Published

2024-03-05

Physiological adaptations of the Japanese plum tree for agricultural productivity: A promising crop for high altitude tropics

Adaptaciones fisiológicas del ciruelo japonés para productividad agrícola: un cultivo promisorio para el trópico alto

DOI:

https://doi.org/10.15446/agron.colomb.v42n1.111402

Keywords:

Prunus salicina Lindl., ecophysiology, stone fruit, dormancy, flowering, harvest (en)
Prunus salicina Lindl., ecofisiología, fruta de hueso, dormancia, floración, cosecha (es)

Downloads

Authors

The Japanese plum tree is of great importance in the productive development of Colombian fruit growers due to its nutritional contribution to human health, its great adaptability in the tropical highlands, and its good yields. This review presents the current investigative state of physiology of this plant and its management in tropical highlands, including aspects such as its ecophysiology, forced production, gas exchange, flowering, pollination, and fruit development. In Colombia, Japanese plum production systems are adapted between 1,670 and 2,900 m a.s.l., average solar brightness of 1,400 h per year, 12 h photoperiods, temperatures between 14 and 20°C during the day and 6 and 8°C during the night, and rainfall between 700 and 1,600 mm per year. Under these conditions, management can be implemented to produce cyclical crops of the Japanese plum. This management consists of the selection of varieties with low chilling requirement, chemical defoliation, proper fertilization, fruit and green pruning, and the application of chemical substances that promote the breaking of flower buds. Flowering and pollination require a high specificity so that they do not present incompatibility. The growth and development of the fruit requires 1,538 degree days until harvest. This review indicates the great adaptability, management, and production of Japanese plum in the Colombian high tropics.

El ciruelo japonés es de gran importancia en el desarrollo productivo de los fruticultores colombianos, debido a su aporte nutricional a la salud humana, su gran adaptabilidad a la altitud tropical y sus buenos rendimientos. Esta revisión presenta el estado investigativo actual de la fisiología de esta planta y su manejo en tierras altas tropicales, incluyendo aspectos como su ecofisiología, producción forzada, intercambio gaseoso, floración, polinización y desarrollo de frutos. En Colombia, los sistemas de producción de ciruela japonesa están adaptados entre 1.670 y 2.900 m s.n.m., brillo solar promedio de 1.400 h anuales, fotoperiodos de 12 h, temperaturas entre 14 y 20°C durante el día y 6 y 8°C durante la noche, y precipitaciones entre 700 y 1.600 mm anuales. Debido a estas condiciones, se puede implementar un manejo para producir cultivos cíclicos de ciruela japonesa. Este manejo consiste en la selección de variedades con bajo requerimiento de frío, defoliación química, adecuada fertilización, poda de fructificación y poda en verde, y la aplicación de sustancias químicas que favorezcan la brotación de las yemas florales. La floración y polinización requieren una alta especificidad para que no presenten incompatibilidad. El crecimiento y desarrollo del fruto requiere 1.538 grados día hasta la cosecha. Esta revisión indica la gran adaptabilidad, manejo y producción de la ciruela japonesa en el trópico alto colombiano.

References

Agronet. (2021). Estadísticas agropecuarias. Ministerio de Agricultura. https://www.agronet.gov.co/estadistica/Paginas/home.aspx

Agustí, M. (2010). Fruticultura (2nd ed.). Ediciones Mundi-Prensa.

Almaguer-Vargas, G., Espinosa-Espinosa, R. J., Luna-Contreras, A., & Paz-Solórzano, G. C. (2000). Aplicación de promotores de la brotación en ciruelo japonés (Prunus salicina Lind.) ‘Shiro’ y ‘Santa Rosa’. Revista Chapingo Serie Horticultura, 6(1), 111–115. https://revistas.chapingo.mx/horticultura/?section=articles&subsec=issues&numero=16&articulo=279 DOI: https://doi.org/10.5154/r.rchsh.2000.01.010

Alvarado-Raya, H., Rodríguez-Alcázar, J., Calderón-Zavala, G., & Cárdenas-Soriano, E. (2000). El thidiazurón, la brotación floral y las dimensiones del ovario en ciruelo japonés (Prunus salicina l.) ‘Shiro’. Agrociencia, 34(3), 321–327. https://www.redalyc.org/pdf/302/30234308.pdf

Álvarez-Herrera, J. G., Deaquiz, Y. A., & Rozo-Romero, X. (2021). Effect of storage temperature and maturity stage on the postharvest period of ‘Horvin’ plums (Prunus domestica L.). Ingeniería e Investigación, 41(2), Article e82530. https://doi.org/10.15446/ing.investig.v41n2.82530 DOI: https://doi.org/10.15446/ing.investig.v41n2.82530

Basile, B., Mariscal, M. J., Day, K. R., Johnson, R. S., & DeJong, T. M. (2002). Japanese plum (Prunus salicina L.) fruit growth: Seasonal pattern of source/sink limitations. Journal of the American Pomological Society, 56(2), 86–93.

Buitrago, M., Fischer, G., & Campos, T. (1992). Effect of hydrogen cyanamide on japanese plums in the region of Nuevo Colon, Boyacá. Acta Horticulturae, 310, 99–104. https://doi.org/10.17660/ActaHortic.1992.310.11 DOI: https://doi.org/10.17660/ActaHortic.1992.310.11

Campos, T. (2013). Especies y variedades de hojas caduca en Colombia. In D. Miranda, G. Fischer, G., & C. Carranza (Eds.), Los frutales caducifolios en el trópico: situación actual, sistemas de cultivo y plan de desarrollo (pp. 47–65). Sociedad Colombiana de Ciencias Hortícolas. http://hdl.handle.net/20.500.12324/33528

Casierra-Posada, F., Barreto, V. E., & Fonseca, O. L. (2004). Crecimiento de frutos y ramas de duraznero (Prunus persica L). Agronomía Colombiana, 22(1), 40–45. https://revistas.unal.edu.co/index.php/agrocol/article/view/17766

Castro, A., & Puentes, G. (2012). Ciruelo y durazno. In G. Fischer (Ed.), Manual para el cultivo de frutales en el trópico (pp. 657–681). Produmedios.

Deng, L., Wang, T., Hu, J., Yang, X., Yao, Y., Jin, Z., Huang, Z., Sun, G., Xiong, B., Liao, L., & Wang, Z. (2022). Effects of pollen sources on fruit set and fruit characteristics of ‘Fengtangli’ plum (Prunus salicina Lindl.) based on microscopic and transcriptomic analysis. International Journal of Molecular Sciences, 23(21), Article 12959. https://doi.org/10.3390/ijms232112959 DOI: https://doi.org/10.3390/ijms232112959

Dennis Jr., F. G. (2000). Flowering, fruit set and development under warm conditions. In A. Erez (Ed.), Temperate fruit crops in warm climates (pp. 101–122). Springer. https://doi.org/10.1007/978-94-017-3215-4_5 DOI: https://doi.org/10.1007/978-94-017-3215-4_5

Eduardo del Angel, J. J., Tijerina-Chávez, L., Acosta-Hernández, R., & López-Jiménez, A. (2001). Producción de ciruelo con fertirriego en función de contenidos de humedad y coberturas orgánicas. Terra Latinoamericana, 19(4), 317–326. https://www.redalyc.org/articulo.oa?id=57319404

Egea, J. A., Caro, M., García-Brunton, J., Gambín, J., Egea, J., & Ruiz, D. (2022). Agroclimatic metrics for the main stone fruit producing areas in Spain in current and future climate change scenarios: Implications from an adaptive point of view. Frontiers in Plant Science, 13, Article 842628. https://doi.org/10.3389/fpls.2022.842628 DOI: https://doi.org/10.3389/fpls.2022.842628

Erez, A. (1986). The significance of the length of the leafless stage in deciduous fruit trees on fruit production potential. In A. N. Lakso, & F. Lenz (Eds.), The regulation of photosynthesis in fruit trees. New York State Agricultural Experiment Station.

Erez, A. (2000). Bud dormancy: phenomenon, problems and solutions in the tropics and subtropics. In A. Erez (Ed.), Temperate fruit crops in warm climates (pp. 17–48). Springer. https://doi.org/10.1007/978-94-017-3215-4_2 DOI: https://doi.org/10.1007/978-94-017-3215-4_2

Erogul, D., & Sen, F. (2015). Effects of gibberellic acid treatments on fruit thinning and fruit quality in Japanese plum (Prunus salicina Lindl.). Scientia Horticulturae, 186, 137–142. https://doi.org/10.1016/j.scienta.2015.02.019 DOI: https://doi.org/10.1016/j.scienta.2015.02.019

Fadón, E., Herrera, S., Guerrero, B. I., Guerra, M. E., & Rodrigo, J. (2020). Chilling and heat requirements of temperate stone fruit trees (Prunus sp.). Agronomy, 10(3), Article 409. https://doi.org/10.3390/agronomy10030409 DOI: https://doi.org/10.3390/agronomy10030409

Falavigna, V. S., Guitton, B., Costes, E., & Andrés, F. (2019). I want to (bud) break free: The potential role of DAM and SVP-like genes in regulating dormancy cycle in temperate fruit trees. Frontiers in Plant Science, 9, Article 1990. https://doi.org/10.3389/fpls.2018.01990 DOI: https://doi.org/10.3389/fpls.2018.01990

Fang, B., Xu, Y., & Yu, J. (2021). The complete chloroplast genome sequence of Prunus salicina ‘Wushan plum’. Mitochondrial DNA Part B, 6(3), 1243–1244. https://doi.org/10.1080/23802359.2021.1904802 DOI: https://doi.org/10.1080/23802359.2021.1904802

Fang, Z. Z., Lin-Wang, K., Dai, H., Zhou, D. R., Jiang, C. C., Espley, R. V., Deng, C., Lin, Y. J., Pan, S. L., & Ye, X. F. (2022). The genome of low-chill Chinese plum “Sanyueli” (Prunus salicina Lindl.) provides insights into the regulation of the chilling requirement of flower buds. Molecular Ecology Resources, 22(5), 1919–1938. https://doi.org/10.1111/1755-0998.13585 DOI: https://doi.org/10.1111/1755-0998.13585

Fanning, K. J., Topp, B., Russell, D., Stanley, R., & Netzel, M. (2014). Japanese plums (Prunus salicina Lindl.) and phytochemicals – breeding, horticultural practice, postharvest storage, processing and bioactivity. Journal of the Science of Food and Agriculture, 94(11), 2137–2147. https://doi.org/10.1002/jsfa.6591 DOI: https://doi.org/10.1002/jsfa.6591

FAO. (2023). FAOSTAT - Food and Agriculture Organization of the United Nations Statistical Division. https://www.fao.org/faostat/en/#data/QCL

Faust, M. (2000). Physiological considerations for growing temperate-zone fruit crops in warm climates. In A. Erez (Ed.), Temperate fruit crops in warm climates (pp. 137–156). Springer https://doi.org/10.1007/978-94-017-3215-4_7 DOI: https://doi.org/10.1007/978-94-017-3215-4_7

Fischer, G. (1992a). Present state and development of deciduous fruit culture in Boyacá, Colombia. Acta Horticulturae, 310, 41–50. https://doi.org/10.17660/ActaHortic.1992.310.4 DOI: https://doi.org/10.17660/ActaHortic.1992.310.4

Fischer, G. (1992b). Técnica de suprimir el reposo invernal del manzano en el altiplano colombiano. Proceedings of the Interamerican Society for Tropical Horticulture, 36, 49–54. https://www.researchgate.net/publication/256702824_Tecnica_de_suprimir_el_reposo_del_manzano_para_cosechas_continuas_en_el_altiplano_colombiano

Fischer, G. (1993). Fisiología en la producción de dos cosechas anuales en manzano y duraznero. Agrodesarrollo, 4(1-2), 18–31.

Fischer, G. (2000). Ecophysiological aspects of fruit growing in tropical highlands. Acta Horticulturae, 531, 91–98. https://doi.org/10.17660/ActaHortic.2000.531.13 DOI: https://doi.org/10.17660/ActaHortic.2000.531.13

Fischer, G. (2013). Comportamiento de los frutales caducifolios en el trópico. In D. Miranda, G. Fischer, & C. Carranza (Eds.), Los frutales caducifolios en el trópico: Situación actual, sistemas de cultivo y plan de desarrollo (pp. 30–45). Sociedad Colombiana de Ciencias Hortícolas.

Fischer, G., Balaguera-López, H. E., Parra-Coronado, A., & Magnitskiy, S. (2023). Adaptation of fruit trees to different elevations in the tropical Andes. In S. Tripathi, R. Bhadouria, P. Srivastava, R. Singh, & R. S. Devi (Eds.), Ecophysiology of tropical plants - recent trends and future perspectives (pp. 193–208). CRC Press. https://doi.org/10.1201/9781003335054 DOI: https://doi.org/10.1201/9781003335054-22

Fischer, G., Casierra-Posada, F., & Villamizar, C. (2010). Producción forzada de duraznero (Prunus persica (L.) Batsch) en el altiplano tropical de Boyacá (Colombia). Revista Colombiana de Ciencias Hortícolas, 4(1), 19–32. https://revistas.uptc.edu.co/index.php/ciencias_horticolas/article/view/1223 DOI: https://doi.org/10.17584/rcch.2010v4i1.1223

Fischer, G., Orduz-Rodríguez, J. O., & Amarante, C. V. T. (2022). Sunburn disorder in tropical and subtropical fruits. A review. Revista Colombiana de Ciencias Hortícolas, 16(3), Article e15703. https://doi.org/10.17584/rcch.2022v16i3.15703 DOI: https://doi.org/10.17584/rcch.2022v16i3.15703

Fischer, G., Parra-Coronado, A., & Balaguera-López, H. E. (2022). Altitude as a determinant of fruit quality with emphasis on the Andean tropics of Colombia. A review. Agronomía Colombiana, 40(2), 212–227. https://doi.org/10.15446/agron.colomb.v40n2.101854 DOI: https://doi.org/10.15446/agron.colomb.v40n2.101854

George, A. P., & Erez, A. (2000). Stone fruit species under warm subtropical and tropical climates. In A. Erez (Ed.), Temperate fruit crops in warm climates (pp. 231–265). Springer. https://doi.org/10.1007/978-94-017-3215-4_9 DOI: https://doi.org/10.1007/978-94-017-3215-4_9

González, M., Salazar, E., Cabrera, S., Olea, P., & Carrasco, B. (2016). Analysis of anthocyanin biosynthesis genes expression profiles in contrasting cultivars of Japanese plum (Prunus salicina L.) during fruit development. Gene Expression Patterns, 21(1), 54–62. https://doi.org/10.1016/j.gep.2016.06.005 DOI: https://doi.org/10.1016/j.gep.2016.06.005

González-Pérez, J. S., Becerril-Román, A. E., Quevedo-Nolasco, A., Velasco-Cruz, C., & Jaén-Contreras, D. (2018). Área foliar y eficiencia en el uso de la radiación del ciruelo japonés (Prunus salicina) durante un ciclo fenológico. Agro Productividad, 11(10), 19–26. https://doi.org/10.32854/agrop.v11i10.1239 DOI: https://doi.org/10.32854/agrop.v11i10.1239

González-Pérez, J. S., Quevedo-Nolasco, A., Becerril-Román, A. E., Velasco-Cruz, C., & Jaén-Contreras, D. (2018). Fenología del ciruelo japonés cv. Methley injertado sobre ciruelo mirobolano, en Texcoco, México. Agro Productividad, 11(10), 33–41. https://doi.org/10.32854/agrop.v11i10.1241 DOI: https://doi.org/10.32854/agrop.v11i10.1241

González-Rossia, D., Juan, M., Reig, C., & Agustí, M. (2006). The inhibition of flowering by means of gibberellic acid application reduces the cost of hand thinning in Japanese plums (Prunus salicina Lindl.). Scientia Horticulturae, 110, 319–323. https://doi.org/10.1016/j.scienta.2006.07.022 DOI: https://doi.org/10.1016/j.scienta.2006.07.022

Guerra, M. E., & Rodrigo, J. (2015). Japanese plum pollination: A review. Scientia Horticulturae, 197(14), 674–686. https://doi.org/10.1016/j.scienta.2015.10.032 DOI: https://doi.org/10.1016/j.scienta.2015.10.032

Gutiérrez-Villamil, D. A., Álvarez-Herrera, J. G., & Fischer, G. (2022). Performance of the ‘Anna’ apple (Malus domestica Borkh.) in Tropical Highlands: A review. Revista de Ciencias Agrícolas, 39(1), 123–141. https://doi.org/10.22267/rcia.223901.175 DOI: https://doi.org/10.22267/rcia.223901.175

Hajlaoui, H., Maatallah, S., Guizani, M., Boughattas, N. E. H., Guesmi, A., Ennajeh, M., Dabbou, S., & Lopez-Lauri, F. (2022). Effect of regulated deficit irrigation on agronomic parameters of three plum cultivars (Prunus salicina L.) under semi-arid climate conditions. Plants, 11(12), Article 1545. https://doi.org/10.3390/plants11121545 DOI: https://doi.org/10.3390/plants11121545

Hamdani, A., Bouda, S., Hssaini, L., Adiba, A., Kouighat, M., & Razouk, R. (2023). The effect of heat stress on yield, growth, physiology and fruit quality in Japanese plum ‘Angelino’. Vegetos, 1–10. https://doi.org/10.1007/s42535-023-00644-y DOI: https://doi.org/10.1007/s42535-023-00644-y

Hamdani, A., Hssaini, L., Bouda, S., Adiba, A., & Razouk, R. (2022). Japanese plums behavior under water stress: Impact on yield and biochemical traits. Heliyon, 8(4), Article e09278. https://doi.org/10.1016/j.heliyon.2022.e09278 DOI: https://doi.org/10.1016/j.heliyon.2022.e09278

Hamdani, A., Hssaini, L., Bouda, S., Charafi, J., Adiba, A., Boutagayout, A., & Razouk, R. (2023). Agronomic and physiological response of various Japanese plums (Prunus salicina L.) to severe water stress. Vegetos, 1–13. https://doi.org/10.1007/s42535-022-00544-7 DOI: https://doi.org/10.1007/s42535-022-00544-7

Harman, Y., & Sen, F. (2016). The effect of different concentrations of pre-harvest gibberellic acid on the quality and durability of ‘Obilnaja’ and ‘Black Star’ plum varieties. Food Science and Technology, 36(2), 362–368. https://doi.org/10.1590/1678-457X.0108 DOI: https://doi.org/10.1590/1678-457X.0108

Hartmann, W., & Neumuller, M. (2009). Plum breeding. In S. Mohan Jain, & P. M. Priyadarshan (Eds.), Breeding plantation tree crops: temperate species (pp. 161–231). Springer, New York. https://doi.org/10.1007/978-0-387-71203-1_6 DOI: https://doi.org/10.1007/978-0-387-71203-1_6

IPCC. (2021). Summary for Policymakers. In V. Masson-Delmotte, P. Zhai, A. Pirani, S. L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M. I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J. B. R. Matthews, T. K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, & B. Zhou (Eds.), Climate Change 2021: The Physical Science Basis. Contribution of working group I to the sixth assessment report of the Intergovernmental Panel on Climate Change (pp. 3–32). Cambridge University Press. https://doi.org/10.1017/9781009157896.001

Jiang, C., Zeng, S., Yang, J., & Wang, X. (2023). Genome-wide identification and expression profiling analysis of SWEET family genes involved in fruit development in plum (Prunus salicina Lindl). Genes, 14(9), Article 1679. https://doi.org/10.3390/genes14091679 DOI: https://doi.org/10.3390/genes14091679

Jovanović, N., Motsei, N., Mashabatu, M., & Dube, T. (2023). Modelling soil water redistribution in irrigated Japanese plum (Prunus salicina) orchards in the Western Cape (South Africa). Horticulturae, 9(3), Article 395. https://doi.org/10.3390/horticulturae9030395 DOI: https://doi.org/10.3390/horticulturae9030395

Kang, Y.-S., Park, K.-S., Kim, E.-R., Jeong, J.-C., & Ryu, C.-S. (2023). Estimation of the total nonstructural carbohydrate concentration in apple trees using hyperspectral imaging. Horticulturae, 9, Article 967. https://doi.org/10.3390/horticulturae9090967 DOI: https://doi.org/10.3390/horticulturae9090967

Klein, I., & Weinbaum, S. A. (2000). Fertilization of temperate-zone fruit trees in warm and dry climates. In A. Erez (Ed.), Temperate fruit crops in warm climates (pp. 77–100). Springer. https://doi.org/10.1007/978-94-017-3215-4_4 DOI: https://doi.org/10.1007/978-94-017-3215-4_4

Looney, N. E., & Jackson, D.. (2010). Stone fruit. In D. L. Jackson, N.E. Looney, & M. Morley-Bunker (Eds.), Temperate and subtropical fruit production (3rd ed., pp. 171–188). CABI Publishing. DOI: https://doi.org/10.1079/9781845935016.0161

Luedeling, E. (2012). Climate change impacts on winter chill for temperate fruit and nut production: A review. Scientia Horticulturae, 144, 218–229. https://doi.org/10.1016/j.scienta.2012.07.011 DOI: https://doi.org/10.1016/j.scienta.2012.07.011

Ma, X., Xiang, P., Yuan, X., & Liu, X. (2023). Logistic regression analysis of relationship between severity of fruit splitting and mineral element content of Prunus salicina Lindl. Journal of Plant Nutrition, 46(10), 2488–2495. https://doi.org/10.1080/01904167.2022.2155545 DOI: https://doi.org/10.1080/01904167.2022.2155545

Maged, S. M., El-Abd, M. A. M., & Kotb, H. R. M. (2020). Improve yield and fruit quality of plum cv “African Rose” by different thinning treatments. Egyptian Journal of Horticulture, 47(2), 149–159. https://doi.org/10.21608/ejoh.2020.47863.1151 DOI: https://doi.org/10.21608/ejoh.2020.47863.1151

Makeredza, B., Jooste, M., Lötze, E., Schmeisser, M. & Steyn, W. J. (2018). Canopy factors influencing sunburn and fruit quality of Japanese plum (Prunus salicina Lindl.). Acta Horticulturae, 1228, 121–128. https://doi.org/10.17660/ActaHortic.2018.1228.18 DOI: https://doi.org/10.17660/ActaHortic.2018.1228.18

Miranda, D., & Carranza, C. (2013). Caracterización, clasificación y tipificación de los sistemas de producción de caducifolios: ciruelo, duraznero, manzano y peral en zonas productoras de Colombia. In D. Miranda, G. Fischer, & C. Carranza (Eds.), Los frutales caducifolios en el trópico: situación actual, sistemas de cultivo y plan de desarrollo (pp. 87–114). Sociedad Colombiana de Ciencias Hortícolas.

Nautiyal, P., Bhaskar, R., Papnai, G., Joshi, N., & Supyal, V. (2020). Impact of climate change on apple phenology and adaptability of Anna variety (low chilling cultivar) in lower hills of Uttarakhand. International Journal of Current Microbiology and Applied Sciences, 9(9), 453–460. https://doi.org/10.20546/ijcmas.2020.909.057 DOI: https://doi.org/10.20546/ijcmas.2020.909.057

Okie, W. R., & Ramming, D. W. (1999). Plum breeding worldwide. HortTechnology, 9(2), 162–176. https://doi.org/10.21273/HORTTECH.9.2.162 DOI: https://doi.org/10.21273/HORTTECH.9.2.162

Orduz-Ríos, F., Suárez-Parra, K. V., Serrano-Cely, P. A., Serrano-Agudelo, P. C., & Forero-Pineda, N. (2020). Evaluation of N-P-K-Ca-Mg dynamics in plum (Prunus salicina Lindl.) var. Horvin under nursery conditions. Revista Colombiana de Ciencias Hortícolas, 14(3), 334–341. https://doi.org/10.17584/rcch.2020v14i3.11941 DOI: https://doi.org/10.17584/rcch.2020v14i3.11941

Orjuela-Angulo, M., Dussán-Sarria, S., & Camacho-Tamayo, J. H. (2022). Effect of some edaphic conditions on physicochemical and physiological characteristics of ‘Horvin’ plum fruit. Revista Colombiana de Ciencias Hortícolas, 16(3), Article e15180. https://doi.org/10.17584/rcch.2022v16i3.15180 DOI: https://doi.org/10.17584/rcch.2022v16i3.15180

Orjuela-Angulo, M., Parra-Coronado, A., & Camacho-Tamayo, J. H. (2022). Base temperature for a phenological stage in plum cultivar Horvin (Prunus salicina Lindl.). Revista Colombiana de Ciencias Hortícolas, 16(3), Article e15179. https://doi.org/10.17584/rcch.2022v16i3.15179 DOI: https://doi.org/10.17584/rcch.2022v16i3.15179

Ormistas, J. (1993). Especies y variedades. In A. Sarmiento, & C. Naranjo (Eds.), Frutales caducifolios: manzano, peral, durazno y ciruelo (pp. 17–26). SIAC-Fenalce.

Patiño, L., & Miranda, D. (2013). Situación actual de los frutales caducifolios en el mundo y en Colombia. In D. Miranda, G. Fischer, & C. Carranza (Eds.), Los frutales caducifolios en el trópico: situación actual, sistemas de cultivo y plan de desarrollo (pp. 9–20). Sociedad Colombiana de Ciencias Hortícolas.

Pavanello, A. P., Zoth, M., & Ayub, R. A. (2018). Manage of crop load to improve fruit quality in plums. Revista Brasileira de Fruticultura, 40(4), Article e-721. https://doi.org/10.1590/0100-29452018721 DOI: https://doi.org/10.1590/0100-29452018721

Pino, J. A., & Quijano, C. E. (2012). Study of the volatile compounds from plum (Prunus domestica L. cv. Horvin) and estimation of their contribution to the fruit aroma. Food Science and Technology, 32(1), 76–83. https://doi.org/10.1590/S0101-20612012005000006 DOI: https://doi.org/10.1590/S0101-20612012005000006

Puentes, G. A., Rodríguez, L. F., & Bermúdez, L. T. (2008). Análisis de grupo de las empresas productoras de frutales caducifolios del departamento de Boyacá. Agronomía Colombiana, 26(1), 146–154. https://revistas.unal.edu.co/index.php/agrocol/article/view/13929

Puentes Montañéz, G. A. (2006). Sistema de producción de frutales caducifolios en el departamento de Boyacá. Equidad y Desarrollo, 1(5), 39–46. https://doi.org/10.19052/ed.344 DOI: https://doi.org/10.19052/ed.344

Quevedo-García, E., Darghan, A. E., & Fischer, G. (2017). Classification with linear discriminant analysis of morphological variables in peach (Prunus persica L. Batsch) ‘Jarillo’ in the Santandereana Mountains, Colombia. Revista Colombiana de Ciencias Hortícolas, 11(1), 39–47. https://doi.org/10.17584/rcch.2017v11i1.6140 DOI: https://doi.org/10.17584/rcch.2017v11i1.6140

Rakesh, K., Sharma, D. D., Gopal, S., Bhawna, K., & Kuchay, M. A. (2020). Effect of different weed management practices on soil properties and soil and leaf nutrient content of plum (Prunus salicina L.) cv Red Beaut. International Journal of Farm Sciences, 10(3-4), 93–97. https://doi.org/10.5958/2250-0499.2020.00059.2 DOI: https://doi.org/10.5958/2250-0499.2020.00059.2

Ramírez, F., & Kallarackal, J. (2014). Ecophysiology of temperate fruit trees in the tropics. In J. A. Daniels (Ed.), Advances in environmental research (pp. 1–13). Nova Science Pub.

Ramming, D. W., & Cociu, V. (1991). Plums (Prunus). Acta Horticulturae, 290, 235–290. https://doi.org/10.17660/ActaHortic.1991.290.6 DOI: https://doi.org/10.17660/ActaHortic.1991.290.6

Richardson, E. A., Seeley, S. D., & Walker, D. R. (1974). A model for estimating the completion of rest for ‘Redhaven’ and ‘Elberta’ peaches. HortScience, 9(4), 331–332. https://doi.org/10.2127/HORTSCI.9.4.331 DOI: https://doi.org/10.21273/HORTSCI.9.4.331

Ruiz, D., Egea, J., Salazar, J. A., & Campoy, J. A. (2018). Chilling and heat requirements of Japanese plum cultivars for flowering. Scientia Horticulturae, 242, 164–169. https://doi.org/10.1016/j.scienta.2018.07.014 DOI: https://doi.org/10.1016/j.scienta.2018.07.014

Samperio, A., Prieto, M. H., Blanco-Cipollone, F., Vivas, A., & Moñino, M. J. (2015). Effects of post-harvest deficit irrigation in ‘Red Beaut’ Japanese plum: Tree water status, vegetative growth, fruit yield, quality and economic return. Agricultural Water Management, 150, 92–102. https://doi.org/10.1016/j.agwat.2014.12.006 DOI: https://doi.org/10.1016/j.agwat.2014.12.006

Shen, S. Hu, X., Cheng, J., Lou, L., Huan, C., & Zheng, X. (2023). PsbZIP1 and PsbZIP10 induce anthocyanin synthesis in plums (Prunus salicina cv. Taoxingli) via PsUFGT by methyl salicylate treatment during postharvest. Postharvest Biology and Technology, 203, Article 112396. https://doi.org/10.1016/j.postharvbio.2023.112396 DOI: https://doi.org/10.1016/j.postharvbio.2023.112396

Stern, R. A., Flaishman, M., & Ben-Arie, R. (2007). Effect of synthetic auxins on fruit size of five cultivars of Japanese plum (Prunus salicina Lindl.). Scientia Horticulturae, 112(3), 304–309. https://doi.org/10.1016/j.scienta.2006.12.032 DOI: https://doi.org/10.1016/j.scienta.2006.12.032

Topp, B. L., Russell, D. M., Neumüller, M., Dalbó, M. A., & Liu, W. (2012). Plum. In M. Badenes, M., & D. Byrne (Eds.), Fruit breeding. Handbook of plant breeding (vol. 8, pp. 571–621). Springer. https://doi.org/10.1007/978-1-4419-0763-9_15 DOI: https://doi.org/10.1007/978-1-4419-0763-9_15

Vaca-Uribe, J. L., Figueroa, L. L., Santamaría, M., & Poveda, K. (2021). Plant richness and blooming cover affect abundance of flower visitors and network structure in Colombian orchards. Agricultural and Forest Entomology, 23(4), 545–556. https://doi.org/10.1111/afe.12460 DOI: https://doi.org/10.1111/afe.12460

Vera Rodríguez, N. R., & Pérez Chasoy, L. J. (2021). Evaluación de los parámetros morfofisiológicos de crecimiento del área foliar y diámetros del fruto en 13 árboles de ciruelo ([Prunus salicina (Lindl.)] cv. Horvin, en el municipio de Pamplona [Undegraduate thesis, Facultad de Ciencias Agrarias, Ingeniería Agronómica, Universidad de Pamplona]. http://repositoriodspace.unipamplona.edu.co/jspui/handle/20.500.12744/3114

Wang, X. M., Huang, T., Wu, W. L., Li, W. L., & Zhu, H. (2016). Effects of salt stress on photosynthetic characteristics of beach plum and other Prunus species. Acta Horticulturae, 1112, 233–240. https://doi.org/10.17660/ActaHortic.2016.1112.32 DOI: https://doi.org/10.17660/ActaHortic.2016.1112.32

Wei, J., Yang, Q., Ni, J., Gao, Y., Tang, Y., Bai, S., & Teng, Y. (2022). Early defoliation induces auxin redistribution, promoting paradormancy release in pear buds. Plant Physiology, 190(4), 2739–2756. https://doi.org/10.1093/plphys/kiac426 DOI: https://doi.org/10.1093/plphys/kiac426

Westwood, M. (1993). Temperate-zone pomology: physiology and culture (3th ed.). Timber Press.

Xue, S., Shi, T., Luo, W., Ni, X., Iqbal, S., Ni, Z., Huang, X., Yao, D., Shen, Z., & Gao, Z. (2019). Comparative analysis of the complete chloroplast genome among Prunus mume, P. armeniaca, and P. salicina. Horticulture Research, 6(1), 1–13. https://doi.org/10.1038/s41438-019-0171-1 DOI: https://doi.org/10.1038/s41438-019-0171-1

Yu, X., Ali, M. M., Gull, S., Fang, T., Wu, W., & Chen, F. (2023). Transcriptome data-based identification and expression profiling of genes potentially associated with malic acid accumulation in plum (Prunus salicina Lindl.). Scientia Horticulturae, 322, Article 112397. https://doi.org/10.1016/j.scienta.2023.112397 DOI: https://doi.org/10.1016/j.scienta.2023.112397

Zhang, G., Cui, X., Niu, J., Ma, F., & Li, P. (2021). Visible light regulates anthocyanin synthesis via malate dehydrogenases and the ethylene signaling pathway in plum (Prunus salicina L.). Physiologia Plantarum, 172(3), 1739–1749. https://doi.org/10.1111/ppl.13383 DOI: https://doi.org/10.1111/ppl.13383

Ziska, L. H., Seemann, J. R., & DeJong, T. M. (1990). Salinity induced limitations on photosynthesis in Prunus salicina, a deciduous tree species. Plant Physiology, 93(3), 864–870. https://doi.org/10.1104/pp.93.3.864 DOI: https://doi.org/10.1104/pp.93.3.864

How to Cite

APA

Gutiérrez-Villamil, D. A., Álvarez-Herrera, J. G., Fischer, G. and Balaguera-López, H. E. (2024). Physiological adaptations of the Japanese plum tree for agricultural productivity: A promising crop for high altitude tropics. Agronomía Colombiana, 42(1), e111402. https://doi.org/10.15446/agron.colomb.v42n1.111402

ACM

[1]
Gutiérrez-Villamil, D.A., Álvarez-Herrera, J.G., Fischer, G. and Balaguera-López, H.E. 2024. Physiological adaptations of the Japanese plum tree for agricultural productivity: A promising crop for high altitude tropics. Agronomía Colombiana. 42, 1 (Jan. 2024), e111402. DOI:https://doi.org/10.15446/agron.colomb.v42n1.111402.

ACS

(1)
Gutiérrez-Villamil, D. A.; Álvarez-Herrera, J. G.; Fischer, G.; Balaguera-López, H. E. Physiological adaptations of the Japanese plum tree for agricultural productivity: A promising crop for high altitude tropics. Agron. Colomb. 2024, 42, e111402.

ABNT

GUTIÉRREZ-VILLAMIL, D. A.; ÁLVAREZ-HERRERA, J. G.; FISCHER, G.; BALAGUERA-LÓPEZ, H. E. Physiological adaptations of the Japanese plum tree for agricultural productivity: A promising crop for high altitude tropics. Agronomía Colombiana, [S. l.], v. 42, n. 1, p. e111402, 2024. DOI: 10.15446/agron.colomb.v42n1.111402. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/111402. Acesso em: 2 aug. 2024.

Chicago

Gutiérrez-Villamil, Diego Alejandro, Javier Giovanni Álvarez-Herrera, Gerhard Fischer, and Helber Enrique Balaguera-López. 2024. “Physiological adaptations of the Japanese plum tree for agricultural productivity: A promising crop for high altitude tropics”. Agronomía Colombiana 42 (1):e111402. https://doi.org/10.15446/agron.colomb.v42n1.111402.

Harvard

Gutiérrez-Villamil, D. A., Álvarez-Herrera, J. G., Fischer, G. and Balaguera-López, H. E. (2024) “Physiological adaptations of the Japanese plum tree for agricultural productivity: A promising crop for high altitude tropics”, Agronomía Colombiana, 42(1), p. e111402. doi: 10.15446/agron.colomb.v42n1.111402.

IEEE

[1]
D. A. Gutiérrez-Villamil, J. G. Álvarez-Herrera, G. Fischer, and H. E. Balaguera-López, “Physiological adaptations of the Japanese plum tree for agricultural productivity: A promising crop for high altitude tropics”, Agron. Colomb., vol. 42, no. 1, p. e111402, Jan. 2024.

MLA

Gutiérrez-Villamil, D. A., J. G. Álvarez-Herrera, G. Fischer, and H. E. Balaguera-López. “Physiological adaptations of the Japanese plum tree for agricultural productivity: A promising crop for high altitude tropics”. Agronomía Colombiana, vol. 42, no. 1, Jan. 2024, p. e111402, doi:10.15446/agron.colomb.v42n1.111402.

Turabian

Gutiérrez-Villamil, Diego Alejandro, Javier Giovanni Álvarez-Herrera, Gerhard Fischer, and Helber Enrique Balaguera-López. “Physiological adaptations of the Japanese plum tree for agricultural productivity: A promising crop for high altitude tropics”. Agronomía Colombiana 42, no. 1 (January 1, 2024): e111402. Accessed August 2, 2024. https://revistas.unal.edu.co/index.php/agrocol/article/view/111402.

Vancouver

1.
Gutiérrez-Villamil DA, Álvarez-Herrera JG, Fischer G, Balaguera-López HE. Physiological adaptations of the Japanese plum tree for agricultural productivity: A promising crop for high altitude tropics. Agron. Colomb. [Internet]. 2024 Jan. 1 [cited 2024 Aug. 2];42(1):e111402. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/111402

Download Citation

CrossRef Cited-by

CrossRef citations1

1. Mayerlin Orjuela-Angulo, Helber Enrique Balaguera-Lopez, Gerhard Fischer. (2024). Determining of thermal time and base temperature during the reproductive phase of the Japanese plum in the tropical Andes. Revista Colombiana de Ciencias Hortícolas, 18(2) https://doi.org/10.17584/rcch.2024v18i2.17433.

Dimensions

PlumX

Article abstract page views

398

Downloads

Download data is not yet available.