Influence of the application of humic substances on the growth of watermelon and melon seedlings
Influencia de la aplicación de sustancias húmicas en el crecimiento de plántulas de sandía y melón
DOI:
https://doi.org/10.15446/agron.colomb.v41n3.111501Keywords:
humic acids, Citrullus lanatus Schrad, Cucumis melo L., tropical horticulture, biostimulants, seedling quality (en)ácidos húmicos, Citrullus lanatus Schrad, Cucumis melo L., horticultura tropical, bioestimulantes, calidad de plántulas (es)
Downloads
Growing watermelon (Citrullus lanatus) and melon (Cucumis melo) is an important activity in the Brazilian Cerrado; however, many factors limit cultivation, including the difficulty of producing high-quality seedlings. In this study, the effect of humic substances (HS) on growth of ‘Crimson Sweet’ watermelon and ‘Yellow’ melon seedlings was evaluated. An experiment was carried out in a completely randomized design with five HS treatments applied to the soil: 0 (control), 5, 10, 15, and 20 g L-1. The growth of watermelon and melon seedlings was influenced by the application of humic substances. Use of HS increased plant height, stem diameter, root length, root volume, shoot dry biomass, root dry biomass, and Dickson’s quality index. HS boost plant growth, whose improved root system may have provided greater absorption and accumulation of mineral nutrients. Based on the quality of the seedlings (Dickson index), the application of 14 g L-1 of HS is recommended for watermelon seedling production and 15 g L-1 of HS for melon seedling production.
El cultivo de sandía (Citrullus lanatus) y melón (Cucumis melo) tiene gran importancia para los agricultores del Cerrado brasileño. Sin embargo, existen algunas limitaciones de producción, incluida la dificultad en la producción de plántulas de calidad. En este estudio evaluamos la influencia de sustancias húmicas (SH) en el crecimiento de plántulas de sandía ‘Crimson Sweet’ y melón ‘Amarillo’. Para ello, el estudio se configuró en un diseño completamente aleatorio con cinco tratamientos, que consistieron en los siguientes tratamientos de SH aplicados al suelo: 0 (control), 5, 10, 15 y 20 g L-1. El crecimiento de las plántulas de sandía y melón fue influenciado por la aplicación de sustancias húmicas. Hubo un aumento en la altura de las plantas, el diámetro del tallo, la longitud y el volumen de las raíces, así como la biomasa de brotes y raíces y el índice de calidad de Dickson. Las SH impulsaron el crecimiento de las plantas, cuya mejora del sistema radicular puede haber proporcionado una mayor absorción y acumulación de nutrientes. Según la calidad de la plántula (índice de Dickson), se recomienda aplicar 14 g L-1 de SH para la producción de plántulas de sandía y 15 g L-1 de SH para la producción de plántulas de melón.
References
Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. D. M., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711–728. https://doi.org/10.1127/0941-2948/2013/0507 DOI: https://doi.org/10.1127/0941-2948/2013/0507
Asadi Aghbolaghi, M., Sedghi, M., Sharifi, R. S., & Dedicova, B. (2022). Germination and the biochemical response of pumpkin seeds to different concentrations of humic acid under cadmium stress. Agriculture, 12(3), Article 374. https://doi.org/10.3390/agriculture12030374 DOI: https://doi.org/10.3390/agriculture12030374
Caceres-Hernandez, D., Gutierrez, R., Kung, K., Rodriguez, J., Lao, O., Contreras, K., Jo, K., & Sanchez Galan, J. E. (2023). Recent advances in automatic feature detection and classification of fruits including with a special emphasis on watermelon (Citrillus lanatus): A review. Neurocomputing, 526, 62–79. https://doi.org/10.1016/j.neucom.2023.01.005 DOI: https://doi.org/10.1016/j.neucom.2023.01.005
Caldas, A. S., Ottati, A. M. A. A., Rocha, S. F., Vieira, K. R. S., & Lisboa-Júnior, E. R. (2022). Análise do comportamento e distribuição geográfica da fruticultura no estado do Maranhão. In R. Cardoso, & J. B. Quintela (Eds.), Open Science Research VII (pp. 46–60). Editora Científica Digital. https://doi.org/10.37885/221010676 DOI: https://doi.org/10.37885/221010676
Canellas, L. P., & Olivares, F. L. (2014). Physiological responses to humic substances as plant growth promoter. Chemical and Biological Technologies in Agriculture, 1(1), Article 3. https://doi.org/10.1186/2196-5641-1-3 DOI: https://doi.org/10.1186/2196-5641-1-3
Canellas, L. P., Olivares, F. L., Canellas, N. O. A., Mazzei, P., & Piccolo, A. (2019). Humic acids increase the maize seedlings exudation yield. Chemical and Biological Technologies in Agriculture, 6(1), Article 3. https://doi.org/10.1186/s40538-018-0139-7 DOI: https://doi.org/10.1186/s40538-018-0139-7
Conselvan, G. B., Pizzeghello, D., Francioso, O., Di Foggia, M., Nardi, S., & Carletti, P. (2017). Biostimulant activity of humic substances extracted from leonardites. Plant and Soil, 420, 119–134. https://doi.org/10.1007/s11104-017-3373-z DOI: https://doi.org/10.1007/s11104-017-3373-z
Dias, F. P. M., Hübner, R., Nunes, F. J., Leandro, W. M., & Xavier, F. A. S. (2019). Effects of land-use change on chemical attributes of a Ferralsol in Brazilian Cerrado. Catena, 177, 180–188. https://doi.org/10.1016/j.catena.2019.02.016 DOI: https://doi.org/10.1016/j.catena.2019.02.016
Dickson, A., Leaf, A. L., & Hosner, J. F. (1960). Quality appraisal of white spruce and white pine seedling stock in nurseries. The Forestry Chronicle, 36(1), 10–13. https://doi.org/10.5558/tfc36010-1 DOI: https://doi.org/10.5558/tfc36010-1
Di Rienzo, J. A., Casanoves, F., Balzarini, M., Gonzalez, L., Tablada, M., & Robledo, C. W. (2020). Infostat version 2020. http://www.infostat.com.ar
Ebert, A. W., Drummond, E. B. M., Giovannini, P., & Van Zonneveld, M. (2019). A global conservation strategy for crops in the Cucurbitaceae family (2nd ed.). Global Crop Diversity. https://www.croptrust.org/fileadmin/uploads/croptrust/Documents/Ex_Situ_Crop_Conservation_Strategies/Crop_Conservation_Strategy_Cucurbitaceae_lowres.pdf
El-Hai, K. M. A., El-Khateeb, A. Y., Ghoniem, A. A., & Saber, W. I. A. (2019). Comparative response of cantaloupe features to amino acids, humic acid and plant oils towards downy mildew disease. Journal of Biological Sciences, 19(2), 122–130. https://doi.org/10.3923/jbs.2019.122.130 DOI: https://doi.org/10.3923/jbs.2019.122.130
Gomes Júnior, G. A., Pereira, R. A., Sodré, G. A., & Gross, E. (2019). Growth and quality of mangosteen seedlings (Garcinia mangostana L.) in response to the application of humic acids. Revista Brasileira de Fruticultura, 41(1), Article e104. https://doi.org/10.1590/0100-29452019104 DOI: https://doi.org/10.1590/0100-29452019104
Harrington, J. T., Mexal, J. G., & Fisher, J. T. (1994). Volume displacement provides a quick and accurate way to quantify new root production. Tree Planter’s Notes, 45(4), 122–124.
IBGE. Instituto Brasileiro de Geografia e Estatística. (March 18, 2020). Produção Agrícola - Lavoura Temporária. 2020. https://www.ibge.gov.br/estatisticas/economicas/agriculturae-pecuaria/9117-producao-agricola-municipal-culturastemporarias-e-permanentes.html
Jindo, K., Canellas, L. P., Albacete, A., Santos, L. F., Rocha, R. L. F., Baia, D. C., Canellas, N. O. A., Goron, T. L., & Olivares, F. L. (2020). Interaction between humic substances and plant hormones for phosphorous acquisition. Agronomy, 10(5), Article 640. https://doi.org/10.3390/agronomy10050640 DOI: https://doi.org/10.3390/agronomy10050640
Jindo, K., Olivares, F. L., Malcher, D. J. P., Sánchez-Monedero, M. A., Kempenaar, C., & Canellas, L. P. (2020). From lab to field: role of humic substances under open-field and greenhouse conditions as biostimulant and biocontrol agent. Frontiers in Plant Science, 11, Article 426. https://doi.org/10.3389/fpls.2020.00426 DOI: https://doi.org/10.3389/fpls.2020.00426
Jing, J., Zhang, S., Yuan, L., Li, Y., Lin, Z., Xiong, Q., & Zhao, B. (2020). Combining humic acid with phosphate fertilizer affects humic acid structure and its stimulating efficacy on the growth and nutrient uptake of maize seedlings. Scientific Reports, 10(1), Article 17502. https://doi.org/10.1038/s41598-020-74349-6 DOI: https://doi.org/10.1038/s41598-020-74349-6
Lima, T. M., Weindorf, D. C., Curi, N., Guilherme, L. R. G., Lana, R. M. Q., & Ribeiro, B. T. (2019). Elemental analysis of Cerrado agricultural soils via portable X-ray fluorescence spectrometry: Inferences for soil fertility assessment. Geoderma, 353, 264–272. https://doi.org/10.1016/j.geoderma.2019.06.045 DOI: https://doi.org/10.1016/j.geoderma.2019.06.045
Mamedov, A. I., Bar-Yosef, B., Levkovich, I., Rosenberg, R., Silber, A., Fine, P., & Levy, G. J. (2014). Amending soil with sludge, manure, humic acid, orthophosphate and phytic acid: effects on aggregate stability. Soil Research, 52(4), 317–326. https://doi.org/10.1071/SR13334 DOI: https://doi.org/10.1071/SR13334
Müller, A., Guan, C., Gälweiler, L., Tänzler, P., Huijser, P., Marchant, A., Parry, G., Bennett, M., Wisman, E., & Palme, K. (1998). AtPIN2 defines a locus of Arabidopsis for root gravitropism control. The EMBO Journal, 17(23), 6903–6911. https://doi.org/10.1093/emboj/17.23.6903 DOI: https://doi.org/10.1093/emboj/17.23.6903
Nardi, S., Ertani, A., & Francioso, O. (2017). Soil–root crosstalking: The role of humic substances. Journal of Plant Nutrition and Soil Science, 180(1), 5–13. https://doi.org/10.1002/jpln.201600348 DOI: https://doi.org/10.1002/jpln.201600348
Nardi, S., Schiavon, M., & Francioso, O. (2021). Chemical structure and biological activity of humic substances define their role as plant growth promoters. Molecules, 26(8), Article 2256. https://doi.org/10.3390/molecules26082256 DOI: https://doi.org/10.3390/molecules26082256
Nóbrega, J. S., Silva, T. I., Ribeiro, J. E. S., Vieira, L. S., Figueiredo, F. R. A., Fátima, R. T., Bruno, R. L. A., & Dias, T. J. (2020). Emergência e crescimento inicial de melancia submetida a salinidade e doses de ácido salicílico. Desafios-Revista Interdisciplinar da Universidade Federal do Tocantins, 7(2), 162–171. https://doi.org/10.20873/uftv7-8169 DOI: https://doi.org/10.20873/uftv7-8169
Ó, L. M. G., Cova, A. M. W., Silva, N. D., Silva, P. C. C., Gheyi, H. H., & Azevedo Neto, A. D. (2020). Crescimento inicial de minimelancia cv. Sugar Baby irrigada com águas salobras. Revista Brasileira de Agricultura Irrigada, 14(3), 4086–4096. https://doi.org/10.7127/rbai.v14n101168 DOI: https://doi.org/10.7127/RBAI.V14N101168
Olaetxea, M., Mora, V., Bacaicoa, E., Baigorri, R., Garnica, M., Fuentes, M., Zamarreño, A. M., Spíchal, L., & García-Mina, J. M. (2019). Root ABA and H+-ATPase are key players in the root and shoot growth-promoting action of humic acids. Plant Direct, 3(10), Article e00175. https://doi.org/10.1002/pld3.175 DOI: https://doi.org/10.1002/pld3.175
Olaetxea, M., Mora, V., Bacaicoa, E., Garnica, M., Fuentes, M., Casanova, E., Zamarreño, A. M., Iriarte, J. C., Etayo, D., Ederra, I., Gonzalo, R., Baigorri, R., & García-Mina, J. M. (2015). Abscisic acid regulation of root hydraulic conductivity and aquaporin gene expression is crucial to the plant shoot growth enhancement caused by rhizosphere humic acids. Plant Physiology, 169(4), 2587–2596. https://doi.org/10.1104/pp.15.00596 DOI: https://doi.org/10.1104/pp.15.00596
Olivares, F. L., Busato, J. G., Paula, A. M., Lima, L. S., Aguiar, N. O., & Canellas, L. P. (2017). Plant growth promoting bacteria and humic substances: crop promotion and mechanisms of action. Chemical and Biological Technologies in Agriculture, 4(1), Article 30. https://doi.org/10.1186/s40538-017-0112-x DOI: https://doi.org/10.1186/s40538-017-0112-x
Phani, V., Khan, M. R., & Dutta, T. K. (2021). Plant-parasitic nematodes as a potential threat to protected agriculture: Current status and management options. Crop Protection, 144, Article 105573. https://doi.org/10.1016/j.cropro.2021.105573 DOI: https://doi.org/10.1016/j.cropro.2021.105573
Pizzeghello, D., Schiavon, M., Francioso, O., Dalla Vecchia, F., Ertani, A., & Nardi, S. (2020). Bioactivity of size-fractionated and unfractionated humic substances from two forest soils and comparative effects on N and S metabolism, nutrition, and root anatomy of Allium sativum L. Frontiers in Plant Science, 11, Article 1203. https://doi.org/10.3389/fpls.2020.01203 DOI: https://doi.org/10.3389/fpls.2020.01203
Procópio, L., & Barreto, C. (2021). The soil microbiomes of the Brazilian Cerrado. Journal of Soils and Sediments, 21, 2327–2342. https://doi.org/10.1007/s11368-021-02936-9 DOI: https://doi.org/10.1007/s11368-021-02936-9
Qin, K., & Leskovar, D. I. (2020a). Assessments of humic substances application and deficit irrigation in triploid watermelon. HortScience, 55(5), 716–721. https://doi.org/10.21273/HORTSCI14872-20 DOI: https://doi.org/10.21273/HORTSCI14872-20
Qin, K., & Leskovar, D. I. (2020b). Humic substances improve vegetable seedling quality and post-transplant yield performance under stress conditions. Agriculture, 10(7), Article 254. https://doi.org/10.3390/agriculture10070254 DOI: https://doi.org/10.3390/agriculture10070254
Ramírez-Guerrero, H. O., Bracho-Lugo J. A., Meza-Figueroa C. A., García-Rojas F. R., & Mitra, S. (2015). “Aurora Tropical”: Strengthening the production of vegetable seedlings as a key strategy in rural and urban horticulture. International Journal of Tropical Agriculture. 33(2), 1157–1161. https://www.cabidigitallibrary.org/doi/full/10.5555/20153336398
Ramos, A. C., Dobbss, L. B., Santos, L. A., Fernandes, M. S., Olivares, F. L., Aguiar, N. O., & Canellas, L. P. (2015). Humic matter elicits proton and calcium fluxes and signaling dependent on Ca2+-dependent protein kinase (CDPK) at early stages of lateral plant root development. Chemical and Biological Technologies in Agriculture, 2(1), Article 3. https://doi.org/10.1186/s40538-014-0030-0 DOI: https://doi.org/10.1186/s40538-014-0030-0
Rodrigues, L. A., Alves, C. Z., Rego, C. H. Q., Silva, T. R. B., & Silva, J. B. (2017). Humic acid on germination and vigor of corn seeds. Revista Caatinga, 30, 149–154. https://doi.org/10.1590/1983-21252017v30n116rc DOI: https://doi.org/10.1590/1983-21252017v30n116rc
Rose, M. T., Patti, A. F., Little, K. R., Brown, A. L., Jackson, W. R., & Cavagnaro, T. R. (2014). A meta-analysis and review of plant-growth response to humic substances: practical implications for agriculture. Advances in Agronomy, 124, 37–89. https://doi.org/10.1016/B978-0-12-800138-7.00002-4 DOI: https://doi.org/10.1016/B978-0-12-800138-7.00002-4
Rostami, M., Shokouhian, A., & Mohebodini, M. (2022). Effect of humic acid, nitrogen concentrations and application method on the morphological, yield and biochemical characteristics of strawberry ‘Paros’. International Journal of Fruit Science, 22(1), 203–214. https://doi.org/10.1080/15538362.2021.2022566 DOI: https://doi.org/10.1080/15538362.2021.2022566
Santos, H. G., Jacomine, P. K. T., Anjos, L. H. C., Oliveira, V. Á., Lumbreras, J. F., Coelho, M. R., Almeida, J. A., Araújo Filho, J. C., Oliveira, J. B., & Cunha, T. J. F. (2018). Sistema brasileiro de classificação de solos (5th ed.). Embrapa. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/199517/1/SiBCS-2018-ISBN-9788570358004.pdf
Sensoy, S., Tahir, A. M., & Abdul-Jabbar, I. S. (2022). Effect of humic acid and foliar application of potassium on growth and yield of melon. Euroasia Journal of Mathematics, Engineering, Natural & Medical Sciences, 9(24), 28–38. https://doi.org/10.5281/zenodo.7364656
Šerá, B., & Novák, F. (2022). Stimulation of seed germination and early growth by humic substances on poppy, pepper, rape, and hemp. Biologia, 77, 641–648. https://doi.org/10.1007/s11756-021-00952-1 DOI: https://doi.org/10.1007/s11756-021-00952-1
Silva, J. P., Silva-Matos, R. R. S., Barbosa, L. M. P., Costa, R. M., Matos, S. S., & Araújo, M. B. F. (2022). Carnauba bagana substrate and application of humic substances on the production of yellow passion fruit seedlings. Pesquisa Agropecuária Tropical, 52, Article 73631. https://doi.org/10.1590/1983-40632022v5273631 DOI: https://doi.org/10.1590/1983-40632022v5273631
Soteriou, G. A., Rouphael, Y., Emmanouilidou, M. G., Antoniou, C., Kyratzis, A. C., & Kyriacou, M. C. (2021). Biostimulatory action of vegetal protein hydrolysate and the configuration of fruit physicochemical characteristics in grafted watermelon. Horticulturae, 7(9), Article 313. https://doi.org/10.3390/horticulturae7090313 DOI: https://doi.org/10.3390/horticulturae7090313
Swift, R. S. (1991). Effects of humic substances and polysaccharides on soil aggregation. In W. S. Wilson (Ed.), Advances in soil organic matter research (pp. 153–162). Cambridge: Woodhead Publishing. https://doi.org/10.1016/C2013-0-17914-7 DOI: https://doi.org/10.1016/B978-1-85573-813-3.50020-2
Targino, V. A., Lopes, A. S., Sousa, V. F. O., Henschel, J. M., Silva, J. H. B., Rodrigues, L. S., Medeiros, W. J. F., Batista, D. F., & Dias, T. J. (2023). Growth and physiology of ‘Sunrise’ papaya seedlings in response to salinity and humic acid. Revista Brasileira de Engenharia Agrícola e Ambiental, 27(5), 352–358. https://doi.org/10.1590/1807-1929/agriambi.v27n5p352-358 DOI: https://doi.org/10.1590/1807-1929/agriambi.v27n5p352-358
Tarón Dunoyer, A. A., Colpas Castillo, F., & Mercado Camargo, J. (2022). Effect of humic acid on the growth of seedling tomato (Solanum lycopersicum) and melon (Cucumis melo). Revista Ambiente & Água, 17(4), Article e2808. https://doi.org/10.4136/ambi-agua.2808 DOI: https://doi.org/10.4136/ambi-agua.2808
Teixeira, P. C., Donagemma, G. K., Fontana, A., Teixeira, W. G. (2017). Manual de métodos de análise de solo. Brasília: Embrapa Solos. https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1085209/manual-de-metodos-de-analise-de-solo
Xanthopoulou, A., Paris, H. S., Tsompanoglou, I., Polidoros, A. N., Mellidou, I., Ganopoulos, I. (2022). Genomic designing for abiotic stress tolerance in cucurbits. In C. Kole (Ed.), Genomic designing for abiotic stress resistant vegetable crops (pp. 187–252). Springer. https://doi.org/10.1007/978-3-031-03964-5_6 DOI: https://doi.org/10.1007/978-3-031-03964-5_6
Zandonadi, D. B., Canellas, L. P., & Façanha, A. R. (2007). Indolacetic and humic acids induce lateral root development through a concerted plasmalemma and tonoplast H+ pumps activation. Planta, 225, 1583–1595. https://doi.org/10.1007/s00425-006-0454-2 DOI: https://doi.org/10.1007/s00425-006-0454-2
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2023 Agronomía Colombiana

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)

Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.







