Published

2024-04-30

Effects of phosphine and plant extracts on flower thrips mortality and the quality of cut flowers

Efectos de la fosfina y extractos de plantas sobre la mortalidad de trips de las flores y la calidad de flores de corte

DOI:

https://doi.org/10.15446/agron.colomb.v42n1.112909

Keywords:

postharvest phytosanitary treatment, chili garlic extract, quarantine pest, rose, chrysanthemum, hydrangea, carnation, alstroemeria (en)
tratamiento fitosanitario poscosecha, extracto de ajo ají, plaga cuarentenaria, rosa, crisantemo, hortensia, clavel, astromelia (es)

Downloads

Authors

Flower thrips represent a complex of significant quarantine species affecting the cut flower market in Colombia. The aim of this research was to evaluate postharvest treatments using phosphine in conjunction with a plant extract for thrips control and quality control of five cut flower species. Eight treatments were used: six employed a commercial dose of magnesium phosphide as a source of phosphine, one used a double dose and a control group without phosphine application. The first six treatments followed a bi-factorial structure, incorporating three exposure times and the addition of a chili-garlic extract. Thrips control efficacy was evaluated using the Schneider-Orelli index based on field-collected samples. Postharvest quality assessments were conducted on roses, carnations, alstroemerias, chrysanthemums, and hydrangeas over an 18-d period following treatment application. Differences in efficacy were observed between the two locations (the blocking factor). Discrepancies in phosphine efficacy may be related to the variations in populations collected from different crops and locations, both in the departments of Cundinamarca and Antioquia. Variations in magnesium phosphide concentration, both at the commercial dose of 3.4 g m-3 and double this amount (2X) did not produce significant differences in treatment efficacy or flower quality. The use of chili pepper and garlic extract applied by nebulization at 3°C combined with phosphine application also did not significantly affect thrips mortality efficacy. The factor most influencing efficacy improvement was exposure time, as longer time periods led to better thrips control. Furthermore, we found that longer exposure times did not affect visual quality or vase life, assessed through changes in color, physiopathies, and chlorophyll content.

Los “trips de las flores” representan un complejo de importantes especies cuarentenarias que afectan al mercado de la flor cortada en Colombia. El objetivo de este estudio fue evaluar tratamientos poscosecha con fosfina y un extracto vegetal para el control de los trips y la calidad de cinco especies de flor cortada. Se aplicaron ocho tratamientos: seis de ellos empleando una dosis comercial de fosfuro de magnesio como fuente de fosfina, uno utilizando una dosis doble, y un grupo de control sin aplicación de fosfina. Los seis primeros tratamientos siguieron una estructura bifactorial, incorporando tres tiempos de exposición y la adición de un extracto de ajo-ají. La eficacia del control de trips se evaluó mediante el índice de Schneider-Orelli basado en individuos colectados en campo. Se realizaron evaluaciones de la calidad poscosecha en rosas, claveles, astromelias, crisantemos y hortensias durante un periodo de 18 d tras la aplicación del tratamiento. Se encontraron diferencias en la eficacia entre las dos ubicaciones (el factor de bloqueo). Las discrepancias en la eficacia de la fosfina podrían estar relacionadas con las variaciones en las poblaciones recolectadas de diferentes cultivos y ubicaciones, tanto en el departamento de Cundinamarca como en el departamento de Antioquia. Las variaciones en la concentración de fosfuro de magnesio, tanto a la dosis comercial de 3.4 g m-3 como al doble de esta (2X), no mostraron diferencias significativas en la eficacia del tratamiento ni en la calidad de las flores. El uso del extracto a base de ajo y ají, aplicado por nebulización a 3°C combinado con la aplicación de fosfina, tampoco afectó significativamente la eficacia del control de los trips. El factor que más influyó en la mejora de la eficacia fue el tiempo de exposición, ya que períodos más largos condujeron a un mejor control de los trips. Además, se encontró que los tiempos de exposición más prolongados no afectaron la calidad visual ni la vida útil en el jarrón, evaluada mediante la variabilidad en los cambios en el color, el contenido de clorofila y la presencia de fisiopatias.

References

Anasac Colombia. (2018). Fosfina: una alternativa en las exportaciones colombianas de flores y frutas. Metroflor. Metroflor-agro, Edición No. 87. Departamento Técnico Anasac Colombia, https://www.metroflorcolombia.com/fosfina-una-alternativaen-las-exportaciones-colombianas-de-flores-y-frutas

Arévalo-Hernández, J. J. (2011). Evaluacion del efecto de la aplicación de diferentes láminas de riego en el cultivo de rosa (Rosa sp) cv. Freedom, bajo invernadero en la Sabana de Bogotá [Master thesis, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/9565

Arora, S., Stanley, J., & Srivastava, C. (2021). Temporal dynamics of phosphine fumigation against insect pests in wheat storage. Crop Protection, 144, Article 105602. https://doi.org/10.1016/j.cropro.2021.105602

Asocolflores. (2010). Manual de buenas prácticas de poscosecha para flor de corte y follajes asociados (2nd ed.). Asociación Colombiana de Exportadores de Flores. https://rutadelasostenibilidad.org/wp-content/uploads/2020/02/Manual_poscosecha_2010-V-2-0.pdf

Badenes-Pérez, F. R., & López-Pérez, J. A. (2018). Resistance and susceptibility to powdery mildew, root-knot nematode, and western flower thrips in two types of winter cress (Brassicaceae). Crop Protection, 110, 41–47. https://doi.org/10.1016/j.cropro.2018.03.015

Baidoo, P. K., & Mochiah, M. B. (2016). Comparing the effectiveness of garlic (Allium sativum L.) and hot pepper (Capsicum frutescens L.) in the management of the major pests of cabbage Brassica oleracea (L.). Sustainable Agriculture Research, 5(2), 83–91. https://doi.org/10.5539/sar.v5n2p83

Balaguera-López, H., Salamanca-Gutiérrez, F., García, J. C., & Herrera-Arévalo, A. (2014). Etileno y retardantes de maduración de productos agrícolas. Una revisión. Revista Colombiana de Ciencias Hortícolas, 8(2), 302–313. http://www.scielo.org.co/pdf/rcch/v8n2/v8n2a12.pdf

Brouillard, R. (1988). The flavonoids: Advances in research. In J. B. Harborne (Ed.). Flavonoids and flower color (pp. 525–538). Chapman & Hall.

Brownbridge, M., & Buitenhuis, R. (2019). Integration of microbial biopesticides in greenhouse floriculture: The Canadian experience. Journal of Invertebrate Pathology, 165, 4–12. https://doi.org/10.1016/j.jip.2017.11.013

Cabrera, R. I., Solís-Pérez, A. R., & McCormick, J. (2007). The role of calcium and boron in rose development and petal blackening: Observations in commercial rose greenhouses and shoot tissue nutrient status. Progress Report (July to December). Texas A&M University, Research and Extension Center.

Caldua-Pohl, C. F. (2015). Evaluación de preservantes florales en la postcosecha de clavel, Dianthus Caryophyllus L. en condiciones de Huaraz-Ancash [Undegraduate thesis, Universidad Nacional “Santiago Antunez de Mayolo”]. http://repositorio.unasam.edu.pe/handle/UNASAM/1081

Carvajal-Oviedo, H., Arancibia-Andrade, B., Leaño-Palenque, E., & Estrada-Vedia, O. (2014). Intoxicación aguda severa por plaguicida tipo fumigante de fosfuro de aluminio Hospital Santa Bárbara, 2014 a propósito de un caso clínico. Revista de Investigación e Información en Salud, 10(23), 43–53. https://doi.org/10.52428/20756208.v10i23.557

Castellanos, D. A., Polanía, W., & Herrera, A. O. (2016). Development of an equilibrium modified atmosphere packaging (EMAP) for feijoa fruits and modeling firmness and color evolution. Postharvest Biology and Technology, 120, 193–203. https://doi.org/10.1016/j.postharvbio.2016.06.012

Chaudhry, M. Q. (1997). A review of the mechanisms involved in the action of phosphine as an insecticide and phosphine resistance in stored-product insects. Pesticide Science, 49(3), 213–228. https://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291096-9063%28199703%2949%3A3%3C213%3A%3AAID-PS516%3E3.0.CO%3B2-%23

Cho, S. W., Kim, H. K., Kim, B. S., Yang, J. O., & Kim, G. H. (2020). Combinatory effect of ethyl formate and phosphine fumigation on Pseudococcus longispinus and P. orchidicola (Hemiptera: Pseudococcidae) mortality and phytotoxicity to 13 foliage nursery plants. Journal of Asia-Pacific Entomology, 23(1), 152–158. https://doi.org/10.1016/j.aspen.2019.11.005

Cumming, G., Fidler, F., & Vaux, D. L. (2007). Error bars in experimental biology. The Journal of Cell Biology, 177(1), 7–11. https://doi.org/10.1083/jcb.200611141

De Mendiburu, F. (2021). Agricolae: Statistical procedures for agricultural research. https://cran.r-project.org/web/packages/agricolae/index.html

Fields, P. G., & White, N. D. G. (2002). Alternatives to methyl bromide treatments for stored-product and quarantine insects. Annual Review of Entomology, 47(1), 331–359. https://doi.org/10.1146/annurev.ento.47.091201.145217

Figueroa, I., Colinas, M., Mejía, J. & Ramírez, F (2005). Cambios fisiológicos en postcosecha de dos cultivares de rosa con diferente duración en florero. Ciencia e Investigación Agraria, 32(3), 209–220. https://dialnet.unirioja.es/servlet/articulo?codigo=1388204

Fischer, G., & Flórez, V. (1998). Efecto de la cosecha sobre fisiología, calidad y longevidad de la flor de corte. Acopaflor, 5(3), 31–37.

Gómez, C. A., Herrera, A. O., & Flórez, V. J. (2017). Consideraciones sobre factores que influyen en la longevidad poscosecha de flores de corte. In V. J. Flórez (Ed.), Consideraciones sobre producción, manejo y poscosecha de flores de corte con énfasis en rosa y clavel (pp. 189–210). Bogotá, Universidad Nacional de Colombia, Facultad de Ciencias Agrarias.

Gómez-Rubio V. (2017). ggplot2 – Elegant graphics for data analysis (2nd ed.). Hadley Wickham Springer-Verlag.

Halevy, A. H., & Mayak, S. (2011). Senescence and postharvest physiology of cut flowers – Part 2. In J. Janick (Ed.), Horticultural Reviews (Vol. 3, pp. 59–143). Wiley. https://doi.org/10.1002/9781118060766.ch3

Heather, N. W., & Hallman, G. J. (2008). Pest management and phytosanitary trade barriers. CABI. https://doi.org/10.1079/9781845933432.0000

Herrick, N. J., Cloyd, R. A., Conner, M. A., & Motolai, G. (2021). Insidious flower bug, Orius insidiosus (Say) (Hemiptera: Anthocoridae), predation on western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), on Transvaal daisy, Gerbera jamesonii, cut flowers and chrysanthemum, Tanacetum × grandiflorum, plants under laboratory and greenhouse conditions. Biological Control, 163, Article 104739. https://doi.org/10.1016/j.biocontrol.2021.104739

Hole, B. D., Bell, C. H., Mills, K. A., & Goodship, G. (1976). The toxicity of phosphine to all developmental stages of thirteen species of stored product beetles. Journal of Stored Products Research, 12(4), 235–244. https://doi.org/10.1016/0022-474X(76)90039-4

Huber-Valiño, N. E. (2019). Síntesis de compuestos de rutenio con ligandos fosfina [Undergraduate thesis, Universidade da Coruña]. https://ruc.udc.es/dspace/handle/2183/24478

ICA. (2018). Medidas fitosanitarias integradas bajo un enfoque de sistemas para el manejo de plagas cuarentenarias en envíos de flor cortada y follaje exportados a Australia. https://sioc.minagricultura.gov.co/Flores/Normatividad/2018-01-03%20MANUAL%20EXP.%20FLORES%20AUSTRALIA%20ENFOQUE%20DE%20SISTEMAS.pdf

ICA, & ANDI. (2016). Manual para la elaboraciòn de protocolos para ensayos de eficacia con PQUA. https://www.ica.gov.co/areas/agricola/servicios/regulacion-y-control-de-plaguicidasquimicos/manual-protocolos-ensayos-eficacia-pqua-1.aspx

IPPC. (2021). Glossary of phytosanitary terms. International Standard for Phytosanitary Measures No. 5. Rome. FAO.

Jones, D. R. (2005). Plant viruses transmitted by thrips. European Journal of Plant Pathology, 113(2), 119–157. https://doi.org/10.1007/s10658-005-2334-1

Juárez Hernández, P., Colinas León, M. T., Valdez Aguilar, L. A., Espinosa Flores, A., Castro Brindis, R., & Cano García, G. V. (2008). Soluciones y refrigeración para alargar la vida postcosecha de rosa cv. “Black Magic” Revista Fitotecnia Mexicana, 31(3), 73–77. https://doi.org/10.35196/rfm.2008.Especial_3.73

Juárez-Segovia, K. G., Díaz-Darcía, E. J., Méndez-López, M. D., Pina-Canseco, M. S., Pérez-Santiago, A. D., & Sánchez-Medina, M. A. (2019). Efecto de extractos crudos de ajo (Allium sativum) sobre el desarrollo in vitro de Aspergillus parasiticus y Aspergillus niger. Polibotánica, 47(24), 99–111. https://doi.org/10.18387/polibotanica.47.8

Karunaratne, C., Moore, G. A., Jones, R., & Ryan, R. (1997). Phosphine and its effect on some common insects in cut flowers. Postharvest Biology and Technology, 10(3), 255–262. https://doi.org/10.1016/S0925-5214(97)01406-3

Kazem, M. G. T., & El-Shereif, S. A. E. H. N. (2010). Toxic effect of capsicum and garlic xylene extracts in toxicity of boiled linseed oil formulations against some piercing sucking cotton pests. American Eurasian Journal of Agriculture and Environment Sciences, 8(4), 390–396. http://www.idosi.org/aejaes/jaes8(4)/5.pdf

Kim, B. S., Park, C. G., Moon, Y. M., Sung, B. K., Ren, Y., Wylie, S. J., & Lee, B. H. (2016). Quarantine treatments of imported nursery plants and exported cut flowers by phosphine gas (PH3) as methyl bromide alternative. Journal of Economic Entomology, 109(6), 2334–2340. https://doi.org/10.1093/jee/tow200

Kostyukovsky, M., & Shaaya, E. (2001). Quarantine treatment on cut flowers by natural fumigants. In E. J. Donahaye, S. Navarro, & J. G. Leesch (Eds.). Proceedings of the International Conference on Controlled Atmosphere and Fumigation in Stored Products, USA, 821–827.

Lema-Jami, M. V. (2011). Evaluación de seis insecticidas de baja toxicidad para el manejo agroecológico de las plagas en el cultivo de chocho (Lupinus mutabilis Sweet), en dos localidades de Cotopaxi [Master thesis, Universidad Técnica de Cotopaxi]. http://repositorio.utc.edu.ec/handle/27000/759

Li, Y., Bai, P., Wei, L., Kang, R., Chen, L., Zhang, M., Tan, E. K., & Liu, W. (2020). Capsaicin functions as Drosophila ovipositional repellent and causes intestinal dysplasia. Scientific Reports, 10(1), Article 9963. https://doi.org/10.1038/s41598-020-66900-2

Liu, S. S., & Liu, Y. B. (2014). Reducing injury of lettuce from phosphine fumigation. HortTechnology, 24(2), 188–195. https://doi.org/10.21273/horttech.24.2.188

Liu, Y. B. (2008). Low temperature phosphine fumigation for postharvest control of western flower thrips (Thysanoptera: Thripidae) on lettuce, broccoli, asparagus, and strawberry. Journal of Economic Entomology, 101(6), 1786–1791. https://doi.org/10.1603/0022-0493-101.6.1786

Liu, Y. B. (2011). Low-temperature phosphine fumigation of chilled lettuce under insulated cover for postharvest control of western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Journal of Asia-Pacific Entomology, 14(3), 323–325. https://doi.org/10.1016/j.aspen.2011.02.003

López, P., Neisa, D. P., Bacca, C., & Flórez, V. J. (2008). Evaluación de preservantes florales en la poscosecha de tres variedades de clavel estándar. Agronomía Colombiana, 26(1), 116–126. https://revistas.unal.edu.co/index.php/agrocol/article/view/13925

Lu, Y., Du, J., Tang, J., Wang, F., Zhang, J., Huang, J., Liang, W., & Wang, L. (2009). Environmental regulation of floral anthocyanin synthesis in Ipomoea purpurea. Molecular Ecology, 18, 3857–3871. https://doi.org/10.1111/j.1365-294X.2009.04288.x

MacLeod, A., Head, J., & Gaunt, A. (2004). An assessment of the potential economic impact of Thrips palmi on horticulture in England and the significance of a successful eradication campaign. Crop Protection, 23(7), 601–610. https://doi.org/10.1016/j.cropro.2003.11.010

Montgomery, D. (2017). Diseño y análisis de experimentos (9th ed.). Limusa S.A.

Mosqueda-Lazcares, G., Arévalo-Galarza, M. L., Valdovinos-Ponce, G., Rodríguez-Pérez, J. E., & Colinas-León, M. T (2011). Época de corte y manejo poscosecha de ocho cultivares de rosa de corte. Revista Mexicana de Ciencias Agrícolas, 2(3), 591–602. https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-09342011000900015

Mouratidis, A., de Lima, A. P., Dicke, M., & Messelink, G. J. (2022). Predator-prey interactions and life history of Orius laevigatus and O. majusculus feeding on flower and leaf-inhabiting thrips. Biological Control, 172, Article 104954. https://doi.org/10.1016/j.biocontrol.2022.104954

Nath, N. S., Bhattacharya, I., Tuck, A. G., Schlipalius, D. I., & Ebert, P. R. (2011). Mechanisms of phosphine toxicity. Journal of Toxicology, 2011, Article 494168. https://doi.org/10.1155/2011/494168

Nicholas, A. H., & Follett, P. A. (2018). Postharvest irradiation treatment for quarantine control of western flower thrips (Thysanoptera: Thripidae). Journal of Economic Entomology, 111(3), 1185–1189. https://doi.org/10.1093/jee/toy073

Noguchi, K., Gel Y.R., Brunner, E., & Konietschke, F. (2012). nparLD: An R software package for the nonparametric analysis of longitudinal data in factorial experiments. Journal of Statistical Software, 50(12), 1–23. https://doi.org/10.18637/jss.v050.i12

Pathare, P. B., Opara, U. L., & Al-Said, F. A. J. (2013). Colour measurement and analysis in fresh and processed foods: A review. Food and Bioprocess Technology, 6(1), 36–60. https://doi.org/10.1007/s11947-012-0867-9

Quintana, A., Albrechtova, J., Griesbach, R., & Freyre, F. (2007). Anatomical and biochemical studies of anthocyanidins in flowers of Anagallis monelli L. (Primulaceae) hybrids. Scientia Horticulturae, 112, 413–421. https://doi.org/10.1016/j.scienta.2007.01.024

Restrepo-Giraldo, P. A. (2019). El fosfuro de magnesio como alternativa para el control de plagas en pos-cosecha de flores tipo exportación [Specialization thesis, Corporación Universitaria Lasallista].

Sirohi, R., Tarafdar, A., Kumar Gaur, V., Singh, S., Sindhu, R., Rajasekharan, R., Madhavan, A., Binod, P., Kumar, S., & Pandey, A. (2021). Technologies for disinfection of food grains: Advances and way forward. Food Research International, 145, Article 110396. https://doi.org/10.1016/j.foodres.2021.110396

Solís Calderón, P. (2016). Plan de manejo de trips en el cultivo del aguacate Hass. https://repositorio.iica.int/bitstream/handle/11324/14145/BVE21011306e.pdf?sequence=1

Su-Kim, B., Park, C. G., Mi-Moon, Y., Sung, B. K., Ren, Y., Wylie, S. J., & Ho-Lee, B. (2016). Quarantine treatments of imported nursery plants and exported cut flowers by phosphine gas (PH3) as methyl bromide alternative. Journal of Economic Entomology, 109(6), 2334–2340. https://doi.org/10.1093/jee/tow200

Tanaka, Y., Brugliera, F., & Chandler, S. (2009). Recent progress of flower colour modification by biotechnology. International Journal of Molecular Sciences, 10(12), 5350–5369. https://doi.org/10.3390/ijms10125350

Taylor, M. S. (1994). TRIPs, trade, and growth. International Economic Review, 35(2), 361–381.

Teulon. D. A. J., Castañé, C., Nielsen, M.-C., El-Sayed, A. M., Davidson, M. M., Gardner-Gee, R., Poulton, J., Kean, A. M., Hall, C., Butler, R. C., Sansom, C. E., Suckling, D. M., & Perry, N. B. (2014). Evaluation of new volatile compounds as lures for western flower thrips and onion thrips in New Zealand and Spain. New Zealand Plant Protection, 67, 175–183. https://doi.org/10.30843/nzpp.2014.67.5749

Trabuco de Evert, M. B., Gómez López, V. A., & Ramírez de López, M. B. (2015). Evaluación de extractos vegetales para el control de la palomilla del tomate Tuta absoluta (Meyrick) en condiciones de invernadero. Investigación Agraria, 17(2), 138–142. https://doi.org/10.18004/investig.agrar.2015.diciembre.138-142

Turcios Palomo, C. L. A. (2013). Identificación y fluctuación poblacional de trips (Insecta: Thysanoptera) asociados con hortalizas de la región central de México [Postgraduate thesis, Colegio de Posgraduados, Mexico]. http://colposdigital.colpos.mx:8080/xmlui/bitstream/handle/10521/2184/Turcios_Palomo_CLA_DC_Entomologia_Acarologia_2013.pdf?sequence=2&isAllowed=y

UNEP. (2020). Handbook for the Montreal protocol on substances that deplete the ozone layer (14th ed.). Ozone Secretariat. https://ozone.unep.org/sites/default/files/Handbooks/MP-Handbook-2020-English.pdf

Van-Altvorst, A. C., & Bovy, A. G. (1995). The role of ethylene in the senescence of carnation flowers, a review. Plant Growth Regulation, 16(1), 43–53. https://doi.org/10.1007/BF00040506

Zhang, F., Wang, Y., Li, L., & Liu, T. (2013). Effects of phosphine fumigation on postharvest quality of four Chinese cut flower species. Postharvest Biology and Technology, 86, 66–72. https://doi.org/10.1016/j.postharvbio.2013.06.016

Zhang, F., Wang, Y., Liu, B., Ren, L., Gong, S., & Liu, T. (2015). Low temperature phosphine fumigation for postharvest control of western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae) on oriental lily. Postharvest Biology and Technology, 100, 136–141. https://doi.org/10.1016/j.postharvbio.2014.09.011

Zieslin, N. (1968). The development and causes of petal blackening and malformation of “Baccara” rose flower. Acta Horticulturae, 14, 149–155.

How to Cite

APA

Lizarazo-Peña, P. A., Benjumea-Orozco, S. and Herrera-Arévalo, A. O. (2024). Effects of phosphine and plant extracts on flower thrips mortality and the quality of cut flowers. Agronomía Colombiana, 42(1), e112909. https://doi.org/10.15446/agron.colomb.v42n1.112909

ACM

[1]
Lizarazo-Peña, P.A., Benjumea-Orozco, S. and Herrera-Arévalo, A.O. 2024. Effects of phosphine and plant extracts on flower thrips mortality and the quality of cut flowers. Agronomía Colombiana. 42, 1 (Jan. 2024), e112909. DOI:https://doi.org/10.15446/agron.colomb.v42n1.112909.

ACS

(1)
Lizarazo-Peña, P. A.; Benjumea-Orozco, S.; Herrera-Arévalo, A. O. Effects of phosphine and plant extracts on flower thrips mortality and the quality of cut flowers. Agron. Colomb. 2024, 42, e112909.

ABNT

LIZARAZO-PEÑA, P. A.; BENJUMEA-OROZCO, S.; HERRERA-ARÉVALO, A. O. Effects of phosphine and plant extracts on flower thrips mortality and the quality of cut flowers. Agronomía Colombiana, [S. l.], v. 42, n. 1, p. e112909, 2024. DOI: 10.15446/agron.colomb.v42n1.112909. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/112909. Acesso em: 31 aug. 2024.

Chicago

Lizarazo-Peña, Pedro Alfonso, Santiago Benjumea-Orozco, and Aníbal Orlando Herrera-Arévalo. 2024. “Effects of phosphine and plant extracts on flower thrips mortality and the quality of cut flowers”. Agronomía Colombiana 42 (1):e112909. https://doi.org/10.15446/agron.colomb.v42n1.112909.

Harvard

Lizarazo-Peña, P. A., Benjumea-Orozco, S. and Herrera-Arévalo, A. O. (2024) “Effects of phosphine and plant extracts on flower thrips mortality and the quality of cut flowers”, Agronomía Colombiana, 42(1), p. e112909. doi: 10.15446/agron.colomb.v42n1.112909.

IEEE

[1]
P. A. Lizarazo-Peña, S. Benjumea-Orozco, and A. O. Herrera-Arévalo, “Effects of phosphine and plant extracts on flower thrips mortality and the quality of cut flowers”, Agron. Colomb., vol. 42, no. 1, p. e112909, Jan. 2024.

MLA

Lizarazo-Peña, P. A., S. Benjumea-Orozco, and A. O. Herrera-Arévalo. “Effects of phosphine and plant extracts on flower thrips mortality and the quality of cut flowers”. Agronomía Colombiana, vol. 42, no. 1, Jan. 2024, p. e112909, doi:10.15446/agron.colomb.v42n1.112909.

Turabian

Lizarazo-Peña, Pedro Alfonso, Santiago Benjumea-Orozco, and Aníbal Orlando Herrera-Arévalo. “Effects of phosphine and plant extracts on flower thrips mortality and the quality of cut flowers”. Agronomía Colombiana 42, no. 1 (January 1, 2024): e112909. Accessed August 31, 2024. https://revistas.unal.edu.co/index.php/agrocol/article/view/112909.

Vancouver

1.
Lizarazo-Peña PA, Benjumea-Orozco S, Herrera-Arévalo AO. Effects of phosphine and plant extracts on flower thrips mortality and the quality of cut flowers. Agron. Colomb. [Internet]. 2024 Jan. 1 [cited 2024 Aug. 31];42(1):e112909. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/112909

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

136

Downloads

Download data is not yet available.