Y., Huang, J., Li, C., Li, C., Mei, L., Bao, L., Chen, J., & Zhu, S. (2019). Determination of manganese content in cottonseed meal using near-infrared spectrometry and multivariate calibration. Journal of Cotton Research, 2, 1–7. https://doi.org/10.1186/s42397-019-0030-5
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2024 Agronomía Colombiana

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)

Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.