Use of dynamic simulation and Forrester diagrams to describe the growth of lettuce (Lactuca sativa L.) under field conditions
Uso de simulación dinámica y diagramas de Forrester para describir el crecimiento de lechuga (Lactuca sativa L.) en condiciones de campo
DOI:
https://doi.org/10.15446/agron.colomb.v42n1.111795Keywords:
state variables, maximum system capacity, Vensim (en)variables de estado, máxima capacidad del sistema, Vensim (es)
Downloads
The use of computational tools to describe some processes of crop growth has evolved in recent decades and remains an area of active research, where more and more applications are incorporated with the integration of a greater number of mathematical tools, statistics, and computational calculation efficiency, simplifying the tasks of modeling and visualizing the components of the system used. The present research proposes a dynamic growth model for lettuce cultivation using Forrester diagrams to evaluate different scenarios involving five growth functions and five lettuce cultivars in field conditions of the Bailadores region (Venezuelan Andes, 2550 m a.s.l.). The lettuce variety Coastal Star achieved the greatest accumulation of dry matter used as a response in each model. The logistics of growth function was properly adjusted to the experimental data compared to the other models. The proposed diagram model can be used as a basis for the construction of more complex models that incorporate other physiological variables of the crop and the growth environment.
El uso de herramientas computacionales para describir algunos procesos del crecimiento de los cultivos ha evolucionado en las últimas décadas y sigue siendo un área de investigación activa, donde se incorporan cada vez más aplicaciones con la integración de una mayor cantidad de herramientas matemáticas, estadísticas y de eficiencia de cálculo computacional, simplificando las tareas de modelado y las de visualización de los componentes del sistema utilizado. La presente investigación propone para el cultivo de lechuga un modelo de crecimiento dinámico utilizando diagramas de Forrester, para evaluar diferentes escenarios involucrando cinco funciones de crecimiento y cinco variedades de lechuga en condiciones de campo de la región de Bailadores (Andes venezolanos, 2550 m s.n.m). La variedad de lechuga Coastal Star fue la que logró la mayor acumulación de materia seca (usada como respuesta en cada modelo). Se encontró que la función de crecimiento logístico ajustó adecuadamente los datos experimentales en comparación con los otros modelos. El modelo diagramado propuesto puede ser usado como base para la construcción de modelos más complejos que incorporen otras variables fisiológicas y el ambiente del cultivo.
References
Alvar-Beltrán, J., Dibari, C., Ferrise, R., Bartoloni, N., & Marta, A. D. (2023). Modelling climate change impacts on crop production in food insecure regions: The case of Niger. European Journal of Agronomy, 142, Article 126667. https://doi.org/10.1016/j.eja.2022.126667
Antle, J. M., Jones, J. W., & Rosenzweig, C. E. (2016). Next generation agricultural system data, models, and knowledge products: Introduction. Agricultural Systems, 155, 186–190. https://doi.org/10.1016/j.agsy.2016.09.003
Attia, A., El-Hendawy, S., Al-Suhaibani, N., Tahir, M. U., Mubushar, M., dos Santos Vianna, M., Ullah, H., Mansour, E., & Datta, A. (2021). Sensitivity of the DSSAT model in simulating maize yield and soil carbon dynamics in arid Mediterranean climate: Effect of soil, genotype and crop management. Field Crops Research, 260, Article 107981. https://doi.org/10.1016/j.fcr.2020.107981
Berger, A., Ettlin, G., Quincke, C., & Rodríguez-Bocca, P. (2019). Predicting the normalized difference vegetation index (NDVI) by training a crop growth model with historical data. Computers and Electronics in Agriculture, 161, 305–311. https://doi.org/10.1016/j.compag.2018.04.028
Carini, F., Cargnelutti Filho, A., Souza, J. M., Pezzini, R. V., Ubessi, C., & Kreutz, M. A. (2020). Fitting a logistic growth model to yield traits in lettuce cultivars growing in summer. Revista Colombiana de Ciencias Hortícolas, 14(1), 104–114. https://doi.org/10.17584/rcch.2020v14i1.8955
Chang, C. L., Chung, S. C., Fu, W. L., & Huang, C. C. (2021). Artificial intelligence approaches to predict growth, harvest day, and quality of lettuce (Lactuca sativa L.) in a IoT-enabled greenhouse system. Biosystems Engineering, 212, 77–105. https://doi.org/10.1016/j.biosystemseng.2021.09.015
Chiesa, A., Tittonell, P., & Grazia, J. (2001). Efecto de la época de siembra, radiación y nutrición nitrogenada sobre el patrón de crecimiento y el rendimiento del cultivo de lechuga (Lectuca sativa L.). Investigación Agraria: Producción y Protección Vegetales, 16(3), 355–365. https://dialnet.unirioja.es/servlet/articulo?codigo=112324
Das, R., & Bhattacharjee, C. (2020). Lettuce. In Amit K. Jaiswal (Ed.), Nutritional composition and antioxidant properties of fruits and vegetables (pp. 143–157). Academic Press. https://doi.org/10.1016/B978-0-12-812780-3.00009-X
Díaz-Pérez, M., Cantón Ramos, J. M., Velázquez Martí, B. V., & Callejón-Ferre, Á. J. (2024). Commercial quality of ‘Little Gem’ lettuce hearts. Journal of Agriculture and Food Research, 16, Article 101168. https://doi.org/10.1016/j.jafr.2024.101168
Divya, K. L., Mhatre, P. H., Venkatasalam, E. P., & Sudha, R. (2021). Crop simulation models as decision-supporting tools for sustainable potato production: A review. Potato Research, 64(3), 387–419. https://doi.org/10.1007/s11540-020-09483-9
El Jarroudi, M., Kouadio, L., Giraud, F., Delfosse, P., & Tychon, B. (2014). Brown rust disease control in winter wheat: II. Exploring the optimization of fungicide sprays through a decision support system. Environmental Science and Pollution Research, 21(7), 4809–4818. https://doi.org/10.1007/s11356-014-2557-9
Fernández-Chuairey, L., Rangel-Montes de Oca, L., Guerra-Bustillo, C. W., & Pozo-Fernández, J. (2019). Statistical-mathematical modeling in agrarian processes. An application in agricultural engineering. Revista Ciencias Técnicas Agropecuarias, 28(2), Article e08.
Haefner, J. W. (2005). Modeling biological systems: Principles and applications (2nd ed.). Springer. https://doi.org/10.1007/b106568
Hamner, B., Frasco, M., & Ledell, E. (2018). Metrics: Evaluation metrics for machine learning. R package versión 0.1.4. https://cran.rproject.org/web/packages/metrics/index.html
Hernández, N., Soto, F., & Caballero, A. (2009). Modelos de simulación de cultivos. Características y usos. Cultivos Tropicales, 30(1), 73–82. https://ediciones.inca.edu.cu/index.php/ediciones/article/view/956
Hilty, J., Muller, B., Pantin, F., & Leuzinger, S. (2021). Plant growth: The what, the how, and the why. New Phytologist, 232(1), 25–41. https://doi.org/10.1111/nph.17610
Hunt, R. (2016). Growth analysis, individual plants. In B. Thomas, B. G. Murrray, & D. J. Murphy (Eds.). Encyclopedia of applied plant sciences (2nd ed., pp. 421–429). Academic Press. https://doi.org/10.1016/b978-0-12-394807-6.00226-4
Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., Wilkens, P. W., Singh, U., Gijsman, A. J., & Ritchie, J. T. (2003). The DSSAT cropping system model. European Journal of Agronomy, 18(3-4), 235–265. https://doi.org/10.1016/s1161-0301(02)00107-7
Juárez-Maldonado, A., De-Alba-Romenus, K., Ramírez-Sosa, M.A.,Benavides-Mendoza, A., & Robledo-Torres, V. (2010). An experimental validation of NICOLET B3 mathematical model for lettuce growth in the southeast region of Coahuila México by dynamic simulation [Conference presentation abstract]. In 2010 7th International Conference on Electrical Engineering Computing Science and Automatic Control (pp. 128–133). IEEE. https://doi.org/10.1109/ICEEE.2010.5608663
Jung, D. H., Kim, T. Y., Cho, Y. Y., & Son, J. E. (2018). Development and validation of a canopy photosynthetic rate model of lettuce using light intensity, CO2 concentration, and day after transplanting in a plant factory. Journal of Bio-Environment Control, 27(2), 132–139. https://doi.org/10.12791/KSBEC.2018.27.2.132
Junk, J., Kouadio, L., Delfosse, P., & El Jarroudi, M. (2016). Effects of regional climate change on brown rust disease in winter wheat. Climatic Change, 135, 439–451. https://doi.org/10.1007/s10584-015-1587-8
Kundathil, C., Viswan, H., & Kumar, P. (2023). Crop simulation modeling: A strategic tool in crop management. Journal of Food Chemistry and Nanotechnology, 9(S1), S342–S358. https://doi.org/10.17756/jfcn.2023-s1-044
Kantorovich, L. V., & Akilov, G. P. (2016). Functional analysis (2nd ed.). Elsevier.
Landsberg, J., & Sands, P. (Ed.). (2010). Physiological ecology of forest production (Vol. 4). Principles, processes and models.Academic Press.
Li, Q., Gao, H., Zhang, X., Ni, J., & Mao, H. (2022). Describing lettuce growth using morphological features combined with nonlinear models. Agronomy, 12(4), Article 860. https://doi.org/10.3390/agronomy12040860
Lipton, W. J., & Ryder, E. J. (2021). Lettuce. In N. A. M. Eskin (Ed.). Quality and preservation of vegetables (pp. 217–244). CRC Press.
Logachev, M., & Goncharov, D. (2024). Simulation model of crop yields. In BIO Web of conferences (Vol. 93, p. 02015). EDP Sciences. https://doi.org/10.1051/bioconf/20249302015
Luo, A., Kang, S., & Chen, J. (2020). SUGAR model-assisted analysis of carbon allocation and transformation in tomato fruit under different water along with potassium conditions. Frontiers in Plant Science, 11, Article 712. https://doi.org/10.3389/fpls.2020.00712
Mathieu, J., Linker, R., Levine, L., Albright, L., Both, A. J., Spanswick, R., Wheeler, R., Wheeler, E., Villiers, D., & Langhans, R. (2006). Evaluation of the Nicolet model for simulation of short-term hydroponic lettuce growth and nitrate uptake. Biosystems Engineering, 95(3), 323–337. https://doi.org/10.1016/j.biosystemseng.2006.07.006
Muller, B., & Martre, P. (2019). Plant and crop simulation models: powerful tools to link physiology, genetics, and phenomics. Journal of Experimental Botany, 70(9), 2339–2344. https://doi.org/10.1093/jxb/erz175
Namirembe, S., Piikki, K., Sommer, R., Söderström, M., Tessema, B., & Nyawira, S. S. (2020). Soil organic carbon in agricultural systems of six countries in East Africa–a literature review of status and carbon sequestration potential. South African Journal of Plant and Soil, 37(1), 35–49. https://doi.org/10.1080/02571862.2019.1640296
Negus, K. L., Li, X., Welch, S. M., & Yu, J. (2024). The role of artificial intelligence in crop improvement. Advances in Agronomy, 184, 1–166. https://doi.org/10.1016/bs.agron.2023.11.001
Ortiz Mackinson, M. O., Bonel, B., Rotondo, R., Grasso, R., Balaban, D. M., & Vita Larrieu, E. (2022). Utilización de compost de cama profunda porcina como abono orgánico en un sistema productivo de lechuga (Lactuca sativa L.) a campo. Ciencias Agronómicas, (40), Article e023–e023. https://doi.org/10.35305/agro40.e023
Pansu, M., Bottner, P., Sarmiento, L., & Metselaar, K. (2004). Comparison of five soil organic matter decomposition models using data from a 14C and 15N labeling field experiment. Global Biogeochemical Cycles, 18(4), Article gb4022. https://doi.org/10.1029/2004gb002230
Pansu, M., Machado, D., Bottner, P., & Sarmiento, L. (2014). Modelling microbial exchanges between forms of soil nitrogen in contrasting ecosystems. Biogeosciences, 11(4), 915–927. https://doi.org/10.5194/bg-11-915-2014
Pansu, M., Sarmiento, L., Rujano, M. A., Ablan, M., Acevedo, D., & Bottner, P. (2010). Modeling organic transformations by microorganisms of soils in six contrasting ecosystems: validation of the MOMOS model. Global Biogeochemical Cycles, 24(1), Article gb1008. https://doi.org/10.1029/2009GB003527
R Core Team (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org
Rauff, K. O., & Bello, R. (2015). A review of crop growth simulation models as tools for agricultural meteorology. Agricultural Sciences, 6(9), 1098–1105. https://doi.org/10.4236/as.2015.69105
Reyes-Medina, A. J., Fraile-Robayo, D., & Álvarez-Herrera, J. G. (2019). Evaluación de la mezcla de sustratos en un cultivo de lechuga (Lactuca sativa L.) var. Verónica. Temas Agrarios, 24(1), 34–41. https://doi.org/10.21897/rta.v24i1.1776
Rodríguez, D. (2013). Nonlinear growth models, package ‘growthmodels’. R package versión 1.3.1. https://cran.rproject.org/web/packages/growthmodels/growthmodels.pdf
Rodríguez-González, O., Florido-Bacallao, R., Varela-Nualles, M., González-Viera, D., Vázquez-Montenegro, R., Maqueira-López, L. A., & Morejón-Rivera, R. (2020). Aplicación de la herramienta de modelación DSSAT para estimar la dosis óptima de fertilizante nitrogenado para la variedad de arroz J-104. Cultivos Tropicales, 41(2), Article e01. https://ediciones.inca.edu.cu/index.php/ediciones/issue/view/156
Sarmiento, L., & Bowen, W. (2002). Desarrollo de una variedad de papa andígena en los Andes venezolanos y su simulación por el modelo SUBSTOR. Ecotrópicos, 15(1), 111–122.
Sommer, U. (2023). Ecophysiology. In U. Sommer, Freshwater and marine ecology (pp. 115–168). Springer, Cham. https://doi.org/10.1007/978-3-031-42459-5_4
Szabelska, A., Siatkowski, M., Goszczurna, T., & Zyprych-Walczak, J. (2010). Comparison of growth models in package R. Nauka Przyroda Technologie, 4(4), Article 50.
Tan, C., Zhang, S., Guo, Y., & Wang, Y. (2022). Analysis and evaluation of a dynamic model for greenhouse lettuce growth. Spanish Journal of Agricultural Research, 20(4), Article e0904. https://doi.org/10.5424/sjar/2022204-18658
Tsoularis, A., & Wallace, J. (2002). Analysis of logistic growth models. Mathematical Biosciences, 179(1), 21–55. https://doi.org/10.1016/s0025-5564(02)00096-2
Van Keulen, H. (2013). Simulation models as tools for crop management. In P. Christou, R. Savin, B. A. Costa-Pierce, I. Misztal, & C. B. A. Whitelaw (Eds.), Sustainable food production (pp. 1459–1476). Springer. https://doi.org/10.1007/978-1-4614-5797-8
Zohary, D. (1991). The wild genetic resources of cultivated lettuce (Lactuca sativa L.). Euphytica, 53, 31–35. https://doi.org/10.1007/bf00032029
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2024 Agronomía Colombiana
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)
Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.