Physiological adaptations of the Japanese plum tree for agricultural productivity: A promising crop for high altitude tropics
Adaptaciones fisiológicas del ciruelo japonés para productividad agrícola: un cultivo promisorio para el trópico alto
DOI:
https://doi.org/10.15446/agron.colomb.v42n1.111402Keywords:
Prunus salicina Lindl., ecophysiology, stone fruit, dormancy, flowering, harvest (en)Prunus salicina Lindl., ecofisiología, fruta de hueso, dormancia, floración, cosecha (es)
Downloads
The Japanese plum tree is of great importance in the productive development of Colombian fruit growers due to its nutritional contribution to human health, its great adaptability in the tropical highlands, and its good yields. This review presents the current investigative state of physiology of this plant and its management in tropical highlands, including aspects such as its ecophysiology, forced production, gas exchange, flowering, pollination, and fruit development. In Colombia, Japanese plum production systems are adapted between 1,670 and 2,900 m a.s.l., average solar brightness of 1,400 h per year, 12 h photoperiods, temperatures between 14 and 20°C during the day and 6 and 8°C during the night, and rainfall between 700 and 1,600 mm per year. Under these conditions, management can be implemented to produce cyclical crops of the Japanese plum. This management consists of the selection of varieties with low chilling requirement, chemical defoliation, proper fertilization, fruit and green pruning, and the application of chemical substances that promote the breaking of flower buds. Flowering and pollination require a high specificity so that they do not present incompatibility. The growth and development of the fruit requires 1,538 degree days until harvest. This review indicates the great adaptability, management, and production of Japanese plum in the Colombian high tropics.
El ciruelo japonés es de gran importancia en el desarrollo productivo de los fruticultores colombianos, debido a su aporte nutricional a la salud humana, su gran adaptabilidad a la altitud tropical y sus buenos rendimientos. Esta revisión presenta el estado investigativo actual de la fisiología de esta planta y su manejo en tierras altas tropicales, incluyendo aspectos como su ecofisiología, producción forzada, intercambio gaseoso, floración, polinización y desarrollo de frutos. En Colombia, los sistemas de producción de ciruela japonesa están adaptados entre 1.670 y 2.900 m s.n.m., brillo solar promedio de 1.400 h anuales, fotoperiodos de 12 h, temperaturas entre 14 y 20°C durante el día y 6 y 8°C durante la noche, y precipitaciones entre 700 y 1.600 mm anuales. Debido a estas condiciones, se puede implementar un manejo para producir cultivos cíclicos de ciruela japonesa. Este manejo consiste en la selección de variedades con bajo requerimiento de frío, defoliación química, adecuada fertilización, poda de fructificación y poda en verde, y la aplicación de sustancias químicas que favorezcan la brotación de las yemas florales. La floración y polinización requieren una alta especificidad para que no presenten incompatibilidad. El crecimiento y desarrollo del fruto requiere 1.538 grados día hasta la cosecha. Esta revisión indica la gran adaptabilidad, manejo y producción de la ciruela japonesa en el trópico alto colombiano.
References
Agronet. (2021). Estadísticas agropecuarias. Ministerio de Agricultura. https://www.agronet.gov.co/estadistica/Paginas/home.aspx
Agustí, M. (2010). Fruticultura (2nd ed.). Ediciones Mundi-Prensa.
Almaguer-Vargas, G., Espinosa-Espinosa, R. J., Luna-Contreras, A., & Paz-Solórzano, G. C. (2000). Aplicación de promotores de la brotación en ciruelo japonés (Prunus salicina Lind.) ‘Shiro’ y ‘Santa Rosa’. Revista Chapingo Serie Horticultura, 6(1), 111–115. https://revistas.chapingo.mx/horticultura/?section=articles&subsec=issues&numero=16&articulo=279 DOI: https://doi.org/10.5154/r.rchsh.2000.01.010
Alvarado-Raya, H., Rodríguez-Alcázar, J., Calderón-Zavala, G., & Cárdenas-Soriano, E. (2000). El thidiazurón, la brotación floral y las dimensiones del ovario en ciruelo japonés (Prunus salicina l.) ‘Shiro’. Agrociencia, 34(3), 321–327. https://www.redalyc.org/pdf/302/30234308.pdf
Álvarez-Herrera, J. G., Deaquiz, Y. A., & Rozo-Romero, X. (2021). Effect of storage temperature and maturity stage on the postharvest period of ‘Horvin’ plums (Prunus domestica L.). Ingeniería e Investigación, 41(2), Article e82530. https://doi.org/10.15446/ing.investig.v41n2.82530 DOI: https://doi.org/10.15446/ing.investig.v41n2.82530
Basile, B., Mariscal, M. J., Day, K. R., Johnson, R. S., & DeJong, T. M. (2002). Japanese plum (Prunus salicina L.) fruit growth: Seasonal pattern of source/sink limitations. Journal of the American Pomological Society, 56(2), 86–93.
Buitrago, M., Fischer, G., & Campos, T. (1992). Effect of hydrogen cyanamide on japanese plums in the region of Nuevo Colon, Boyacá. Acta Horticulturae, 310, 99–104. https://doi.org/10.17660/ActaHortic.1992.310.11 DOI: https://doi.org/10.17660/ActaHortic.1992.310.11
Campos, T. (2013). Especies y variedades de hojas caduca en Colombia. In D. Miranda, G. Fischer, G., & C. Carranza (Eds.), Los frutales caducifolios en el trópico: situación actual, sistemas de cultivo y plan de desarrollo (pp. 47–65). Sociedad Colombiana de Ciencias Hortícolas. http://hdl.handle.net/20.500.12324/33528
Casierra-Posada, F., Barreto, V. E., & Fonseca, O. L. (2004). Crecimiento de frutos y ramas de duraznero (Prunus persica L). Agronomía Colombiana, 22(1), 40–45. https://revistas.unal.edu.co/index.php/agrocol/article/view/17766
Castro, A., & Puentes, G. (2012). Ciruelo y durazno. In G. Fischer (Ed.), Manual para el cultivo de frutales en el trópico (pp. 657–681). Produmedios.
Deng, L., Wang, T., Hu, J., Yang, X., Yao, Y., Jin, Z., Huang, Z., Sun, G., Xiong, B., Liao, L., & Wang, Z. (2022). Effects of pollen sources on fruit set and fruit characteristics of ‘Fengtangli’ plum (Prunus salicina Lindl.) based on microscopic and transcriptomic analysis. International Journal of Molecular Sciences, 23(21), Article 12959. https://doi.org/10.3390/ijms232112959 DOI: https://doi.org/10.3390/ijms232112959
Dennis Jr., F. G. (2000). Flowering, fruit set and development under warm conditions. In A. Erez (Ed.), Temperate fruit crops in warm climates (pp. 101–122). Springer. https://doi.org/10.1007/978-94-017-3215-4_5 DOI: https://doi.org/10.1007/978-94-017-3215-4_5
Eduardo del Angel, J. J., Tijerina-Chávez, L., Acosta-Hernández, R., & López-Jiménez, A. (2001). Producción de ciruelo con fertirriego en función de contenidos de humedad y coberturas orgánicas. Terra Latinoamericana, 19(4), 317–326. https://www.redalyc.org/articulo.oa?id=57319404
Egea, J. A., Caro, M., García-Brunton, J., Gambín, J., Egea, J., & Ruiz, D. (2022). Agroclimatic metrics for the main stone fruit producing areas in Spain in current and future climate change scenarios: Implications from an adaptive point of view. Frontiers in Plant Science, 13, Article 842628. https://doi.org/10.3389/fpls.2022.842628 DOI: https://doi.org/10.3389/fpls.2022.842628
Erez, A. (1986). The significance of the length of the leafless stage in deciduous fruit trees on fruit production potential. In A. N. Lakso, & F. Lenz (Eds.), The regulation of photosynthesis in fruit trees. New York State Agricultural Experiment Station.
Erez, A. (2000). Bud dormancy: phenomenon, problems and solutions in the tropics and subtropics. In A. Erez (Ed.), Temperate fruit crops in warm climates (pp. 17–48). Springer. https://doi.org/10.1007/978-94-017-3215-4_2 DOI: https://doi.org/10.1007/978-94-017-3215-4_2
Erogul, D., & Sen, F. (2015). Effects of gibberellic acid treatments on fruit thinning and fruit quality in Japanese plum (Prunus salicina Lindl.). Scientia Horticulturae, 186, 137–142. https://doi.org/10.1016/j.scienta.2015.02.019 DOI: https://doi.org/10.1016/j.scienta.2015.02.019
Fadón, E., Herrera, S., Guerrero, B. I., Guerra, M. E., & Rodrigo, J. (2020). Chilling and heat requirements of temperate stone fruit trees (Prunus sp.). Agronomy, 10(3), Article 409. https://doi.org/10.3390/agronomy10030409 DOI: https://doi.org/10.3390/agronomy10030409
Falavigna, V. S., Guitton, B., Costes, E., & Andrés, F. (2019). I want to (bud) break free: The potential role of DAM and SVP-like genes in regulating dormancy cycle in temperate fruit trees. Frontiers in Plant Science, 9, Article 1990. https://doi.org/10.3389/fpls.2018.01990 DOI: https://doi.org/10.3389/fpls.2018.01990
Fang, B., Xu, Y., & Yu, J. (2021). The complete chloroplast genome sequence of Prunus salicina ‘Wushan plum’. Mitochondrial DNA Part B, 6(3), 1243–1244. https://doi.org/10.1080/23802359.2021.1904802 DOI: https://doi.org/10.1080/23802359.2021.1904802
Fang, Z. Z., Lin-Wang, K., Dai, H., Zhou, D. R., Jiang, C. C., Espley, R. V., Deng, C., Lin, Y. J., Pan, S. L., & Ye, X. F. (2022). The genome of low-chill Chinese plum “Sanyueli” (Prunus salicina Lindl.) provides insights into the regulation of the chilling requirement of flower buds. Molecular Ecology Resources, 22(5), 1919–1938. https://doi.org/10.1111/1755-0998.13585 DOI: https://doi.org/10.1111/1755-0998.13585
Fanning, K. J., Topp, B., Russell, D., Stanley, R., & Netzel, M. (2014). Japanese plums (Prunus salicina Lindl.) and phytochemicals – breeding, horticultural practice, postharvest storage, processing and bioactivity. Journal of the Science of Food and Agriculture, 94(11), 2137–2147. https://doi.org/10.1002/jsfa.6591 DOI: https://doi.org/10.1002/jsfa.6591
FAO. (2023). FAOSTAT - Food and Agriculture Organization of the United Nations Statistical Division. https://www.fao.org/faostat/en/#data/QCL
Faust, M. (2000). Physiological considerations for growing temperate-zone fruit crops in warm climates. In A. Erez (Ed.), Temperate fruit crops in warm climates (pp. 137–156). Springer https://doi.org/10.1007/978-94-017-3215-4_7 DOI: https://doi.org/10.1007/978-94-017-3215-4_7
Fischer, G. (1992a). Present state and development of deciduous fruit culture in Boyacá, Colombia. Acta Horticulturae, 310, 41–50. https://doi.org/10.17660/ActaHortic.1992.310.4 DOI: https://doi.org/10.17660/ActaHortic.1992.310.4
Fischer, G. (1992b). Técnica de suprimir el reposo invernal del manzano en el altiplano colombiano. Proceedings of the Interamerican Society for Tropical Horticulture, 36, 49–54. https://www.researchgate.net/publication/256702824_Tecnica_de_suprimir_el_reposo_del_manzano_para_cosechas_continuas_en_el_altiplano_colombiano
Fischer, G. (1993). Fisiología en la producción de dos cosechas anuales en manzano y duraznero. Agrodesarrollo, 4(1-2), 18–31.
Fischer, G. (2000). Ecophysiological aspects of fruit growing in tropical highlands. Acta Horticulturae, 531, 91–98. https://doi.org/10.17660/ActaHortic.2000.531.13 DOI: https://doi.org/10.17660/ActaHortic.2000.531.13
Fischer, G. (2013). Comportamiento de los frutales caducifolios en el trópico. In D. Miranda, G. Fischer, & C. Carranza (Eds.), Los frutales caducifolios en el trópico: Situación actual, sistemas de cultivo y plan de desarrollo (pp. 30–45). Sociedad Colombiana de Ciencias Hortícolas.
Fischer, G., Balaguera-López, H. E., Parra-Coronado, A., & Magnitskiy, S. (2023). Adaptation of fruit trees to different elevations in the tropical Andes. In S. Tripathi, R. Bhadouria, P. Srivastava, R. Singh, & R. S. Devi (Eds.), Ecophysiology of tropical plants - recent trends and future perspectives (pp. 193–208). CRC Press. https://doi.org/10.1201/9781003335054 DOI: https://doi.org/10.1201/9781003335054-22
Fischer, G., Casierra-Posada, F., & Villamizar, C. (2010). Producción forzada de duraznero (Prunus persica (L.) Batsch) en el altiplano tropical de Boyacá (Colombia). Revista Colombiana de Ciencias Hortícolas, 4(1), 19–32. https://revistas.uptc.edu.co/index.php/ciencias_horticolas/article/view/1223 DOI: https://doi.org/10.17584/rcch.2010v4i1.1223
Fischer, G., Orduz-Rodríguez, J. O., & Amarante, C. V. T. (2022). Sunburn disorder in tropical and subtropical fruits. A review. Revista Colombiana de Ciencias Hortícolas, 16(3), Article e15703. https://doi.org/10.17584/rcch.2022v16i3.15703 DOI: https://doi.org/10.17584/rcch.2022v16i3.15703
Fischer, G., Parra-Coronado, A., & Balaguera-López, H. E. (2022). Altitude as a determinant of fruit quality with emphasis on the Andean tropics of Colombia. A review. Agronomía Colombiana, 40(2), 212–227. https://doi.org/10.15446/agron.colomb.v40n2.101854 DOI: https://doi.org/10.15446/agron.colomb.v40n2.101854
George, A. P., & Erez, A. (2000). Stone fruit species under warm subtropical and tropical climates. In A. Erez (Ed.), Temperate fruit crops in warm climates (pp. 231–265). Springer. https://doi.org/10.1007/978-94-017-3215-4_9 DOI: https://doi.org/10.1007/978-94-017-3215-4_9
González, M., Salazar, E., Cabrera, S., Olea, P., & Carrasco, B. (2016). Analysis of anthocyanin biosynthesis genes expression profiles in contrasting cultivars of Japanese plum (Prunus salicina L.) during fruit development. Gene Expression Patterns, 21(1), 54–62. https://doi.org/10.1016/j.gep.2016.06.005 DOI: https://doi.org/10.1016/j.gep.2016.06.005
González-Pérez, J. S., Becerril-Román, A. E., Quevedo-Nolasco, A., Velasco-Cruz, C., & Jaén-Contreras, D. (2018). Área foliar y eficiencia en el uso de la radiación del ciruelo japonés (Prunus salicina) durante un ciclo fenológico. Agro Productividad, 11(10), 19–26. https://doi.org/10.32854/agrop.v11i10.1239 DOI: https://doi.org/10.32854/agrop.v11i10.1239
González-Pérez, J. S., Quevedo-Nolasco, A., Becerril-Román, A. E., Velasco-Cruz, C., & Jaén-Contreras, D. (2018). Fenología del ciruelo japonés cv. Methley injertado sobre ciruelo mirobolano, en Texcoco, México. Agro Productividad, 11(10), 33–41. https://doi.org/10.32854/agrop.v11i10.1241 DOI: https://doi.org/10.32854/agrop.v11i10.1241
González-Rossia, D., Juan, M., Reig, C., & Agustí, M. (2006). The inhibition of flowering by means of gibberellic acid application reduces the cost of hand thinning in Japanese plums (Prunus salicina Lindl.). Scientia Horticulturae, 110, 319–323. https://doi.org/10.1016/j.scienta.2006.07.022 DOI: https://doi.org/10.1016/j.scienta.2006.07.022
Guerra, M. E., & Rodrigo, J. (2015). Japanese plum pollination: A review. Scientia Horticulturae, 197(14), 674–686. https://doi.org/10.1016/j.scienta.2015.10.032 DOI: https://doi.org/10.1016/j.scienta.2015.10.032
Gutiérrez-Villamil, D. A., Álvarez-Herrera, J. G., & Fischer, G. (2022). Performance of the ‘Anna’ apple (Malus domestica Borkh.) in Tropical Highlands: A review. Revista de Ciencias Agrícolas, 39(1), 123–141. https://doi.org/10.22267/rcia.223901.175 DOI: https://doi.org/10.22267/rcia.223901.175
Hajlaoui, H., Maatallah, S., Guizani, M., Boughattas, N. E. H., Guesmi, A., Ennajeh, M., Dabbou, S., & Lopez-Lauri, F. (2022). Effect of regulated deficit irrigation on agronomic parameters of three plum cultivars (Prunus salicina L.) under semi-arid climate conditions. Plants, 11(12), Article 1545. https://doi.org/10.3390/plants11121545 DOI: https://doi.org/10.3390/plants11121545
Hamdani, A., Bouda, S., Hssaini, L., Adiba, A., Kouighat, M., & Razouk, R. (2023). The effect of heat stress on yield, growth, physiology and fruit quality in Japanese plum ‘Angelino’. Vegetos, 1–10. https://doi.org/10.1007/s42535-023-00644-y DOI: https://doi.org/10.1007/s42535-023-00644-y
Hamdani, A., Hssaini, L., Bouda, S., Adiba, A., & Razouk, R. (2022). Japanese plums behavior under water stress: Impact on yield and biochemical traits. Heliyon, 8(4), Article e09278. https://doi.org/10.1016/j.heliyon.2022.e09278 DOI: https://doi.org/10.1016/j.heliyon.2022.e09278
Hamdani, A., Hssaini, L., Bouda, S., Charafi, J., Adiba, A., Boutagayout, A., & Razouk, R. (2023). Agronomic and physiological response of various Japanese plums (Prunus salicina L.) to severe water stress. Vegetos, 1–13. https://doi.org/10.1007/s42535-022-00544-7 DOI: https://doi.org/10.1007/s42535-022-00544-7
Harman, Y., & Sen, F. (2016). The effect of different concentrations of pre-harvest gibberellic acid on the quality and durability of ‘Obilnaja’ and ‘Black Star’ plum varieties. Food Science and Technology, 36(2), 362–368. https://doi.org/10.1590/1678-457X.0108 DOI: https://doi.org/10.1590/1678-457X.0108
Hartmann, W., & Neumuller, M. (2009). Plum breeding. In S. Mohan Jain, & P. M. Priyadarshan (Eds.), Breeding plantation tree crops: temperate species (pp. 161–231). Springer, New York. https://doi.org/10.1007/978-0-387-71203-1_6 DOI: https://doi.org/10.1007/978-0-387-71203-1_6
IPCC. (2021). Summary for Policymakers. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou (Eds.), Climate Change 2021: The Physical Science Basis. Contribution of working group I to the sixth assessment report of the Intergovernmental Panel on Climate Change (pp. 3–32). Cambridge University Press. https://doi.org/10.1017/9781009157896.001
Jiang, C., Zeng, S., Yang, J., & Wang, X. (2023). Genome-wide identification and expression profiling analysis of SWEET family genes involved in fruit development in plum (Prunus salicina Lindl). Genes, 14(9), Article 1679. https://doi.org/10.3390/genes14091679 DOI: https://doi.org/10.3390/genes14091679
Jovanović, N., Motsei, N., Mashabatu, M., & Dube, T. (2023). Modelling soil water redistribution in irrigated Japanese plum (Prunus salicina) orchards in the Western Cape (South Africa). Horticulturae, 9(3), Article 395. https://doi.org/10.3390/horticulturae9030395 DOI: https://doi.org/10.3390/horticulturae9030395
Kang, Y.-S., Park, K.-S., Kim, E.-R., Jeong, J.-C., & Ryu, C.-S. (2023). Estimation of the total nonstructural carbohydrate concentration in apple trees using hyperspectral imaging. Horticulturae, 9, Article 967. https://doi.org/10.3390/horticulturae9090967 DOI: https://doi.org/10.3390/horticulturae9090967
Klein, I., & Weinbaum, S. A. (2000). Fertilization of temperate-zone fruit trees in warm and dry climates. In A. Erez (Ed.), Temperate fruit crops in warm climates (pp. 77–100). Springer. https://doi.org/10.1007/978-94-017-3215-4_4 DOI: https://doi.org/10.1007/978-94-017-3215-4_4
Looney, N. E., & Jackson, D.. (2010). Stone fruit. In D. L. Jackson, N.E. Looney, & M. Morley-Bunker (Eds.), Temperate and subtropical fruit production (3rd ed., pp. 171–188). CABI Publishing. DOI: https://doi.org/10.1079/9781845935016.0161
Luedeling, E. (2012). Climate change impacts on winter chill for temperate fruit and nut production: A review. Scientia Horticulturae, 144, 218–229. https://doi.org/10.1016/j.scienta.2012.07.011 DOI: https://doi.org/10.1016/j.scienta.2012.07.011
Ma, X., Xiang, P., Yuan, X., & Liu, X. (2023). Logistic regression analysis of relationship between severity of fruit splitting and mineral element content of Prunus salicina Lindl. Journal of Plant Nutrition, 46(10), 2488–2495. https://doi.org/10.1080/01904167.2022.2155545 DOI: https://doi.org/10.1080/01904167.2022.2155545
Maged, S. M., El-Abd, M. A. M., & Kotb, H. R. M. (2020). Improve yield and fruit quality of plum cv “African Rose” by different thinning treatments. Egyptian Journal of Horticulture, 47(2), 149–159. https://doi.org/10.21608/ejoh.2020.47863.1151 DOI: https://doi.org/10.21608/ejoh.2020.47863.1151
Makeredza, B., Jooste, M., Lötze, E., Schmeisser, M. & Steyn, W. J. (2018). Canopy factors influencing sunburn and fruit quality of Japanese plum (Prunus salicina Lindl.). Acta Horticulturae, 1228, 121–128. https://doi.org/10.17660/ActaHortic.2018.1228.18 DOI: https://doi.org/10.17660/ActaHortic.2018.1228.18
Miranda, D., & Carranza, C. (2013). Caracterización, clasificación y tipificación de los sistemas de producción de caducifolios: ciruelo, duraznero, manzano y peral en zonas productoras de Colombia. In D. Miranda, G. Fischer, & C. Carranza (Eds.), Los frutales caducifolios en el trópico: situación actual, sistemas de cultivo y plan de desarrollo (pp. 87–114). Sociedad Colombiana de Ciencias Hortícolas.
Nautiyal, P., Bhaskar, R., Papnai, G., Joshi, N., & Supyal, V. (2020). Impact of climate change on apple phenology and adaptability of Anna variety (low chilling cultivar) in lower hills of Uttarakhand. International Journal of Current Microbiology and Applied Sciences, 9(9), 453–460. https://doi.org/10.20546/ijcmas.2020.909.057 DOI: https://doi.org/10.20546/ijcmas.2020.909.057
Okie, W. R., & Ramming, D. W. (1999). Plum breeding worldwide. HortTechnology, 9(2), 162–176. https://doi.org/10.21273/HORTTECH.9.2.162 DOI: https://doi.org/10.21273/HORTTECH.9.2.162
Orduz-Ríos, F., Suárez-Parra, K. V., Serrano-Cely, P. A., Serrano-Agudelo, P. C., & Forero-Pineda, N. (2020). Evaluation of N-P-K-Ca-Mg dynamics in plum (Prunus salicina Lindl.) var. Horvin under nursery conditions. Revista Colombiana de Ciencias Hortícolas, 14(3), 334–341. https://doi.org/10.17584/rcch.2020v14i3.11941 DOI: https://doi.org/10.17584/rcch.2020v14i3.11941
Orjuela-Angulo, M., Dussán-Sarria, S., & Camacho-Tamayo, J. H. (2022). Effect of some edaphic conditions on physicochemical and physiological characteristics of ‘Horvin’ plum fruit. Revista Colombiana de Ciencias Hortícolas, 16(3), Article e15180. https://doi.org/10.17584/rcch.2022v16i3.15180 DOI: https://doi.org/10.17584/rcch.2022v16i3.15180
Orjuela-Angulo, M., Parra-Coronado, A., & Camacho-Tamayo, J. H. (2022). Base temperature for a phenological stage in plum cultivar Horvin (Prunus salicina Lindl.). Revista Colombiana de Ciencias Hortícolas, 16(3), Article e15179. https://doi.org/10.17584/rcch.2022v16i3.15179 DOI: https://doi.org/10.17584/rcch.2022v16i3.15179
Ormistas, J. (1993). Especies y variedades. In A. Sarmiento, & C. Naranjo (Eds.), Frutales caducifolios: manzano, peral, durazno y ciruelo (pp. 17–26). SIAC-Fenalce.
Patiño, L., & Miranda, D. (2013). Situación actual de los frutales caducifolios en el mundo y en Colombia. In D. Miranda, G. Fischer, & C. Carranza (Eds.), Los frutales caducifolios en el trópico: situación actual, sistemas de cultivo y plan de desarrollo (pp. 9–20). Sociedad Colombiana de Ciencias Hortícolas.
Pavanello, A. P., Zoth, M., & Ayub, R. A. (2018). Manage of crop load to improve fruit quality in plums. Revista Brasileira de Fruticultura, 40(4), Article e-721. https://doi.org/10.1590/0100-29452018721 DOI: https://doi.org/10.1590/0100-29452018721
Pino, J. A., & Quijano, C. E. (2012). Study of the volatile compounds from plum (Prunus domestica L. cv. Horvin) and estimation of their contribution to the fruit aroma. Food Science and Technology, 32(1), 76–83. https://doi.org/10.1590/S0101-20612012005000006 DOI: https://doi.org/10.1590/S0101-20612012005000006
Puentes, G. A., Rodríguez, L. F., & Bermúdez, L. T. (2008). Análisis de grupo de las empresas productoras de frutales caducifolios del departamento de Boyacá. Agronomía Colombiana, 26(1), 146–154. https://revistas.unal.edu.co/index.php/agrocol/article/view/13929
Puentes Montañéz, G. A. (2006). Sistema de producción de frutales caducifolios en el departamento de Boyacá. Equidad y Desarrollo, 1(5), 39–46. https://doi.org/10.19052/ed.344 DOI: https://doi.org/10.19052/ed.344
Quevedo-García, E., Darghan, A. E., & Fischer, G. (2017). Classification with linear discriminant analysis of morphological variables in peach (Prunus persica L. Batsch) ‘Jarillo’ in the Santandereana Mountains, Colombia. Revista Colombiana de Ciencias Hortícolas, 11(1), 39–47. https://doi.org/10.17584/rcch.2017v11i1.6140 DOI: https://doi.org/10.17584/rcch.2017v11i1.6140
Rakesh, K., Sharma, D. D., Gopal, S., Bhawna, K., & Kuchay, M. A. (2020). Effect of different weed management practices on soil properties and soil and leaf nutrient content of plum (Prunus salicina L.) cv Red Beaut. International Journal of Farm Sciences, 10(3-4), 93–97. https://doi.org/10.5958/2250-0499.2020.00059.2 DOI: https://doi.org/10.5958/2250-0499.2020.00059.2
Ramírez, F., & Kallarackal, J. (2014). Ecophysiology of temperate fruit trees in the tropics. In J. A. Daniels (Ed.), Advances in environmental research (pp. 1–13). Nova Science Pub.
Ramming, D. W., & Cociu, V. (1991). Plums (Prunus). Acta Horticulturae, 290, 235–290. https://doi.org/10.17660/ActaHortic.1991.290.6 DOI: https://doi.org/10.17660/ActaHortic.1991.290.6
Richardson, E. A., Seeley, S. D., & Walker, D. R. (1974). A model for estimating the completion of rest for ‘Redhaven’ and ‘Elberta’ peaches. HortScience, 9(4), 331–332. https://doi.org/10.2127/HORTSCI.9.4.331 DOI: https://doi.org/10.21273/HORTSCI.9.4.331
Ruiz, D., Egea, J., Salazar, J. A., & Campoy, J. A. (2018). Chilling and heat requirements of Japanese plum cultivars for flowering. Scientia Horticulturae, 242, 164–169. https://doi.org/10.1016/j.scienta.2018.07.014 DOI: https://doi.org/10.1016/j.scienta.2018.07.014
Samperio, A., Prieto, M. H., Blanco-Cipollone, F., Vivas, A., & Moñino, M. J. (2015). Effects of post-harvest deficit irrigation in ‘Red Beaut’ Japanese plum: Tree water status, vegetative growth, fruit yield, quality and economic return. Agricultural Water Management, 150, 92–102. https://doi.org/10.1016/j.agwat.2014.12.006 DOI: https://doi.org/10.1016/j.agwat.2014.12.006
Shen, S. Hu, X., Cheng, J., Lou, L., Huan, C., & Zheng, X. (2023). PsbZIP1 and PsbZIP10 induce anthocyanin synthesis in plums (Prunus salicina cv. Taoxingli) via PsUFGT by methyl salicylate treatment during postharvest. Postharvest Biology and Technology, 203, Article 112396. https://doi.org/10.1016/j.postharvbio.2023.112396 DOI: https://doi.org/10.1016/j.postharvbio.2023.112396
Stern, R. A., Flaishman, M., & Ben-Arie, R. (2007). Effect of synthetic auxins on fruit size of five cultivars of Japanese plum (Prunus salicina Lindl.). Scientia Horticulturae, 112(3), 304–309. https://doi.org/10.1016/j.scienta.2006.12.032 DOI: https://doi.org/10.1016/j.scienta.2006.12.032
Topp, B. L., Russell, D. M., Neumüller, M., Dalbó, M. A., & Liu, W. (2012). Plum. In M. Badenes, M., & D. Byrne (Eds.), Fruit breeding. Handbook of plant breeding (vol. 8, pp. 571–621). Springer. https://doi.org/10.1007/978-1-4419-0763-9_15 DOI: https://doi.org/10.1007/978-1-4419-0763-9_15
Vaca-Uribe, J. L., Figueroa, L. L., Santamaría, M., & Poveda, K. (2021). Plant richness and blooming cover affect abundance of flower visitors and network structure in Colombian orchards. Agricultural and Forest Entomology, 23(4), 545–556. https://doi.org/10.1111/afe.12460 DOI: https://doi.org/10.1111/afe.12460
Vera Rodríguez, N. R., & Pérez Chasoy, L. J. (2021). Evaluación de los parámetros morfofisiológicos de crecimiento del área foliar y diámetros del fruto en 13 árboles de ciruelo ([Prunus salicina (Lindl.)] cv. Horvin, en el municipio de Pamplona [Undegraduate thesis, Facultad de Ciencias Agrarias, Ingeniería Agronómica, Universidad de Pamplona]. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/3114
Wang, X. M., Huang, T., Wu, W. L., Li, W. L., & Zhu, H. (2016). Effects of salt stress on photosynthetic characteristics of beach plum and other Prunus species. Acta Horticulturae, 1112, 233–240. https://doi.org/10.17660/ActaHortic.2016.1112.32 DOI: https://doi.org/10.17660/ActaHortic.2016.1112.32
Wei, J., Yang, Q., Ni, J., Gao, Y., Tang, Y., Bai, S., & Teng, Y. (2022). Early defoliation induces auxin redistribution, promoting paradormancy release in pear buds. Plant Physiology, 190(4), 2739–2756. https://doi.org/10.1093/plphys/kiac426 DOI: https://doi.org/10.1093/plphys/kiac426
Westwood, M. (1993). Temperate-zone pomology: physiology and culture (3th ed.). Timber Press.
Xue, S., Shi, T., Luo, W., Ni, X., Iqbal, S., Ni, Z., Huang, X., Yao, D., Shen, Z., & Gao, Z. (2019). Comparative analysis of the complete chloroplast genome among Prunus mume, P. armeniaca, and P. salicina. Horticulture Research, 6(1), 1–13. https://doi.org/10.1038/s41438-019-0171-1 DOI: https://doi.org/10.1038/s41438-019-0171-1
Yu, X., Ali, M. M., Gull, S., Fang, T., Wu, W., & Chen, F. (2023). Transcriptome data-based identification and expression profiling of genes potentially associated with malic acid accumulation in plum (Prunus salicina Lindl.). Scientia Horticulturae, 322, Article 112397. https://doi.org/10.1016/j.scienta.2023.112397 DOI: https://doi.org/10.1016/j.scienta.2023.112397
Zhang, G., Cui, X., Niu, J., Ma, F., & Li, P. (2021). Visible light regulates anthocyanin synthesis via malate dehydrogenases and the ethylene signaling pathway in plum (Prunus salicina L.). Physiologia Plantarum, 172(3), 1739–1749. https://doi.org/10.1111/ppl.13383 DOI: https://doi.org/10.1111/ppl.13383
Ziska, L. H., Seemann, J. R., & DeJong, T. M. (1990). Salinity induced limitations on photosynthesis in Prunus salicina, a deciduous tree species. Plant Physiology, 93(3), 864–870. https://doi.org/10.1104/pp.93.3.864 DOI: https://doi.org/10.1104/pp.93.3.864
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Mayerlin Orjuela-Angulo, Jesus H. Camacho-Tamayo, Helber E. Balaguera-López. (2024). Cultivation location and agrometeorological conditions influence pre-harvest variables of Japanese plum fruit in the Colombian tropics. Revista Brasileira de Engenharia Agrícola e Ambiental, 28(12) https://doi.org/10.1590/1807-1929/agriambi.v28n12e284789.
2. Mayerlin Orjuela-Angulo, Helber Enrique Balaguera-Lopez, Gerhard Fischer. (2024). Determining of thermal time and base temperature during the reproductive phase of the Japanese plum in the tropical Andes. Revista Colombiana de Ciencias Hortícolas, 18(2) https://doi.org/10.17584/rcch.2024v18i2.17433.
3. Munashe Mashabatu, Nonofo Motsei, Nebojsa Jovanovic, Luxon Nhamo. (2025). A Validation of FruitLook Data Using Eddy Covariance in a Fully Mature and High-Density Japanese Plum Orchard in the Western Cape, South Africa. Water, 17(3), p.324. https://doi.org/10.3390/w17030324.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2024 Agronomía Colombiana
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)
Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.