Effects of cadmium on the physiology of Solanum lycopersicum L. grown in alternative hydroponic media
Efectos del cadmio en la fisiología de Solanum lycopersicum L. cultivados en medios hidropónicos alternativos
DOI:
https://doi.org/10.15446/agron.colomb.v42n1.112814Keywords:
heavy metal, tomato, wastewater, hydroponics (en)metal pesado, tomate, aguas residuales, hidroponía (es)
Downloads
Cadmium (Cd) is one of the most toxic metals for the physiology of plants. Proper nutrient management through wastewater reuse can be an efficient strategy to mitigate its effects. In this research, the effects of cadmium were evaluated in the hydroponic cultivation of Solanum lycopersicum L. We conducted two experiments: one using mining wastewater with concentrations of 0, 5, 10, and 15 mg L-1 of Cd2+ (Experiment 1) and another using deionized water with concentrations of 0, 2.5, 5, 10, and 15 mg L-1 of Cd2+ (Experiment 2). Cadmium stress in plants reduced leaf area, chlorophyll content, and concentrations of potassium (K) and manganese (Mn), and increased concentrations of sulfur (S), phosphorus (P), iron (Fe), and copper (Cu). The employment of mining wastewater improved the plant’s response to Cd stress by reducing the translocation of Cd and increasing the contents of P, S, calcium (Ca) and magnesium (Mg) in leaves. At the same time, the use of deionized water decreased the contents of Cu in leaves. These nutrition-related effects influenced leaf area and chlorophyll content, as both indicators showed less impairment in the experiment with wastewater. These results provide additional value to the reuse of wastewater in agriculture.
El cadmio (Cd) es uno de los metales más tóxicos para los procesos fisiológicos de las plantas. El manejo adecuado de nutrientes a través de la reutilización de las aguas residuales puede ser una estrategia eficiente para minimizar sus efectos. En el presente estudio se evaluaron estos efectos en el cultivo hidropónico de Solanum lycopersicum L. Se realizaron dos experimentos: uno con aguas residuales mineras y concentraciones de 0, 5, 10 y 15 mg L-1 de Cd2+ (Experimento 1) y otro con agua desionizada y concentraciones de 0, 2.5, 5, 10 y 15 mg L-1 de Cd2+ (Experimento 2). El estrés por Cd en plantas redujo el área foliar, el contenido de clorofila y las concentraciones de potasio (K) y manganeso (Mn) y aumentó las concentraciones de azufre (S), fosforo (P), hierro (Fe) y cobre (Cu). El uso de aguas residuales mineras mejoró la respuesta de las plantas al estrés por Cd al reducir su translocación y aumentar los contenidos de P, S, calcio (Ca) y magnesio (Mg) en las hojas. Al mismo tiempo, el uso de agua desionizada disminuyó el contenido de Cu en las hojas. Estos efectos relacionados con la nutrición influyeron en el área foliar y el contenido de clorofila, ya que ambos indicadores mostraron un menor deterioro en el experimento con aguas residuales. Estos resultados proporcionan un valor adicional a la reutilización de aguas residuales en la agricultura.
References
Abdel-Satar, A. M., Ali, M. H., & Goher, M. E. (2017). Indices of water quality and metal pollution of Nile River, Egypt. The Egyptian Journal of Aquatic Research, 43(1), 21–29. https://doi.org/10.1016/j.ejar.2016.12.006
Agrawal, S. B., & Mishra, S. (2009). Effects of supplemental ultraviolet-B and cadmium on growth, antioxidants and yield of Pisum sativum L. Ecotoxicology and Environmental Safety, 72(2), 610–618. https://doi.org/10.1016/j.ecoenv.2007.10.007
Andal, F. A. (2016). Assessment of the possible utilization of tomato as a phytoremediant in soils artificially contaminated with heavy metals. International Journal of Applied Environmental Sciences, 11(1), 193–209.
Anjum, N. A., Ahmad, I., Mohmood, I., Pacheco, M., Duarte, A. C., Pereira, E., Umar, S., Ahmad, A., Khan, N. A., Iqbal, M., & Prasad, M. N. V. (2012). Modulation of glutathione and its related enzymes in plants’ responses to toxic metals and metalloids – A review. Environmental and Experimental Botany, 75, 307–324. https://doi.org/10.1016/j.envexpbot.2011.07.002
Azcón-Bieto, J., & Talón, M. (2013). Fundamentos de fisiología vegetal (2nd ed.). Editorial Barcelona Adolf Florensa.
Bala Murugan, S., Ashwini, M., & Sathishkumar, R. (2019). Cadmium stress and toxicity in plants: an overview. In M. Hasanuzzaman, M. Narasimha, V. Prasad, & M. Fujita (Eds.), Cadmium toxicity and tolerance in plants (pp. 1–17). Academic Press. https://doi.org/10.1016/B978-0-12-814864-8.00001-2
Benton Jones Jr, J. (1998). Phosphorus toxicity in tomato plants: when and how does it occur? Communications in Soil Science and Plant Analysis, 29, (11-14), 1779-1784. https://doi.org/10.1080/00103629809370068
Ci, D., Jiang, D., Liu, F., Dai, T., & Cao, W. (2011). Comparisons of cadmium tolerance and accumulation at seedling stage in wheat varieties grown in different decades in China. Acta Physiologiae Plantarum, 33, 1811–1819. https://doi.org/10.1007/s11738-011-0720-1
Conn, S., & Gilliham, M. (2010). Comparative physiology of elemental distributions in plants. Annals of Botany, 105(7), 1081–1102. https://doi.org/10.1093/aob/mcq027
Duressa, T. F., & Leta, S. (2015). Determination of levels of As, Cd, Cr, Hg, and Pb in soils and some vegetables taken from River Mojo water irrigated farmland at Koka Village, Oromia State, East Ethiopia. International Journal of Sciences: Basic and Applied Research (IJSBAR), 21(2), 352–72.
El Rasafi, T., Oukarroum, A., Haddioui, A., Hocheol, C., Kwon, E. E., & Bolan, N., (2022). Cadmium stress in plants: A critical review of the effects, mechanisms, and tolerance strategies. Critical Reviews in Environmental Science and Technology, 52, 675–726. https://doi.org/10.1080/10643389.2020.1835435
Gimba, C., Ndukwe, G., Paul, E., Habila, J., & Madaki, L. (2015). Heavy metals (Cd, Cu, Fe, Mn and Zn) assessment of groundwater, in Kaltungo LGA, Gombe State, Nigeria. International Journal of Science and Technology, 4(2), 229–234.
Hassan, M., Zhu, Z., Ahmad, B., & Mahmood, Q. (2006). Influence of cadmium toxicity on rice genotypes as affected by zinc, sulfur and nitrogen fertilizers. Caspian Journal of Environmental Sciences, 4(1), 1–8.
Hédiji, H., Djebali, W., Belkadhi, A., Cabasson, C., Moing, A., Rolin, D., Brouquisse, R., Gallusci, P., & Chaibi, W. (2015). Impact of long-term cadmium exposure on mineral content of Solanum lycopersicum plants: Consequences on fruit production. South African Journal of Botany, 97, 176–181. https://doi.org/10.1016/j.sajb.2015.01.010
Hernández, L. E., Lozano-Rodríguez, E., Garate, A., & Carpena-Ruíz, R. (1998). Influence of cadmium on the uptake, tissue accumulation and subcelular distribution of manganese in pea seedlings. Plant Science, 132(2), 139–151. https://doi.org/10.1016/S0168-9452(98)00011-9
Hernández, Y., Rodríguez, P., Peña, M., González, P., & San Nicolás, F. T. (2018). Caracterización química y agronómica de las aguas residuales del yacimiento Castellano, Pinar del Río. Cultivos Tropicales, 39(3), 11–17. https://www.redalyc.org/comocitar.oa?id=193260658002
Hoagland, D. R., & Arnon, D. I. (1950). The water-culture method for growing plants without soil. Berkeley: California Agricultural Experimental Station.
Kabata-Pendias, A. (2010). Trace elements in soils and plants (4th ed.). Editorial Boca Raton: CRC Press.
Küpper, H., Setlik, I., Spiller, M., Küpper, F. C., & Prasil, O. (2002). Heavy metal-induced inhibition of photosynthesis: targets of in vivo heavy metal chlorophyll formation. Journal of Phycology, 38(3), 429–441. https://doi.org/10.1046/j.1529-8817.2002.01148.x
Larbi, A., Morales, F., Abadía, A., Gogorcena, Y., Lucena, J., & Abadía, J. (2002). Effects of Cd and Pb in sugar beet plants grown in nutrient solution: Induced Fe deficiency and growth inhibition. Functional Plant Biology, 29(12), 1453–1464. https://doi.org/10.1071/FP02090
Li, Y., Rahman, S. U., Qiu, Z., Shahzad, S. M., Nawaz, M. F., Huang, J., Naveed, S., Li, L., Wang, X., & Cheng, H. (2023). Toxic effects of cadmium on the physiological and biochemical attributes of plants, and phytoremediation strategies: A review. Environmental Pollution, 325, Article 121433. https://doi.org/10.1016/j.envpol.2023.121433
Liu, J. G., Liang, J. S., Li, K. Q., Zhang, Z. J., Yu, B. Y., Lu, X. L., Yang, J. C., & Zhu, Q. S. (2003). Correlations between cadmium and mineral nutrients in absorption and accumulation in various genotypes of rice under cadmium stress. Chemosphere, 52(9), 1467–1473. https://doi.org/10.1016/S0045-6535(03)00484-3
Liu, W., Shu, W., & Lan, C. (2004). Viola baoshanensis, a plant that hyperaccumulates cadmium. Chinese Science Bulletin, 49(1), 29–32. https://doi.org/10.1007/BF02901739
Monteiro, M. S., Santos, C., Soares, A. M. V. M., & Mann, R. M. (2009). Assessment of biomarkers of cadmium stress in lettuce. Ecotoxicology and Environmental Safety, 72(3), 811–818. https://doi.org/10.1016/j.ecoenv.2008.08.002
Muller, M. (2017). Understanding the origins of Cape Town’s water crisis. Civil Engineering, 25(5), 11–6. https://journals.co.za/doi/abs/10.10520/EJC-a549bf214
Nocito, F. F., Lancilli, C., Dendena, B., Lucchini, G., & Sacchi, G. A. (2011). Cadmium retention in rice roots is influenced by cadmium availability, chelation and translocation. Plant, Cell & Environment, 34(6), 994–1008. https://doi.org/10.1111/j.1365-3040.2011.02299.x
Nogueirol, R. C., Monteiro, F. A., Gratão, P. L., Silva, B. K., & Azevedo, R. A. (2016). Cadmium application in tomato: Nutritional imbalance and oxidative stress. Water, Air and Soil Pollution, 227, Article 210. https://doi.org/10.1007/s11270-016-2895-y
Nussbaum, S., Schmutz, D., & Brunold, C. (1988). Regulation of assimilatory sulfate reduction by cadmium in Zea mays L. Plant Physiology, 88(4), 1407–1410. https://doi.org/10.1104/pp.88.4.1407
Ogawa, T., Kobayashi, E., Okubo, Y., Suwazono, Y., Kido, T., & Nogawa, K. (2004). Relationship among prevalence of patients with Itai-itai disease, prevalence of abnormal urinary findings, and cadmium concentrations in rice of individual hamlets in the Jinzu River basin, Toyama prefecture of Japan. International Journal of Environmental Health Research,14(4), 243–252. https://doi.org/10.1080/09603120410001725586
Peñalosa, J. M., Sarro, M. J., Revilla, E., Carpena, R., & Cadahía, C. (1989). Influence of phosphorus supply on tomato plant nutrition. Journal of Plant Nutrition, 12(5), 647–657. https://doi.org/10.1080/01904168909363980
Qiu, R. L., Thangavel, P., Hu, P. J., Senthilkumar, P., Ying, R. R., & Tang, Y. T. (2011). Interaction of cadmium and zinc on accumulation and sub-cellular distribution in leaves of hyperaccumulator Potentilla griffithii. Journal of Hazardous Materials, 186(2-3), 1425–1430. https://doi.org/10.1016/j.jhazmat.2010.12.014
Rahman, M. F., Islam, M., Begum, M. C., Kabir, A. H., & Alam, M. F. (2017). Genetic variation in cadmium tolerance is related to transport and antioxidant activities in field peas (Pisum sativum L.). Archives of Agronomy and Soil Science, 63(4), 578–585. https://doi.org/10.1080/03650340.2016.1224859
Ramírez, C., Almulla, Y., & Fuso Nerini, F. (2021). Reusing wastewater for agricultural irrigation: A water-energy-food Nexus assessment in the North Western Sahara Aquifer System. Environmental Research Letters, 16(4), Article 044052. https://doi.org/10.1088/1748-9326/abe780
Römheld, V. (2000). The chlorosis paradox: Fe inactivation as a secondary event in chlorotic leaves of grapevine. Journal of Plant Nutrition, 23(11-12), 1629–1643. https://doi.org/10.1080/01904160009382129
Sagardoy Calderón, R. (2011). Estudio de la homeostasis de Zn y Cd en plantas superiores [PhD dissertation, Consejo Superior de Investigaciones Científicas, Estación Experimental Aula Dei, Departamento de Nutrición Vegetal, Universidad de Zaragoza]. https://digital.csic.es/handle/10261/39072
Samet, H., Çikili, Y., & Atikmen, N. C. (2017). Role of potassium in alleviation of cadmium toxicity in sunflower (Helianthus annuus L.). Journal of Agricultural Faculty of Gaziosmanpasa University, 34(1), 179–188. https://dergipark.org.tr/en/pub/gopzfd/issue/65828/1024957
Sbartaï, H., Sbartai, I., Djebar, M. R., & Berrebbah, H. (2017). Phytoremediation of contaminated soils by heavy metals – “Case Tomato”. Acta Horticulturae, 1159, 95–100. https://doi.org/10.17660/ActaHortic.2017.1159.15
Seregin, I. V., & Kozhevnikova, A. D. (2004). Strontium transport, distribution, and toxic effects on maize seedling growth. Russian Journal of Plant Physiology, 51(2), 215–221. https://doi.org/10.1023/B:RUPP.0000019217.89936.e7
Spry, D. J., & Wiener, J. G. (1991). Metal bioavailability and toxicity to fish in low-alkalinity lakes: A critical review. Environmental Pollution, 71(2-4), 243–304. https://doi.org/10.1016/0269-7491(91)90034-t
Suzuki, N. (2005). Alleviation by calcium of cadmium-induced root growth inhibition in Arabidopsis seedlings. Plant Biotechnology, 22(1), 19–25. https://doi.org/10.5511/plantbiotechnology.22.19
Wang, C. Q., & Song, H. (2009). Calcium protects Trifolium repens L. seedlings against cadmium stress. Plant Cell Reports, 28(9), 1341–1349. https://doi.org/10.1007/s00299-009-0734-y
Xu, D., Chen, Z., Sun, K., Yan, D., Kang, M., & Zhao, Y. (2013). Effect of cadmium on the physiological parameters and the subcellular cadmium localization in the potato (Solanum tuberosum L.). Ecotoxicology and Environmental Safety, 97, 147–153. https://doi.org/10.1016/j.ecoenv.2013.07.021
Xue, Z., Gao, H., & Zhao, S. (2014). Effects of cadmium on the photosynthetic activity in mature and young leaves of soybean plants. Environmental Science and Pollution Research, 21, 4656–4664. https://doi.org/10.1007/s11356-013-2433-z
Zeng, X., Ma, L.Q., Qiu, R., & Tang, Y. (2009). Responses of non-protein thiols to Cd exposure in Cd hyperaccumulator Arabis paniculata Franch. Environmental and Experimental Botany, 66(2), 242–248. https://doi.org/10.1016/j.envexpbot.2009.03.003
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2024 Agronomía Colombiana
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)
Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.