Published

2023-12-31

Influence of the application of humic substances on the growth of watermelon and melon seedlings

Influencia de la aplicación de sustancias húmicas en el crecimiento de plántulas de sandía y melón

DOI:

https://doi.org/10.15446/agron.colomb.v41n3.111501

Keywords:

humic acids, Citrullus lanatus Schrad, Cucumis melo L., tropical horticulture, biostimulants, seedling quality (en)
ácidos húmicos, Citrullus lanatus Schrad, Cucumis melo L., horticultura tropical, bioestimulantes, calidad de plántulas (es)

Downloads

Authors

Growing watermelon (Citrullus lanatus) and melon (Cucumis melo) is an important activity in the Brazilian Cerrado; however, many factors limit cultivation, including the difficulty of producing high-quality seedlings. In this study, the effect of humic substances (HS) on growth of ‘Crimson  Sweet’ watermelon and ‘Yellow’ melon seedlings was evaluated. An experiment was carried out in a completely randomized design with five HS treatments applied to the soil: 0 (control), 5, 10, 15, and 20 g L-1. The growth of watermelon and melon seedlings was influenced by the application of humic substances. Use of HS increased plant height, stem diameter, root length, root volume, shoot dry biomass, root dry biomass, and Dickson’s quality index. HS boost plant growth, whose improved root system may have provided greater absorption and accumulation of mineral nutrients. Based on the quality of the seedlings (Dickson index), the application of 14 g L-1 of HS is recommended for watermelon seedling production and 15 g L-1 of HS for melon seedling production.

El cultivo de sandía (Citrullus lanatus) y melón (Cucumis melo) tiene gran importancia para los agricultores del Cerrado brasileño. Sin embargo, existen algunas limitaciones de producción, incluida la dificultad en la producción de plántulas de calidad. En este estudio evaluamos la influencia de sustancias húmicas (SH) en el crecimiento de plántulas de sandía ‘Crimson Sweet’ y melón ‘Amarillo’. Para ello, el estudio se configuró en un diseño completamente aleatorio con cinco tratamientos, que consistieron en los siguientes tratamientos de SH aplicados al suelo: 0 (control), 5, 10, 15 y 20 g L-1. El crecimiento de las plántulas de sandía y melón fue influenciado por la aplicación de sustancias húmicas. Hubo un aumento en la altura de las plantas, el diámetro del tallo, la longitud y el volumen de las raíces, así como la biomasa de brotes y raíces y el índice de calidad de Dickson. Las SH impulsaron el crecimiento de las plantas, cuya mejora del sistema radicular puede haber proporcionado una mayor absorción y acumulación de nutrientes. Según la calidad de la plántula (índice de Dickson), se recomienda aplicar 14 g L-1 de SH para la producción de plántulas de sandía y 15 g L-1 de SH para la producción de plántulas de melón.

References

Alvares, C. A., Stape, J. L., Sentelhas, P. C., Gonçalves, J. D. M., & Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, 22(6), 711–728. https://doi.org/10.1127/0941-2948/2013/0507 DOI: https://doi.org/10.1127/0941-2948/2013/0507

Asadi Aghbolaghi, M., Sedghi, M., Sharifi, R. S., & Dedicova, B. (2022). Germination and the biochemical response of pumpkin seeds to different concentrations of humic acid under cadmium stress. Agriculture, 12(3), Article 374. https://doi.org/10.3390/agriculture12030374 DOI: https://doi.org/10.3390/agriculture12030374

Caceres-Hernandez, D., Gutierrez, R., Kung, K., Rodriguez, J., Lao, O., Contreras, K., Jo, K., & Sanchez Galan, J. E. (2023). Recent advances in automatic feature detection and classification of fruits including with a special emphasis on watermelon (Citrillus lanatus): A review. Neurocomputing, 526, 62–79. https://doi.org/10.1016/j.neucom.2023.01.005 DOI: https://doi.org/10.1016/j.neucom.2023.01.005

Caldas, A. S., Ottati, A. M. A. A., Rocha, S. F., Vieira, K. R. S., & Lisboa-Júnior, E. R. (2022). Análise do comportamento e distribuição geográfica da fruticultura no estado do Maranhão. In R. Cardoso, & J. B. Quintela (Eds.), Open Science Research VII (pp. 46–60). Editora Científica Digital. https://doi.org/10.37885/221010676 DOI: https://doi.org/10.37885/221010676

Canellas, L. P., & Olivares, F. L. (2014). Physiological responses to humic substances as plant growth promoter. Chemical and Biological Technologies in Agriculture, 1(1), Article 3. https://doi.org/10.1186/2196-5641-1-3 DOI: https://doi.org/10.1186/2196-5641-1-3

Canellas, L. P., Olivares, F. L., Canellas, N. O. A., Mazzei, P., & Piccolo, A. (2019). Humic acids increase the maize seedlings exudation yield. Chemical and Biological Technologies in Agriculture, 6(1), Article 3. https://doi.org/10.1186/s40538-018-0139-7 DOI: https://doi.org/10.1186/s40538-018-0139-7

Conselvan, G. B., Pizzeghello, D., Francioso, O., Di Foggia, M., Nardi, S., & Carletti, P. (2017). Biostimulant activity of humic substances extracted from leonardites. Plant and Soil, 420, 119–134. https://doi.org/10.1007/s11104-017-3373-z DOI: https://doi.org/10.1007/s11104-017-3373-z

Dias, F. P. M., Hübner, R., Nunes, F. J., Leandro, W. M., & Xavier, F. A. S. (2019). Effects of land-use change on chemical attributes of a Ferralsol in Brazilian Cerrado. Catena, 177, 180–188. https://doi.org/10.1016/j.catena.2019.02.016 DOI: https://doi.org/10.1016/j.catena.2019.02.016

Dickson, A., Leaf, A. L., & Hosner, J. F. (1960). Quality appraisal of white spruce and white pine seedling stock in nurseries. The Forestry Chronicle, 36(1), 10–13. https://doi.org/10.5558/tfc36010-1 DOI: https://doi.org/10.5558/tfc36010-1

Di Rienzo, J. A., Casanoves, F., Balzarini, M., Gonzalez, L., Tablada, M., & Robledo, C. W. (2020). Infostat version 2020. http://www.infostat.com.ar

Ebert, A. W., Drummond, E. B. M., Giovannini, P., & Van Zonneveld, M. (2019). A global conservation strategy for crops in the Cucurbitaceae family (2nd ed.). Global Crop Diversity. https://www.croptrust.org/fileadmin/uploads/croptrust/Documents/Ex_Situ_Crop_Conservation_Strategies/Crop_Conservation_Strategy_Cucurbitaceae_lowres.pdf

El-Hai, K. M. A., El-Khateeb, A. Y., Ghoniem, A. A., & Saber, W. I. A. (2019). Comparative response of cantaloupe features to amino acids, humic acid and plant oils towards downy mildew disease. Journal of Biological Sciences, 19(2), 122–130. https://doi.org/10.3923/jbs.2019.122.130 DOI: https://doi.org/10.3923/jbs.2019.122.130

Gomes Júnior, G. A., Pereira, R. A., Sodré, G. A., & Gross, E. (2019). Growth and quality of mangosteen seedlings (Garcinia mangostana L.) in response to the application of humic acids. Revista Brasileira de Fruticultura, 41(1), Article e104. https://doi.org/10.1590/0100-29452019104 DOI: https://doi.org/10.1590/0100-29452019104

Harrington, J. T., Mexal, J. G., & Fisher, J. T. (1994). Volume displacement provides a quick and accurate way to quantify new root production. Tree Planter’s Notes, 45(4), 122–124.

IBGE. Instituto Brasileiro de Geografia e Estatística. (March 18, 2020). Produção Agrícola - Lavoura Temporária. 2020. https://www.ibge.gov.br/estatisticas/economicas/agriculturae-pecuaria/9117-producao-agricola-municipal-culturastemporarias-e-permanentes.html

Jindo, K., Canellas, L. P., Albacete, A., Santos, L. F., Rocha, R. L. F., Baia, D. C., Canellas, N. O. A., Goron, T. L., & Olivares, F. L. (2020). Interaction between humic substances and plant hormones for phosphorous acquisition. Agronomy, 10(5), Article 640. https://doi.org/10.3390/agronomy10050640 DOI: https://doi.org/10.3390/agronomy10050640

Jindo, K., Olivares, F. L., Malcher, D. J. P., Sánchez-Monedero, M. A., Kempenaar, C., & Canellas, L. P. (2020). From lab to field: role of humic substances under open-field and greenhouse conditions as biostimulant and biocontrol agent. Frontiers in Plant Science, 11, Article 426. https://doi.org/10.3389/fpls.2020.00426 DOI: https://doi.org/10.3389/fpls.2020.00426

Jing, J., Zhang, S., Yuan, L., Li, Y., Lin, Z., Xiong, Q., & Zhao, B. (2020). Combining humic acid with phosphate fertilizer affects humic acid structure and its stimulating efficacy on the growth and nutrient uptake of maize seedlings. Scientific Reports, 10(1), Article 17502. https://doi.org/10.1038/s41598-020-74349-6 DOI: https://doi.org/10.1038/s41598-020-74349-6

Lima, T. M., Weindorf, D. C., Curi, N., Guilherme, L. R. G., Lana, R. M. Q., & Ribeiro, B. T. (2019). Elemental analysis of Cerrado agricultural soils via portable X-ray fluorescence spectrometry: Inferences for soil fertility assessment. Geoderma, 353, 264–272. https://doi.org/10.1016/j.geoderma.2019.06.045 DOI: https://doi.org/10.1016/j.geoderma.2019.06.045

Mamedov, A. I., Bar-Yosef, B., Levkovich, I., Rosenberg, R., Silber, A., Fine, P., & Levy, G. J. (2014). Amending soil with sludge, manure, humic acid, orthophosphate and phytic acid: effects on aggregate stability. Soil Research, 52(4), 317–326. https://doi.org/10.1071/SR13334 DOI: https://doi.org/10.1071/SR13334

Müller, A., Guan, C., Gälweiler, L., Tänzler, P., Huijser, P., Marchant, A., Parry, G., Bennett, M., Wisman, E., & Palme, K. (1998). AtPIN2 defines a locus of Arabidopsis for root gravitropism control. The EMBO Journal, 17(23), 6903–6911. https://doi.org/10.1093/emboj/17.23.6903 DOI: https://doi.org/10.1093/emboj/17.23.6903

Nardi, S., Ertani, A., & Francioso, O. (2017). Soil–root crosstalking: The role of humic substances. Journal of Plant Nutrition and Soil Science, 180(1), 5–13. https://doi.org/10.1002/jpln.201600348 DOI: https://doi.org/10.1002/jpln.201600348

Nardi, S., Schiavon, M., & Francioso, O. (2021). Chemical structure and biological activity of humic substances define their role as plant growth promoters. Molecules, 26(8), Article 2256. https://doi.org/10.3390/molecules26082256 DOI: https://doi.org/10.3390/molecules26082256

Nóbrega, J. S., Silva, T. I., Ribeiro, J. E. S., Vieira, L. S., Figueiredo, F. R. A., Fátima, R. T., Bruno, R. L. A., & Dias, T. J. (2020). Emergência e crescimento inicial de melancia submetida a salinidade e doses de ácido salicílico. Desafios-Revista Interdisciplinar da Universidade Federal do Tocantins, 7(2), 162–171. https://doi.org/10.20873/uftv7-8169 DOI: https://doi.org/10.20873/uftv7-8169

Ó, L. M. G., Cova, A. M. W., Silva, N. D., Silva, P. C. C., Gheyi, H. H., & Azevedo Neto, A. D. (2020). Crescimento inicial de minimelancia cv. Sugar Baby irrigada com águas salobras. Revista Brasileira de Agricultura Irrigada, 14(3), 4086–4096. https://doi.org/10.7127/rbai.v14n101168 DOI: https://doi.org/10.7127/RBAI.V14N101168

Olaetxea, M., Mora, V., Bacaicoa, E., Baigorri, R., Garnica, M., Fuentes, M., Zamarreño, A. M., Spíchal, L., & García-Mina, J. M. (2019). Root ABA and H+-ATPase are key players in the root and shoot growth-promoting action of humic acids. Plant Direct, 3(10), Article e00175. https://doi.org/10.1002/pld3.175 DOI: https://doi.org/10.1002/pld3.175

Olaetxea, M., Mora, V., Bacaicoa, E., Garnica, M., Fuentes, M., Casanova, E., Zamarreño, A. M., Iriarte, J. C., Etayo, D., Ederra, I., Gonzalo, R., Baigorri, R., & García-Mina, J. M. (2015). Abscisic acid regulation of root hydraulic conductivity and aquaporin gene expression is crucial to the plant shoot growth enhancement caused by rhizosphere humic acids. Plant Physiology, 169(4), 2587–2596. https://doi.org/10.1104/pp.15.00596 DOI: https://doi.org/10.1104/pp.15.00596

Olivares, F. L., Busato, J. G., Paula, A. M., Lima, L. S., Aguiar, N. O., & Canellas, L. P. (2017). Plant growth promoting bacteria and humic substances: crop promotion and mechanisms of action. Chemical and Biological Technologies in Agriculture, 4(1), Article 30. https://doi.org/10.1186/s40538-017-0112-x DOI: https://doi.org/10.1186/s40538-017-0112-x

Phani, V., Khan, M. R., & Dutta, T. K. (2021). Plant-parasitic nematodes as a potential threat to protected agriculture: Current status and management options. Crop Protection, 144, Article 105573. https://doi.org/10.1016/j.cropro.2021.105573 DOI: https://doi.org/10.1016/j.cropro.2021.105573

Pizzeghello, D., Schiavon, M., Francioso, O., Dalla Vecchia, F., Ertani, A., & Nardi, S. (2020). Bioactivity of size-fractionated and unfractionated humic substances from two forest soils and comparative effects on N and S metabolism, nutrition, and root anatomy of Allium sativum L. Frontiers in Plant Science, 11, Article 1203. https://doi.org/10.3389/fpls.2020.01203 DOI: https://doi.org/10.3389/fpls.2020.01203

Procópio, L., & Barreto, C. (2021). The soil microbiomes of the Brazilian Cerrado. Journal of Soils and Sediments, 21, 2327–2342. https://doi.org/10.1007/s11368-021-02936-9 DOI: https://doi.org/10.1007/s11368-021-02936-9

Qin, K., & Leskovar, D. I. (2020a). Assessments of humic substances application and deficit irrigation in triploid watermelon. HortScience, 55(5), 716–721. https://doi.org/10.21273/HORTSCI14872-20 DOI: https://doi.org/10.21273/HORTSCI14872-20

Qin, K., & Leskovar, D. I. (2020b). Humic substances improve vegetable seedling quality and post-transplant yield performance under stress conditions. Agriculture, 10(7), Article 254. https://doi.org/10.3390/agriculture10070254 DOI: https://doi.org/10.3390/agriculture10070254

Ramírez-Guerrero, H. O., Bracho-Lugo J. A., Meza-Figueroa C. A., García-Rojas F. R., & Mitra, S. (2015). “Aurora Tropical”: Strengthening the production of vegetable seedlings as a key strategy in rural and urban horticulture. International Journal of Tropical Agriculture. 33(2), 1157–1161. https://www.cabidigitallibrary.org/doi/full/10.5555/20153336398

Ramos, A. C., Dobbss, L. B., Santos, L. A., Fernandes, M. S., Olivares, F. L., Aguiar, N. O., & Canellas, L. P. (2015). Humic matter elicits proton and calcium fluxes and signaling dependent on Ca2+-dependent protein kinase (CDPK) at early stages of lateral plant root development. Chemical and Biological Technologies in Agriculture, 2(1), Article 3. https://doi.org/10.1186/s40538-014-0030-0 DOI: https://doi.org/10.1186/s40538-014-0030-0

Rodrigues, L. A., Alves, C. Z., Rego, C. H. Q., Silva, T. R. B., & Silva, J. B. (2017). Humic acid on germination and vigor of corn seeds. Revista Caatinga, 30, 149–154. https://doi.org/10.1590/1983-21252017v30n116rc DOI: https://doi.org/10.1590/1983-21252017v30n116rc

Rose, M. T., Patti, A. F., Little, K. R., Brown, A. L., Jackson, W. R., & Cavagnaro, T. R. (2014). A meta-analysis and review of plant-growth response to humic substances: practical implications for agriculture. Advances in Agronomy, 124, 37–89. https://doi.org/10.1016/B978-0-12-800138-7.00002-4 DOI: https://doi.org/10.1016/B978-0-12-800138-7.00002-4

Rostami, M., Shokouhian, A., & Mohebodini, M. (2022). Effect of humic acid, nitrogen concentrations and application method on the morphological, yield and biochemical characteristics of strawberry ‘Paros’. International Journal of Fruit Science, 22(1), 203–214. https://doi.org/10.1080/15538362.2021.2022566 DOI: https://doi.org/10.1080/15538362.2021.2022566

Santos, H. G., Jacomine, P. K. T., Anjos, L. H. C., Oliveira, V. Á., Lumbreras, J. F., Coelho, M. R., Almeida, J. A., Araújo Filho, J. C., Oliveira, J. B., & Cunha, T. J. F. (2018). Sistema brasileiro de classificação de solos (5th ed.). Embrapa. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/199517/1/SiBCS-2018-ISBN-9788570358004.pdf

Sensoy, S., Tahir, A. M., & Abdul-Jabbar, I. S. (2022). Effect of humic acid and foliar application of potassium on growth and yield of melon. Euroasia Journal of Mathematics, Engineering, Natural & Medical Sciences, 9(24), 28–38. https://doi.org/10.5281/zenodo.7364656

Šerá, B., & Novák, F. (2022). Stimulation of seed germination and early growth by humic substances on poppy, pepper, rape, and hemp. Biologia, 77, 641–648. https://doi.org/10.1007/s11756-021-00952-1 DOI: https://doi.org/10.1007/s11756-021-00952-1

Silva, J. P., Silva-Matos, R. R. S., Barbosa, L. M. P., Costa, R. M., Matos, S. S., & Araújo, M. B. F. (2022). Carnauba bagana substrate and application of humic substances on the production of yellow passion fruit seedlings. Pesquisa Agropecuária Tropical, 52, Article 73631. https://doi.org/10.1590/1983-40632022v5273631 DOI: https://doi.org/10.1590/1983-40632022v5273631

Soteriou, G. A., Rouphael, Y., Emmanouilidou, M. G., Antoniou, C., Kyratzis, A. C., & Kyriacou, M. C. (2021). Biostimulatory action of vegetal protein hydrolysate and the configuration of fruit physicochemical characteristics in grafted watermelon. Horticulturae, 7(9), Article 313. https://doi.org/10.3390/horticulturae7090313 DOI: https://doi.org/10.3390/horticulturae7090313

Swift, R. S. (1991). Effects of humic substances and polysaccharides on soil aggregation. In W. S. Wilson (Ed.), Advances in soil organic matter research (pp. 153–162). Cambridge: Woodhead Publishing. https://doi.org/10.1016/C2013-0-17914-7 DOI: https://doi.org/10.1016/B978-1-85573-813-3.50020-2

Targino, V. A., Lopes, A. S., Sousa, V. F. O., Henschel, J. M., Silva, J. H. B., Rodrigues, L. S., Medeiros, W. J. F., Batista, D. F., & Dias, T. J. (2023). Growth and physiology of ‘Sunrise’ papaya seedlings in response to salinity and humic acid. Revista Brasileira de Engenharia Agrícola e Ambiental, 27(5), 352–358. https://doi.org/10.1590/1807-1929/agriambi.v27n5p352-358 DOI: https://doi.org/10.1590/1807-1929/agriambi.v27n5p352-358

Tarón Dunoyer, A. A., Colpas Castillo, F., & Mercado Camargo, J. (2022). Effect of humic acid on the growth of seedling tomato (Solanum lycopersicum) and melon (Cucumis melo). Revista Ambiente & Água, 17(4), Article e2808. https://doi.org/10.4136/ambi-agua.2808 DOI: https://doi.org/10.4136/ambi-agua.2808

Teixeira, P. C., Donagemma, G. K., Fontana, A., Teixeira, W. G. (2017). Manual de métodos de análise de solo. Brasília: Embrapa Solos. https://www.embrapa.br/busca-de-publicacoes/-/publicacao/1085209/manual-de-metodos-de-analise-de-solo

Xanthopoulou, A., Paris, H. S., Tsompanoglou, I., Polidoros, A. N., Mellidou, I., Ganopoulos, I. (2022). Genomic designing for abiotic stress tolerance in cucurbits. In C. Kole (Ed.), Genomic designing for abiotic stress resistant vegetable crops (pp. 187–252). Springer. https://doi.org/10.1007/978-3-031-03964-5_6 DOI: https://doi.org/10.1007/978-3-031-03964-5_6

Zandonadi, D. B., Canellas, L. P., & Façanha, A. R. (2007). Indolacetic and humic acids induce lateral root development through a concerted plasmalemma and tonoplast H+ pumps activation. Planta, 225, 1583–1595. https://doi.org/10.1007/s00425-006-0454-2 DOI: https://doi.org/10.1007/s00425-006-0454-2

How to Cite

APA

Andrade, H. A. F. de, Oliveira Neto, E. D. de, Pinto Júnior, F. F., Moraes, L. F., Machado, N. A. F. & Silva-Matos, R. R. S. da. (2023). Influence of the application of humic substances on the growth of watermelon and melon seedlings. Agronomía Colombiana, 41(3), e111501. https://doi.org/10.15446/agron.colomb.v41n3.111501

ACM

[1]
Andrade, H.A.F. de, Oliveira Neto, E.D. de, Pinto Júnior, F.F., Moraes, L.F., Machado, N.A.F. and Silva-Matos, R.R.S. da 2023. Influence of the application of humic substances on the growth of watermelon and melon seedlings. Agronomía Colombiana. 41, 3 (Sep. 2023), e111501. DOI:https://doi.org/10.15446/agron.colomb.v41n3.111501.

ACS

(1)
Andrade, H. A. F. de; Oliveira Neto, E. D. de; Pinto Júnior, F. F.; Moraes, L. F.; Machado, N. A. F.; Silva-Matos, R. R. S. da. Influence of the application of humic substances on the growth of watermelon and melon seedlings. Agron. Colomb. 2023, 41, e111501.

ABNT

ANDRADE, H. A. F. de; OLIVEIRA NETO, E. D. de; PINTO JÚNIOR, F. F.; MORAES, L. F.; MACHADO, N. A. F.; SILVA-MATOS, R. R. S. da. Influence of the application of humic substances on the growth of watermelon and melon seedlings. Agronomía Colombiana, [S. l.], v. 41, n. 3, p. e111501, 2023. DOI: 10.15446/agron.colomb.v41n3.111501. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/111501. Acesso em: 12 nov. 2025.

Chicago

Andrade, Hosana Aguiar Freitas de, Edson Dias de Oliveira Neto, Fernando Freitas Pinto Júnior, Lídia Ferreira Moraes, Nítalo André Farias Machado, and Raissa Rachel Salustriano da Silva-Matos. 2023. “Influence of the application of humic substances on the growth of watermelon and melon seedlings”. Agronomía Colombiana 41 (3):e111501. https://doi.org/10.15446/agron.colomb.v41n3.111501.

Harvard

Andrade, H. A. F. de, Oliveira Neto, E. D. de, Pinto Júnior, F. F., Moraes, L. F., Machado, N. A. F. and Silva-Matos, R. R. S. da (2023) “Influence of the application of humic substances on the growth of watermelon and melon seedlings”, Agronomía Colombiana, 41(3), p. e111501. doi: 10.15446/agron.colomb.v41n3.111501.

IEEE

[1]
H. A. F. de Andrade, E. D. de Oliveira Neto, F. F. Pinto Júnior, L. F. Moraes, N. A. F. Machado, and R. R. S. da Silva-Matos, “Influence of the application of humic substances on the growth of watermelon and melon seedlings”, Agron. Colomb., vol. 41, no. 3, p. e111501, Sep. 2023.

MLA

Andrade, H. A. F. de, E. D. de Oliveira Neto, F. F. Pinto Júnior, L. F. Moraes, N. A. F. Machado, and R. R. S. da Silva-Matos. “Influence of the application of humic substances on the growth of watermelon and melon seedlings”. Agronomía Colombiana, vol. 41, no. 3, Sept. 2023, p. e111501, doi:10.15446/agron.colomb.v41n3.111501.

Turabian

Andrade, Hosana Aguiar Freitas de, Edson Dias de Oliveira Neto, Fernando Freitas Pinto Júnior, Lídia Ferreira Moraes, Nítalo André Farias Machado, and Raissa Rachel Salustriano da Silva-Matos. “Influence of the application of humic substances on the growth of watermelon and melon seedlings”. Agronomía Colombiana 41, no. 3 (September 1, 2023): e111501. Accessed November 12, 2025. https://revistas.unal.edu.co/index.php/agrocol/article/view/111501.

Vancouver

1.
Andrade HAF de, Oliveira Neto ED de, Pinto Júnior FF, Moraes LF, Machado NAF, Silva-Matos RRS da. Influence of the application of humic substances on the growth of watermelon and melon seedlings. Agron. Colomb. [Internet]. 2023 Sep. 1 [cited 2025 Nov. 12];41(3):e111501. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/111501

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

300

Downloads

Download data is not yet available.