Evaluation of drought-tolerant rice (Oryza sativa L.) genotypes under drought and irrigated conditions in Bhairahawa, Nepal
Evaluación de genotipos de arroz (Oryza sativa L.) tolerantes a la sequía en condiciones de sequía y riego en Bhairahawa, Nepal
DOI:
https://doi.org/10.15446/agron.colomb.v42n1.112231Keywords:
drought stress, stress tolerance indices, yield, stability (en)estrés por sequía, índices de tolerancia al estrés, rendimiento, estabilidad (es)
Downloads
Rice production can be severely affected by drought stress and this could cause massive economic losses every year. Global climate change is steadily becoming an important issue. This research was conducted in order to identify drought-tolerant rice genotypes using stress tolerance indices. Employing a randomized complete block design, a total of nine rice genotypes were assessed under irrigated and drought-stress conditions from June to November 2022 at the Institute of Agriculture and Animal Science (IAAS), Paklihawa, Nepal. In particular, the stress susceptibility index (SSI), mean productivity (MP), and geometric mean productivity (GMP) revealed strong and highly significant positive correlations to agricultural yields under both irrigated and drought stress conditions. The stress tolerance index (STI) and yield stability index (YSI) showed strong and highly significant positive correlations to yield under drought conditions, while the tolerance index (TOL) and yield index (YI) showed strong and negative significant associations to yield under stress conditions. The highest STI, GMP, and MP were observed in the IR16L1713 genotype followed by IR17L1387, establishing these two as the steadiest and most efficient genotypes among nine genotypes of rice. These genotypes have the potential to be selected for maximum outputs under both irrigated and drought-stress situations. A biplot analysis showed a positive association of MP, GMP, and YI to rice yields in an irrigated environment and a negative correlation of SSI, STI, and TOL, with a reduction percentage in a drought-stressed environment. Therefore, these stress indicators can be used to evaluate rice genotypes under both normal and drought stress settings.
La producción de arroz podría verse gravemente afectada por el estrés provocado por la sequía, lo que podría causar enormes pérdidas económicas cada año. El problema del cambio climático global se está convirtiendo cada vez más en una cuestión importante. Esta investigación se llevó a cabo con el fin de identificar los genotipos de arroz tolerantes a la sequía utilizando índices de tolerancia al estrés. Empleando un diseño de bloques completos aleatorizados, se evaluaron un total de nueve genotipos de arroz en condiciones de riego y estrés por sequía de junio a noviembre de 2022 en el Instituto de Agricultura y Ciencia Animal (IAAS), Paklihawa, Nepal. En particular, el índice de susceptibilidad al estrés (ISE), la productividad media (PM) y la productividad media geométrica (PMG) revelaron correlaciones positivas fuertes y altamente significativas con el rendimiento tanto en condiciones de riego como de estrés por sequía. Asimismo, el índice de tolerancia al estrés (ITS) y el índice de estabilidad del rendimiento (IER) mostraron correlaciones positivas fuertes y altamente significativas con el rendimiento en condiciones de sequía, mientras que el índice de tolerancia (TOL) y el índice de rendimiento (IR) mostraron asociaciones significativas fuertes y negativas con el rendimiento en condiciones de estrés. Los mayores ITS, PMG y PM se observaron en IR16L1713, seguido por IR17L1387, estableciéndolos como los genotipos más estables y eficientes entre nueve genotipos de arroz. Estos genotipos tienen el potencial de ser seleccionados para una producción abundante tanto en condiciones de riego como de estrés por sequía. Un análisis biplot mostró una asociación positiva de PM, PMG e IR con el rendimiento en un ambiente irrigado y una correlación negativa de ISS, ITS y TOL con reducciones en el porcentaje en un ambiente de estrés por sequía. Por lo tanto, estos indicadores de estrés se pueden utilizar para evaluar genotipos de arroz tanto en condiciones normales como de estrés por sequía.
References
Adhikari, M., Adhikari, N. R., Sharma, S., Gairhe, J., Bhandari, R. R., & Paudel, S. (2019). Evaluation of drought tolerant rice cultivars using drought tolerant indices under water stress and irrigated condition. American Journal of Climate Change, 8(2), 228–236. https://doi.org/10.4236/ajcc.2019.82013
Anwaar, H. A., Perveen, R., Mansha, M. Z., Abid, M., Sarwar, Z. M., Aatif, H. M., Umar, U. ud din, Sajid, M., Aslam, H. M. U., Alam, M. M., Rizwan, M., Ikram, R. M., Alghanem, S. M. S., Rashid, A., & Khan, K. A. (2020). Assessment of grain yield indices in response to drought stress in wheat (Triticum aestivum L.). Saudi Journal of Biological Sciences, 27(7), 1818–1823. https://doi.org/10.1016/j.sjbs.2019.12.009
Bennani, S., Nsarellah, N., Jlibene, M., Tadesse, W., Birouk, A., & Ouabbou, H. (2017). Efficiency of drought tolerance indices under different stress severities for bread wheat selection. Australian Journal of Crop Science, 11(4), 395–405. https://doi.org/10.21475/ajcs.17.11.04.pne272
Bhattarai, P., Gyanwali, P., Pokharel, N. P., Bashyal, P., Mainali, R., & Khanal, R. (2024). Agro-morphological analysis of yield and yield attributing traits of wheat under heat stress condition. Agriculture and Food Sciences Research, 11(1), 30–35. https://doi.org/10.20448/aesr.v11i1.5486
Bouman, B. A. M., & Tuong, T. P. (2001). Field water management to save water and increase its productivity in irrigated lowland rice. Agriculture Water Management, 49(1), 11–30. https://doi.org/10.1016/S0378-3774(00)00128-1
Bouslama, M., & Schapaugh Jr., W. T. (1984). Stress tolerance in soybeans. I. Evaluation of three screening techniques for heat and drought tolerance. Crop Science, 24(5), 933–937. https://doi.org/10.2135/cropsci1984.0011183x002400050026x
Cattivelli, L., Rizza, F., Badeck, F. W., Mazzucotelli, E., Mastrangelo, A. M., Francia, E., Marè, C., Tondelli, A., & Stanca, A. M. (2008). Drought tolerance improvement in crop plants: An integrated view from breeding to genomics. Field Crops Research, 105(1–2), 1–14. https://doi.org/10.1016/j.fcr.2007.07.004
Dash, P. K., Rai, R., Rai, V., & Pasupalak, S. (2018). Drought induced signaling in rice: Delineating canonical and non-canonical pathways. Frontiers in Chemistry, 6, Article 264. https://doi.org/10.3389/fchem.2018.00264
Ewulo, B. S. (2015). Effect of poultry dung and cattle manure on chemical properties of clay and sandy clay loam soil. Journal of Animal and Veterinary Advances, 4(10), 839–841.
FAO. (2020). Crop prospects and food situation #1, March 2020- Quarterly global report. Food and Agriculture Organization of the United Nations. https://doi.org/10.4060/ca8032en
Fernández, G. C. J. (1992). Effective selection criteria for assessing plant stress tolerance. Adaptation of food crops to temperature and water stress. Shanhua, Taiwan AVRDC. https://worldveg.tind.io/record/72511?v=pdf#files
Fischer, R. A., & Maurer, R. (1978). Drought resistance in spring wheat cultivars. I. Grain yield responses. Australian Journal of Agricultural Research, 29(5), 897–912. https://doi.org/10.1071/AR9780897
Fukagawa, N. K., & Ziska, L. H. (2019). Rice: Importance for global nutrition. Journal of Nutritional Science and Vitaminology, 65(Supplement), S2–S3. https://doi.org/10.3177/JNSV.65.S2
Hao, Z. F., Li, X. H., Su, Z. J., Xie, C. X., Li, M. S., Liang, X. L., Weng, J. F., Zhang, D. G., Li, L., & Zhang, S. H. (2011). A proposed selection criterion for drought resistance across multiple environments in maize. Breeding Science, 61(2), 101–108. https://doi.org/10.1270/jsbbs.61.101
Heino, M., Kinnunen, P., Anderson, W., Ray, D. K., Puma, M. J., Va¬ris, O., Siebert, S., & Kummu, M. (2023). Increased probability of hot and dry weather extremes during the growing season threatens global crop yields. Scientific Reports, 13(1), Article 3583. https://doi.org/10.1038/s41598-023-29378-2
Hossain, A. B. S., Sears, R. G., Cox, T. S., & Paulsen, G. M. (1990). Desiccation tolerance and its relationship to assimilate partitioning in winter wheat. Crop Science, 30(3), 622–627. https://doi.org/10.2135/CROPSCI1990.0011183X003000030030X
Hussain, S., Khaliq, A., Ali, B., Hussain, H. A., Qadir, T., & Hussain, S. (2019). Temperature extremes: Impact on rice growth and development. In M. Hasanuzzaman, K. Hakeem, K. Nahar, & H. Alharby (Eds.), Plant abiotic stress tolerance: Agronomic, molecular and biotechnological approaches (pp. 153–171). Springer. https://doi.org/10.1007/978-3-030-06118-0_6
Iqbal, J., Zia-ul-Qamar, Yousaf, U., Asgher, A., Dilshad, R., Qamar, F. M., Bibi, S., Rehman, S. U., & Haroon, M. (2023). Sustainable rice production under biotic and abiotic stress challenges. In C. S. Prakash, S. Fiaz, M. A. Nadeem, F. S. Baloch, & A. Qayyum (Eds.), Sustainable agriculture in the era of the OMICs revolution (pp. 241–268). https://doi.org/10.1007/978-3-031-15568-0_11
Kamrani, M., Hoseini, Y., & Ebadollahi, A. (2017). Evaluation for heat stress tolerance in durum wheat genotypes using stress tolerance indices. Archives of Agronomy and Soil Science, 64(1), 38–45. https://doi.org/10.1080/03650340.2017.1326104
Kandel, B. P., Joshi, L. P., Sharma, S., Adhikari, P., Koirala, B., & Shrestha, K. (2022). Drought tolerance screening of rice genotypes in mid-hills of Nepal using various drought indices. Acta Agriculturae Scandinavica Section B: Soil and Plant Science, 72(1), 744–750. https://doi.org/10.1080/09064710.2022.2072382
Khan, A. A., & Kabir, M. R. (2015). Evaluation of spring wheat genotypes (Triticum aestivum L.) for heat stress tolerance using different stress tolerance indices. Cercetări Agronomice în Moldova, 47(4), 49–63. https://repository.uaiasi.ro/xmlui/handle/20.500.12811/1762
Kumar, A., Bernier, J., Verulkar, S., Lafitte, H. R., & Atlin, G. N. (2008). Breeding for drought tolerance: Direct selection for yield, response to selection and use of drought-tolerant donors in upland and lowland-adapted populations. Field Crops Research, 107(3), 221–231. https://doi.org/10.1016/j.fcr.2008.02.007
Kumar, S., Dwivedi, S. K., Singh, S. S., Jha, S. K., Lekshmy, S., Elanchezhian, R., Singh, O. N., & Bhatt, B. P. (2014). Identification of drought tolerant rice genotypes by analysing drought tolerance indices and morpho-physiological traits. Journal of Breeding and Genetics, 46(2), 217–230.
Lamba, K., Kumar, M., Singh, V., Chaudhary, L., Sharma, R., Yashveer, S., & Dalal, M. S. (2023). Heat stress tolerance indices for identification of the heat tolerant wheat genotypes. Scientific Reports, 13, Article 10842. https://doi.org/10.1038/s41598-023-37634-8
Malla, S., Bista, L., Rosyara, U., & Sapkota, B. (2022). Effect of unseasonal rainfall on rice production in Nepal during the year 2021: A case study. Archives of Agriculture and Environmental Science, 7(2), 294–299. https://doi.org/10.26832/24566632.2022.0702020
MoAD - Ministry of Agricultural Development. (2016). Statistical information on Nepalese agriculture 2015/16. Government of Nepal, Ministry of Agricultural Development, Monitoring, Evaluation and Statistics Division, Agri Statistics Section. Singha Durbar, Kathmandu. https://www.moald.gov.np/wp-content/uploads/2022/04/STATISTICAL-INFORMATION-ON-NEPALESE-AGRICULTURE-2072-73.pdf
MoALD - Ministry of Agriculture and Livestock Development. (2021). Statistical information on Nepalese agriculture (2078/79) (2021/22). Government of Nepal. Ministry of Agriculture and Livestock Development. Planning and Development Cooperation Coordination Division, Statistics and Analysis section. Singhadurbar, Kathmandu. https://moald.gov.np/wp-content/uploads/2023/08/Statistical-Information-on-Nepalese-Agri¬culture-2078-79-2021-22.pdf.
Mohidem, N. A., Hashim, N., Shamsudin, R., & Man, H. C. (2022). Rice for food security: Revisiting its production, diversity, rice milling process and nutrient content. Agriculture, 12(6), Article 741. https://doi.org/10.3390/AGRICULTURE12060741
Mokhtari, N., Majidi, M. M., & Mirlohi, A. (2022). Potentials of synthetic hexaploid wheats to improve drought tolerance. Scientific Reports, 12, Article 20482. https://doi.org/10.1038/s41598-022-24678-5
Moonmoon, S., & Islam, T. (2017). Effect of drought stress at different growth stages on yield and yield components of six rice (Oryza sativa L.) genotypes. Fundamental and Applied Agriculture, 2(3), 285–289. https://doi.org/10.5455/faa.277118
OECD/FAO (2021), OECD-FAO Agricultural outlook 2021-2030, OECD Publishing, Paris. https://doi.org/10.1787/19428846-en
Panda, D., Mishra, S. S., & Behera, P. K. (2021). Drought tolerance in rice: Focus on recent mechanisms and approaches. Rice Science, 28(2), 119–132. https://doi.org/10.1016/j.rsci.2021.01.002
Pantuwan, G., Fukai, S., Cooper, M., Rajatasereekul, S., & O’Toole, J. C. (2002). Yield response of rice (Oryza sativa L.) genotypes to drought under rainfed lowlands: 2. Selection of drought resistant genotypes. Field Crops Research, 73(2–3), 169–180. https://doi.org/10.1016/S0378-4290(01)00195-2
Paudel, S., Pokharel, N. P., Adhikari, S., & Poudel, S. (2021). Heat and drought stress effect in wheat genotypes: A review. Food and Agri Economics Review, 1(2), 77–79. https://doi.org/10.26480/faer.02.2021.77.79
Perdomo, J. A., Carmo-Silva, E., Hermida-Carrera, C., Flexas, J., & Galmés, J. (2016). Acclimation of biochemical and diffusive components of photosynthesis in rice, wheat, and maize to heat and water deficit: implications for modeling photosynthesis. Frontiers in Plant Science, 7, Article 1719. https://doi.org/10.3389/fpls.2016.01719
Pinter Jr, P. J., Zipoli, G., Reginato, R. J., Jackson, R. D., Idso, S. B., & Hohman, J. P. (1990). Canopy temperature as an indicator of differential water use and yield performance among wheat cultivars. Agricultural Water Management, 18(1), 35–48. https://doi.org/10.1016/0378-3774(90)90034-V
Poudel P. B. & Poudel M. R. (2020). Heat stress effects and tolerance in wheat: A review. Journal of Biology and Today’s World, 9(3), Article 217. https://www.iomcworld.org/articles/heat-stress-effects-and-tolerance-in-wheat-a-review-53182.html
Rahman, S., Jahan, T., Rahman, S. M., Rahman, M., Haque, M. M., & Khan, A. A. (2018). Evaluation of some transplanted AUS rice genotypes for morphology, yield and disease incidence. European Academic Research, 6(1), 291–302.
Raman, A., Verulkar, S., Mandal, N., Variar, M., Shukla, V., Dwivedi, J., Singh, B., Singh, O., Swain, P., Mall, A., Robin, S., Chandrababu, R., Jain, A., Ram, T., Hittalmani, S., Haefele, S., Piepho, H. P., & Kumar, A. (2012). Drought yield index to select high yielding rice lines under different drought stress severities. Rice, 5, Article 31. https://doi.org/10.1186/1939-8433-5-31
Reddy, T. Y., & Reddy, G. H. S. (1997). Principles of agronomy. Kalyani Publishers, New Delhi, India.
Riaz, M. W., Yang, L., Yousaf, M. I., Sami, A., Mei, X. D., Shah, L., Rehman, S., Xue, L., Si, H., & Ma, C. (2021). Effects of heat stress on growth, physiology of plants, yield and grain quality of different spring wheat (Triticum aestivum L.) genotypes. Sustainability, 13(5), Article 2972. https://doi.org/10.3390/su13052972
Rice Knowledge Bank. (2023) (December 20, 2023). How to manage water. http://www.knowledgebank.irri.org/step-by-step-production/growth/water-management
Rice Production by Country. (December 19, 2023). Rice production by country 2024. https://worldpopulationreview.com/country-rankings/rice-production-by-country
Rosielle, A. A., & Hamblin, J. (1981). Theoretical aspects of selection for yield in stress and non‐stress environment. Crop Science, 21(6), 943–946. https://doi.org/10.2135/cropsci1981.0011183X002100060033x
Sarvestani, Z. T., Pirdashti, H., Sanavy, S. A. M. M., & Balouchi, H. (2008). Study of water stress effects in different growth stages on yield and yield components of different rice (Oryza sativa L.) cultivars. Pakistan Journal of Biological Sciences, 11(10), 1303–1309. https://doi.org/10.3923/pjbs.2008.1303.1309
Shrestha, J., Subedi, S., Singh Kushwaha, U. K., & Maharjan, B. (2021). Evaluation of rice genotypes for growth, yield and yield components. Journal of Agriculture and Natural Resources, 4(2), 339–346. https://doi.org/10.3126/JANR.V4I2.33967
Singh, A., Septiningsih, E. M., Balyan, H. S., Singh, N. K., & Rai, V. (2017). Genetics, physiological mechanisms and breeding of flood-tolerant rice (Oryza sativa L.), Plant and Cell Physiology, 58(2), 185–197. https://doi.org/10.1093/pcp/pcw206
Statista. (2023, December 20). Rice – statistics & facts. https://www.statista.com/topics/1443/rice/#topicOverview
Thapa, A., Jaisi, S., & Poudel, M. R. (2022). Evaluation of heat stress tolerance in bread wheat (Triticum aestivum L.) using heat stress indices. International Research Journal of Advanced Engineering and Science, 7(2), 196–200.
Timsina, K. P., Gauchan, D., Gairhe, S., Subedi, S. R., Pokhrel, B. B., Upadhyay, S., Joshi, K. D., Pandey, S., & Shrestha, J. (2023). Rice demand and production projections for 2050: Opportunities for achieving self-sufficiency in Nepal. Nepal Agriculture Research Journal, 15(1), 163–180. https://doi.org/10.3126/NARJ.V15I1.51926
Xie, Y., Shen, Q., Li, F., Ni, S., & Yu, J. (2023). Temperature response of plants and heat tolerance in rice: A review. In D. L. Sparks (Ed.), Advances in Agronomy (Vol. 179, pp. 135–203). Academic Press. https://doi.org/10.1016/BS.AGRON.2023.01.003
Zhu, R., Wu, F., Zhou, S., Hu, T., Huang, J., & Gao, Y. (2020). Cumulative effects of drought-flood abrupt alternation on the photosynthetic characteristics of rice. Environmental and Experimental Botany, 169, Article 103901. https://doi.org/10.1016/J.ENVEXPBOT.2019.103901
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2024 Agronomía Colombiana
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)
Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.