Published

2024-04-30

Evaluation of drought-tolerant rice (Oryza sativa L.) genotypes under drought and irrigated conditions in Bhairahawa, Nepal

Evaluación de genotipos de arroz (Oryza sativa L.) tolerantes a la sequía en condiciones de sequía y riego en Bhairahawa, Nepal

DOI:

https://doi.org/10.15446/agron.colomb.v42n1.112231

Keywords:

drought stress, stress tolerance indices, yield, stability (en)
estrés por sequía, índices de tolerancia al estrés, rendimiento, estabilidad (es)

Downloads

Authors

Rice production can be severely affected by drought stress and this could cause massive economic losses every year. Global climate change is steadily becoming an important issue. This research was conducted in order to identify drought-tolerant rice genotypes using stress tolerance indices. Employing a randomized complete block design, a total of nine rice genotypes were assessed under irrigated and drought-stress conditions from June to November 2022 at the Institute of Agriculture and Animal Science (IAAS), Paklihawa, Nepal. In particular, the stress susceptibility index (SSI), mean productivity (MP), and geometric mean productivity (GMP) revealed strong and highly significant positive correlations to agricultural yields under both irrigated and drought stress conditions. The stress tolerance index (STI) and yield stability index (YSI) showed strong and highly significant positive correlations to yield under drought conditions, while the tolerance index (TOL) and yield index (YI) showed strong and negative significant associations to yield under stress conditions. The highest STI, GMP, and MP were observed in the IR16L1713 genotype followed by IR17L1387, establishing these two as the steadiest and most efficient genotypes among nine genotypes of rice. These genotypes have the potential to be selected for maximum outputs under both irrigated and drought-stress situations. A biplot analysis showed a positive association of MP, GMP, and YI to rice yields in an irrigated environment and a negative correlation of SSI, STI, and TOL, with a reduction percentage in a drought-stressed environment. Therefore, these stress indicators can be used to evaluate rice genotypes under both normal and drought stress settings.

La producción de arroz podría verse gravemente afectada por el estrés provocado por la sequía, lo que podría causar enormes pérdidas económicas cada año. El problema del cambio climático global se está convirtiendo cada vez más en una cuestión importante. Esta investigación se llevó a cabo con el fin de identificar los genotipos de arroz tolerantes a la sequía utilizando índices de tolerancia al estrés. Empleando un diseño de bloques completos aleatorizados, se evaluaron un total de nueve genotipos de arroz en condiciones de riego y estrés por sequía de junio a noviembre de 2022 en el Instituto de Agricultura y Ciencia Animal (IAAS), Paklihawa, Nepal. En particular, el índice de susceptibilidad al estrés (ISE), la productividad media (PM) y la productividad media geométrica (PMG) revelaron correlaciones positivas fuertes y altamente significativas con el rendimiento tanto en condiciones de riego como de estrés por sequía. Asimismo, el índice de tolerancia al estrés (ITS) y el índice de estabilidad del rendimiento (IER) mostraron correlaciones positivas fuertes y altamente significativas con el rendimiento en condiciones de sequía, mientras que el índice de tolerancia (TOL) y el índice de rendimiento (IR) mostraron asociaciones significativas fuertes y negativas con el rendimiento en condiciones de estrés. Los mayores ITS, PMG y PM se observaron en IR16L1713, seguido por IR17L1387, estableciéndolos como los genotipos más estables y eficientes entre nueve genotipos de arroz. Estos genotipos tienen el potencial de ser seleccionados para una producción abundante tanto en condiciones de riego como de estrés por sequía. Un análisis biplot mostró una asociación positiva de PM, PMG e IR con el rendimiento en un ambiente irrigado y una correlación negativa de ISS, ITS y TOL con reducciones en el porcentaje en un ambiente de estrés por sequía. Por lo tanto, estos indicadores de estrés se pueden utilizar para evaluar genotipos de arroz tanto en condiciones normales como de estrés por sequía.

References

Adhikari, M., Adhikari, N. R., Sharma, S., Gairhe, J., Bhandari, R. R., & Paudel, S. (2019). Evaluation of drought tolerant rice cultivars using drought tolerant indices under water stress and irrigated condition. American Journal of Climate Change, 8(2), 228–236. https://doi.org/10.4236/ajcc.2019.82013

Anwaar, H. A., Perveen, R., Mansha, M. Z., Abid, M., Sarwar, Z. M., Aatif, H. M., Umar, U. ud din, Sajid, M., Aslam, H. M. U., Alam, M. M., Rizwan, M., Ikram, R. M., Alghanem, S. M. S., Rashid, A., & Khan, K. A. (2020). Assessment of grain yield indices in response to drought stress in wheat (Triticum aestivum L.). Saudi Journal of Biological Sciences, 27(7), 1818–1823. https://doi.org/10.1016/j.sjbs.2019.12.009

Bennani, S., Nsarellah, N., Jlibene, M., Tadesse, W., Birouk, A., & Ouabbou, H. (2017). Efficiency of drought tolerance indices under different stress severities for bread wheat selection. Australian Journal of Crop Science, 11(4), 395–405. https://doi.org/10.21475/ajcs.17.11.04.pne272

Bhattarai, P., Gyanwali, P., Pokharel, N. P., Bashyal, P., Mainali, R., & Khanal, R. (2024). Agro-morphological analysis of yield and yield attributing traits of wheat under heat stress condition. Agriculture and Food Sciences Research, 11(1), 30–35. https://doi.org/10.20448/aesr.v11i1.5486

Bouman, B. A. M., & Tuong, T. P. (2001). Field water management to save water and increase its productivity in irrigated lowland rice. Agriculture Water Management, 49(1), 11–30. https://doi.org/10.1016/S0378-3774(00)00128-1

Bouslama, M., & Schapaugh Jr., W. T. (1984). Stress tolerance in soybeans. I. Evaluation of three screening techniques for heat and drought tolerance. Crop Science, 24(5), 933–937. https://doi.org/10.2135/cropsci1984.0011183x002400050026x

Cattivelli, L., Rizza, F., Badeck, F. W., Mazzucotelli, E., Mastrangelo, A. M., Francia, E., Marè, C., Tondelli, A., & Stanca, A. M. (2008). Drought tolerance improvement in crop plants: An integrated view from breeding to genomics. Field Crops Research, 105(1–2), 1–14. https://doi.org/10.1016/j.fcr.2007.07.004

Dash, P. K., Rai, R., Rai, V., & Pasupalak, S. (2018). Drought induced signaling in rice: Delineating canonical and non-canonical pathways. Frontiers in Chemistry, 6, Article 264. https://doi.org/10.3389/fchem.2018.00264

Ewulo, B. S. (2015). Effect of poultry dung and cattle manure on chemical properties of clay and sandy clay loam soil. Journal of Animal and Veterinary Advances, 4(10), 839–841.

FAO. (2020). Crop prospects and food situation #1, March 2020- Quarterly global report. Food and Agriculture Organization of the United Nations. https://doi.org/10.4060/ca8032en

Fernández, G. C. J. (1992). Effective selection criteria for assessing plant stress tolerance. Adaptation of food crops to temperature and water stress. Shanhua, Taiwan AVRDC. https://worldveg.tind.io/record/72511?v=pdf#files

Fischer, R. A., & Maurer, R. (1978). Drought resistance in spring wheat cultivars. I. Grain yield responses. Australian Journal of Agricultural Research, 29(5), 897–912. https://doi.org/10.1071/AR9780897

Fukagawa, N. K., & Ziska, L. H. (2019). Rice: Importance for global nutrition. Journal of Nutritional Science and Vitaminology, 65(Supplement), S2–S3. https://doi.org/10.3177/JNSV.65.S2

Hao, Z. F., Li, X. H., Su, Z. J., Xie, C. X., Li, M. S., Liang, X. L., Weng, J. F., Zhang, D. G., Li, L., & Zhang, S. H. (2011). A proposed selection criterion for drought resistance across multiple environments in maize. Breeding Science, 61(2), 101–108. https://doi.org/10.1270/jsbbs.61.101

Heino, M., Kinnunen, P., Anderson, W., Ray, D. K., Puma, M. J., Va¬ris, O., Siebert, S., & Kummu, M. (2023). Increased probability of hot and dry weather extremes during the growing season threatens global crop yields. Scientific Reports, 13(1), Article 3583. https://doi.org/10.1038/s41598-023-29378-2

Hossain, A. B. S., Sears, R. G., Cox, T. S., & Paulsen, G. M. (1990). Desiccation tolerance and its relationship to assimilate partitioning in winter wheat. Crop Science, 30(3), 622–627. https://doi.org/10.2135/CROPSCI1990.0011183X003000030030X

Hussain, S., Khaliq, A., Ali, B., Hussain, H. A., Qadir, T., & Hussain, S. (2019). Temperature extremes: Impact on rice growth and development. In M. Hasanuzzaman, K. Hakeem, K. Nahar, & H. Alharby (Eds.), Plant abiotic stress tolerance: Agronomic, molecular and biotechnological approaches (pp. 153–171). Springer. https://doi.org/10.1007/978-3-030-06118-0_6

Iqbal, J., Zia-ul-Qamar, Yousaf, U., Asgher, A., Dilshad, R., Qamar, F. M., Bibi, S., Rehman, S. U., & Haroon, M. (2023). Sustainable rice production under biotic and abiotic stress challenges. In C. S. Prakash, S. Fiaz, M. A. Nadeem, F. S. Baloch, & A. Qayyum (Eds.), Sustainable agriculture in the era of the OMICs revolution (pp. 241–268). https://doi.org/10.1007/978-3-031-15568-0_11

Kamrani, M., Hoseini, Y., & Ebadollahi, A. (2017). Evaluation for heat stress tolerance in durum wheat genotypes using stress tolerance indices. Archives of Agronomy and Soil Science, 64(1), 38–45. https://doi.org/10.1080/03650340.2017.1326104

Kandel, B. P., Joshi, L. P., Sharma, S., Adhikari, P., Koirala, B., & Shrestha, K. (2022). Drought tolerance screening of rice genotypes in mid-hills of Nepal using various drought indices. Acta Agriculturae Scandinavica Section B: Soil and Plant Science, 72(1), 744–750. https://doi.org/10.1080/09064710.2022.2072382

Khan, A. A., & Kabir, M. R. (2015). Evaluation of spring wheat genotypes (Triticum aestivum L.) for heat stress tolerance using different stress tolerance indices. Cercetări Agronomice în Moldova, 47(4), 49–63. https://repository.uaiasi.ro/xmlui/handle/20.500.12811/1762

Kumar, A., Bernier, J., Verulkar, S., Lafitte, H. R., & Atlin, G. N. (2008). Breeding for drought tolerance: Direct selection for yield, response to selection and use of drought-tolerant donors in upland and lowland-adapted populations. Field Crops Research, 107(3), 221–231. https://doi.org/10.1016/j.fcr.2008.02.007

Kumar, S., Dwivedi, S. K., Singh, S. S., Jha, S. K., Lekshmy, S., Elanchezhian, R., Singh, O. N., & Bhatt, B. P. (2014). Identification of drought tolerant rice genotypes by analysing drought tolerance indices and morpho-physiological traits. Journal of Breeding and Genetics, 46(2), 217–230.

Lamba, K., Kumar, M., Singh, V., Chaudhary, L., Sharma, R., Yashveer, S., & Dalal, M. S. (2023). Heat stress tolerance indices for identification of the heat tolerant wheat genotypes. Scientific Reports, 13, Article 10842. https://doi.org/10.1038/s41598-023-37634-8

Malla, S., Bista, L., Rosyara, U., & Sapkota, B. (2022). Effect of unseasonal rainfall on rice production in Nepal during the year 2021: A case study. Archives of Agriculture and Environmental Science, 7(2), 294–299. https://doi.org/10.26832/24566632.2022.0702020

MoAD - Ministry of Agricultural Development. (2016). Statistical information on Nepalese agriculture 2015/16. Government of Nepal, Ministry of Agricultural Development, Monitoring, Evaluation and Statistics Division, Agri Statistics Section. Singha Durbar, Kathmandu. https://www.moald.gov.np/wp-content/uploads/2022/04/STATISTICAL-INFORMATION-ON-NEPALESE-AGRICULTURE-2072-73.pdf

MoALD - Ministry of Agriculture and Livestock Development. (2021). Statistical information on Nepalese agriculture (2078/79) (2021/22). Government of Nepal. Ministry of Agriculture and Livestock Development. Planning and Development Cooperation Coordination Division, Statistics and Analysis section. Singhadurbar, Kathmandu. https://moald.gov.np/wp-content/uploads/2023/08/Statistical-Information-on-Nepalese-Agri¬culture-2078-79-2021-22.pdf.

Mohidem, N. A., Hashim, N., Shamsudin, R., & Man, H. C. (2022). Rice for food security: Revisiting its production, diversity, rice milling process and nutrient content. Agriculture, 12(6), Article 741. https://doi.org/10.3390/AGRICULTURE12060741

Mokhtari, N., Majidi, M. M., & Mirlohi, A. (2022). Potentials of synthetic hexaploid wheats to improve drought tolerance. Scientific Reports, 12, Article 20482. https://doi.org/10.1038/s41598-022-24678-5

Moonmoon, S., & Islam, T. (2017). Effect of drought stress at different growth stages on yield and yield components of six rice (Oryza sativa L.) genotypes. Fundamental and Applied Agriculture, 2(3), 285–289. https://doi.org/10.5455/faa.277118

OECD/FAO (2021), OECD-FAO Agricultural outlook 2021-2030, OECD Publishing, Paris. https://doi.org/10.1787/19428846-en

Panda, D., Mishra, S. S., & Behera, P. K. (2021). Drought tolerance in rice: Focus on recent mechanisms and approaches. Rice Science, 28(2), 119–132. https://doi.org/10.1016/j.rsci.2021.01.002

Pantuwan, G., Fukai, S., Cooper, M., Rajatasereekul, S., & O’Toole, J. C. (2002). Yield response of rice (Oryza sativa L.) genotypes to drought under rainfed lowlands: 2. Selection of drought resistant genotypes. Field Crops Research, 73(2–3), 169–180. https://doi.org/10.1016/S0378-4290(01)00195-2

Paudel, S., Pokharel, N. P., Adhikari, S., & Poudel, S. (2021). Heat and drought stress effect in wheat genotypes: A review. Food and Agri Economics Review, 1(2), 77–79. https://doi.org/10.26480/faer.02.2021.77.79

Perdomo, J. A., Carmo-Silva, E., Hermida-Carrera, C., Flexas, J., & Galmés, J. (2016). Acclimation of biochemical and diffusive components of photosynthesis in rice, wheat, and maize to heat and water deficit: implications for modeling photosynthesis. Frontiers in Plant Science, 7, Article 1719. https://doi.org/10.3389/fpls.2016.01719

Pinter Jr, P. J., Zipoli, G., Reginato, R. J., Jackson, R. D., Idso, S. B., & Hohman, J. P. (1990). Canopy temperature as an indicator of differential water use and yield performance among wheat cultivars. Agricultural Water Management, 18(1), 35–48. https://doi.org/10.1016/0378-3774(90)90034-V

Poudel P. B. & Poudel M. R. (2020). Heat stress effects and tolerance in wheat: A review. Journal of Biology and Today’s World, 9(3), Article 217. https://www.iomcworld.org/articles/heat-stress-effects-and-tolerance-in-wheat-a-review-53182.html

Rahman, S., Jahan, T., Rahman, S. M., Rahman, M., Haque, M. M., & Khan, A. A. (2018). Evaluation of some transplanted AUS rice genotypes for morphology, yield and disease incidence. European Academic Research, 6(1), 291–302.

Raman, A., Verulkar, S., Mandal, N., Variar, M., Shukla, V., Dwivedi, J., Singh, B., Singh, O., Swain, P., Mall, A., Robin, S., Chandrababu, R., Jain, A., Ram, T., Hittalmani, S., Haefele, S., Piepho, H. P., & Kumar, A. (2012). Drought yield index to select high yielding rice lines under different drought stress severities. Rice, 5, Article 31. https://doi.org/10.1186/1939-8433-5-31

Reddy, T. Y., & Reddy, G. H. S. (1997). Principles of agronomy. Kalyani Publishers, New Delhi, India.

Riaz, M. W., Yang, L., Yousaf, M. I., Sami, A., Mei, X. D., Shah, L., Rehman, S., Xue, L., Si, H., & Ma, C. (2021). Effects of heat stress on growth, physiology of plants, yield and grain quality of different spring wheat (Triticum aestivum L.) genotypes. Sustainability, 13(5), Article 2972. https://doi.org/10.3390/su13052972

Rice Knowledge Bank. (2023) (December 20, 2023). How to manage water. http://www.knowledgebank.irri.org/step-by-step-production/growth/water-management

Rice Production by Country. (December 19, 2023). Rice production by country 2024. https://worldpopulationreview.com/country-rankings/rice-production-by-country

Rosielle, A. A., & Hamblin, J. (1981). Theoretical aspects of selection for yield in stress and non‐stress environment. Crop Science, 21(6), 943–946. https://doi.org/10.2135/cropsci1981.0011183X002100060033x

Sarvestani, Z. T., Pirdashti, H., Sanavy, S. A. M. M., & Balouchi, H. (2008). Study of water stress effects in different growth stages on yield and yield components of different rice (Oryza sativa L.) cultivars. Pakistan Journal of Biological Sciences, 11(10), 1303–1309. https://doi.org/10.3923/pjbs.2008.1303.1309

Shrestha, J., Subedi, S., Singh Kushwaha, U. K., & Maharjan, B. (2021). Evaluation of rice genotypes for growth, yield and yield components. Journal of Agriculture and Natural Resources, 4(2), 339–346. https://doi.org/10.3126/JANR.V4I2.33967

Singh, A., Septiningsih, E. M., Balyan, H. S., Singh, N. K., & Rai, V. (2017). Genetics, physiological mechanisms and breeding of flood-tolerant rice (Oryza sativa L.), Plant and Cell Physiology, 58(2), 185–197. https://doi.org/10.1093/pcp/pcw206

Statista. (2023, December 20). Rice – statistics & facts. https://www.statista.com/topics/1443/rice/#topicOverview

Thapa, A., Jaisi, S., & Poudel, M. R. (2022). Evaluation of heat stress tolerance in bread wheat (Triticum aestivum L.) using heat stress indices. International Research Journal of Advanced Engineering and Science, 7(2), 196–200.

Timsina, K. P., Gauchan, D., Gairhe, S., Subedi, S. R., Pokhrel, B. B., Upadhyay, S., Joshi, K. D., Pandey, S., & Shrestha, J. (2023). Rice demand and production projections for 2050: Opportunities for achieving self-sufficiency in Nepal. Nepal Agriculture Research Journal, 15(1), 163–180. https://doi.org/10.3126/NARJ.V15I1.51926

Xie, Y., Shen, Q., Li, F., Ni, S., & Yu, J. (2023). Temperature response of plants and heat tolerance in rice: A review. In D. L. Sparks (Ed.), Advances in Agronomy (Vol. 179, pp. 135–203). Academic Press. https://doi.org/10.1016/BS.AGRON.2023.01.003

Zhu, R., Wu, F., Zhou, S., Hu, T., Huang, J., & Gao, Y. (2020). Cumulative effects of drought-flood abrupt alternation on the photosynthetic characteristics of rice. Environmental and Experimental Botany, 169, Article 103901. https://doi.org/10.1016/J.ENVEXPBOT.2019.103901

How to Cite

APA

Chand, H., Poudel, M. R., Kayastha, P., Kc, B., Pandey, B., Bhandari, J., Magar, B. R., Baduwal, P., Lamichhane, P., Bhattarai, P. and Prasad Pokharel, N. (2024). Evaluation of drought-tolerant rice (Oryza sativa L.) genotypes under drought and irrigated conditions in Bhairahawa, Nepal. Agronomía Colombiana, 42(1), e112231. https://doi.org/10.15446/agron.colomb.v42n1.112231

ACM

[1]
Chand, H., Poudel, M.R., Kayastha, P., Kc, B., Pandey, B., Bhandari, J., Magar, B.R., Baduwal, P., Lamichhane, P., Bhattarai, P. and Prasad Pokharel, N. 2024. Evaluation of drought-tolerant rice (Oryza sativa L.) genotypes under drought and irrigated conditions in Bhairahawa, Nepal. Agronomía Colombiana. 42, 1 (Jan. 2024), e112231. DOI:https://doi.org/10.15446/agron.colomb.v42n1.112231.

ACS

(1)
Chand, H.; Poudel, M. R.; Kayastha, P.; Kc, B.; Pandey, B.; Bhandari, J.; Magar, B. R.; Baduwal, P.; Lamichhane, P.; Bhattarai, P.; Prasad Pokharel, N. Evaluation of drought-tolerant rice (Oryza sativa L.) genotypes under drought and irrigated conditions in Bhairahawa, Nepal. Agron. Colomb. 2024, 42, e112231.

ABNT

CHAND, H.; POUDEL, M. R.; KAYASTHA, P.; KC, B.; PANDEY, B.; BHANDARI, J.; MAGAR, B. R.; BADUWAL, P.; LAMICHHANE, P.; BHATTARAI, P.; PRASAD POKHAREL, N. Evaluation of drought-tolerant rice (Oryza sativa L.) genotypes under drought and irrigated conditions in Bhairahawa, Nepal. Agronomía Colombiana, [S. l.], v. 42, n. 1, p. e112231, 2024. DOI: 10.15446/agron.colomb.v42n1.112231. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/112231. Acesso em: 29 jan. 2025.

Chicago

Chand, Himani, Mukti Ram Poudel, Preeti Kayastha, Barsha Kc, Biddhya Pandey, Janak Bhandari, Bimal Roka Magar, Prakash Baduwal, Pawan Lamichhane, Pragyan Bhattarai, and Netra Prasad Pokharel. 2024. “Evaluation of drought-tolerant rice (Oryza sativa L.) genotypes under drought and irrigated conditions in Bhairahawa, Nepal”. Agronomía Colombiana 42 (1):e112231. https://doi.org/10.15446/agron.colomb.v42n1.112231.

Harvard

Chand, H., Poudel, M. R., Kayastha, P., Kc, B., Pandey, B., Bhandari, J., Magar, B. R., Baduwal, P., Lamichhane, P., Bhattarai, P. and Prasad Pokharel, N. (2024) “Evaluation of drought-tolerant rice (Oryza sativa L.) genotypes under drought and irrigated conditions in Bhairahawa, Nepal”, Agronomía Colombiana, 42(1), p. e112231. doi: 10.15446/agron.colomb.v42n1.112231.

IEEE

[1]
H. Chand, “Evaluation of drought-tolerant rice (Oryza sativa L.) genotypes under drought and irrigated conditions in Bhairahawa, Nepal”, Agron. Colomb., vol. 42, no. 1, p. e112231, Jan. 2024.

MLA

Chand, H., M. R. Poudel, P. Kayastha, B. Kc, B. Pandey, J. Bhandari, B. R. Magar, P. Baduwal, P. Lamichhane, P. Bhattarai, and N. Prasad Pokharel. “Evaluation of drought-tolerant rice (Oryza sativa L.) genotypes under drought and irrigated conditions in Bhairahawa, Nepal”. Agronomía Colombiana, vol. 42, no. 1, Jan. 2024, p. e112231, doi:10.15446/agron.colomb.v42n1.112231.

Turabian

Chand, Himani, Mukti Ram Poudel, Preeti Kayastha, Barsha Kc, Biddhya Pandey, Janak Bhandari, Bimal Roka Magar, Prakash Baduwal, Pawan Lamichhane, Pragyan Bhattarai, and Netra Prasad Pokharel. “Evaluation of drought-tolerant rice (Oryza sativa L.) genotypes under drought and irrigated conditions in Bhairahawa, Nepal”. Agronomía Colombiana 42, no. 1 (January 1, 2024): e112231. Accessed January 29, 2025. https://revistas.unal.edu.co/index.php/agrocol/article/view/112231.

Vancouver

1.
Chand H, Poudel MR, Kayastha P, Kc B, Pandey B, Bhandari J, Magar BR, Baduwal P, Lamichhane P, Bhattarai P, Prasad Pokharel N. Evaluation of drought-tolerant rice (Oryza sativa L.) genotypes under drought and irrigated conditions in Bhairahawa, Nepal. Agron. Colomb. [Internet]. 2024 Jan. 1 [cited 2025 Jan. 29];42(1):e112231. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/112231

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

158

Downloads

Download data is not yet available.