Can biostimulants and grafting alleviate salinity stress in purple passion fruit (Passiflora edulis f. edulis Sims)?
¿Pueden los bioestimulantes y la injertación mitigar el estrés por salinidad en gulupa (Passiflora edulis f. edulis Sims)?
DOI:
https://doi.org/10.15446/agron.colomb.v42n1.113585Keywords:
Passiflora maliformis, Ascophyllum nodosum, water status, chlorophyll fluorescence (en)Passiflora maliformis, Ascophyllum nodosum, estatus hídrico, fluorescencia de la clorofila (es)
Downloads
Purple passion fruit crops are affected by salinity conditions in productive systems. The aim of this research was to evaluate the effect of the application of Ascophyllum nodosum extract on salinity stress in purple passion fruit plants at the vegetative stage of growth with and without grafting. Eight treatments were evaluated corresponding to the combination of grafting or non-grafting on the Passiflora maliformis rootstock, the presence or absence of salt stress, and the application or not of the A. nodosum biostimulant. Physiological and growth parameters were evaluated. Salinity significantly decreased (P<0.05) growth and stomatal conductance (gs), increased contents of photosynthetic pigments and did not affect the chlorophyll a fluorescence. The grafted plants presented a positive response (P<0.05) in chlorophyll relative contents (~63 SPAD units) and shoot length (~106 cm); lower gs (~163 mmol H2O m-2s-1), number of leaves (~43 leaves) and root weight (3.5 g of dry weight), and no change in chlorophyll a fluorescence. The biostimulant mitigated the salinity effect on gs and photosynthetic pigments. In the case of salinity, non-grafted purple passion fruit may present a better performance at the vegetative stage, and the biostimulant can have a slight mitigation effect on salt stress. However, if it is essential to use grafted plants for sanitary reasons, the evaluated salinity does not affect them drastically.
En los sistemas productivos de gulupa se presentan condiciones de salinidad que afectan el cultivo. El objetivo de este trabajo fue evaluar el efecto de la aplicación de un extracto de Ascophyllum nodosum sobre el estrés salino en plantas de gulupa en etapa vegetativa de crecimiento con y sin injertación. Se evaluaron ocho tratamientos correspondientes a la combinación de la injertación o no sobre el patrón de Passiflora maliformis, la presencia o no de estrés salino, y la aplicación o no del bioestimulante A. nodosum. Se evaluaron parámetros fisiológicos y de crecimiento. La salinidad disminuyó significativamente (P<0,05) el crecimiento, conductancia estomática (gs), incrementó los pigmentos fotosintéticos y no afectó la fluorescencia de clorofila a. Las plantas injertadas obtuvieron una respuesta positiva (P<0,05) en contenido de clorofila (~63 unidades SPAD) y longitud de la parte aérea (~106 cm), presentaron menor gs (~163 mmol H2O m-2s-1), número de hojas (~43 hojas) y peso de raíces (3,5 g de peso seco), pero no afectaron la fluorescencia de la clorofila a. El bioestimulante mitigó el efecto de la salinidad en gs y pigmentos fotosintéticos. En el caso de salinidad, las plantas de gulupa sin injertar pueden presentar un mejor desempeño en etapa vegetativa, y el bioestimulante puede presentar un leve efecto en la mitigación del estrés salino. Sin embargo, si es indispensable utilizar plantas injertadas por causas sanitarias, la salinidad evaluada no las afecta drásticamente.
References
Agronet. (2023). Reporte: àrea, producción y rendimiento nacional por cultivo. https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1
Ahmad, A., Blasco, B., & Martos, V. (2022). Combating salinity through natural plant extracts based biostimulants: A review. Frontiers in Plant Science, 13, Article 862034. https://doi.org/10.3389/fpls.2022.862034 DOI: https://doi.org/10.3389/fpls.2022.862034
Al-Ghamdi, A. A., & Elansary, H. O. (2018). Synergetic effects of 5-aminolevulinic acid and Ascophyllum nodosum seaweed extracts on Asparagus phenolics and stress related genes under saline irrigation. Plant Physiology and Biochemistry, 129, 273–284. https://doi.org/10.1016/j.plaphy.2018.06.008 DOI: https://doi.org/10.1016/j.plaphy.2018.06.008
Andrade, E. M. G., Lima, G. S., Lima, V. L. A., Silva, S. S., Dias, A. S., & Gheyi, H. R. (2022). Hydrogen peroxide as attenuator of salt stress effects on the physiology and biomass of yellow passion fruit. Revista Brasileira de Engenharia Agrícola e Ambiental, 26(8), 571–578. https://doi.org/10.1590/1807-1929/agriambi.v26n8p571-578 DOI: https://doi.org/10.1590/1807-1929/agriambi.v26n8p571-578
Arif, Y., Singh, P., Siddiqui, H., Bajguz, A., & Hayat, S. (2020). Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 156, 64–77. https://doi.org/10.1016/j.plaphy.2020.08.042 DOI: https://doi.org/10.1016/j.plaphy.2020.08.042
Armas Costa, R. J., Martín Gómez, P. F., & Rangel Díaz, J. E. (2022). Gulupa (Passiflora edulis Sims), su potencial para exportación, su matriz y su firma de maduración: una revisión. Ciencia y Agricultura, 19(1), 15–27. https://doi.org/10.19053/01228420.v19.n1.2022.13822 DOI: https://doi.org/10.19053/01228420.v19.n1.2022.13822
Asociación Nacional de Comercio Exterior - ANALDEX (2023). Informe de las exportaciones colombianas de frutas 2022. https://www.analdex.org/2023/04/20/informe-de-las-exportacionescolombianas-de-frutas-2022/#:~:text=El%20principal%20destino%20de%20las%20exportaciones%20de%20Gulupa%20es%20la,volumen%20de%2014.600%20toneladas%20netas
Bezerra, J. D., Pereira, W. E., Silva, J. M., & Raposo, R. W. C. (2016). Crescimento de dois genótipos de maracujazeiro-amarelo sob condições de salinidade. Revista Ceres, 63(4), 502–508. https://doi.org/10.1590/0034-737X201663040010 DOI: https://doi.org/10.1590/0034-737X201663040010
Bezerra, M. A. F., Pereira, W. E., Bezerra, F. T. C., Cavalcante, L. F., & Medeiros, S. A. S. (2019). Nitrogen as a mitigator of salt stress in yellow passion fruit seedlings. Semina: Ciências Agrárias, 40(2), 611–622. https://doi.org/10.5433/1679-0359.2019v40n2p611 DOI: https://doi.org/10.5433/1679-0359.2019v40n2p611
Bonomelli, C., Celis, V., Lombardi, G., & Mártiz, J. (2018). Salt stress effects on avocado (Persea americana Mill.) plants with and without seaweed extract (Ascophyllum nodosum) application. Agronomy, 8(5), Article 64. https://doi.org/10.3390/agronomy8050064 DOI: https://doi.org/10.3390/agronomy8050064
Carillo, P., Ciarmiello, L. F., Woodrow, P., Corrado, G., Chiaiese, P., & Rouphael, Y. (2020). Enhancing sustainability by improving plant salt tolerance through macro- and micro-algal biostimulants. Biology, 9(9), Article 253. https://doi.org/10.3390/biology9090253 DOI: https://doi.org/10.3390/biology9090253
Corwin, D. L. (2021). Climate change impacts on soil salinity in agricultural areas. European Journal of Soil Science, 72(2), 842–862. https://doi.org/10.1111/ejss.13010 DOI: https://doi.org/10.1111/ejss.13010
Eswar, D., Karuppusamy, R., & Chellamuthu, S., (2021). Drivers of soil salinity and their correlation with climate change. Current Opinion in Environmental Sustainability, 50, 310–318. https://doi.org/10.1016/j.cosust.2020.10.015 DOI: https://doi.org/10.1016/j.cosust.2020.10.015
Forero, R., Ortiz, E., de León, W., Gómez, J. C., & Hoyos-Carvajal, L. (2015). Análisis de la resistencia a Fusarium oxysporum en plantas de Passiflora maliformis L. Revista Colombiana de Ciencias Hortícolas, 9(2), 197–208. https://revistas.uptc.edu.co/index.php/ciencias_horticolas/article/view/4174 DOI: https://doi.org/10.17584/rcch.2015v9i2.4174
Guedes, L. R., Cavalcante, L. F., Souto, A. G. L., Maciel, L. H. M., Cavalcante, Í. H. L., Diniz Neto, M. A., Lima, G. S., Melo, T. S., & Henrique, J. C. G. S. (2023). Liquid fertilizers on photochemical efficiency and gas exchange in yellow passion fruit under saline stress. Revista Brasileira de Engenharia Agrícola e Ambiental, 27(11), 839–847. https://doi.org/10.1590/1807-1929/agriambi.v27n11p839-847 DOI: https://doi.org/10.1590/1807-1929/agriambi.v27n11p839-847
Ikuyinminu, E., Goñi, O., & O’Connell, S. (2022). Enhancing irrigation salinity stress tolerance and increasing yield in tomato using a precision engineered protein hydrolysate and Ascophyllum nodosum-derived biostimulant. Agronomy, 12(4), Article 809. https://doi.org/10.3390/agronomy12040809 DOI: https://doi.org/10.3390/agronomy12040809
Jiménez-Bohórquez, E. F., Díaz-Arias, M. A., & Balaguera-López, H. E. (2024). Exogenous brassinosteroids application in purple passion fruit plants grafted onto a sweet calabash passion fruit rootstock and under water stress. Revista Colombiana de Ciencias Hortícolas, 18(1), Article e16514. https://doi.org/10.17584/rcch.2024v18i1.16514 DOI: https://doi.org/10.17584/rcch.2024v18i1.16514
Khalid, M. F., Huda, S., Yong, M., Li, L., Li, L., Chen, Z. H., & Ahmed, T. (2023). Alleviation of drought and salt stress in vegetables: Crop responses and mitigation strategies. Plant Growth Regulation, 99, 177–194. https://doi.org/10.1007/s10725-022-00905-x DOI: https://doi.org/10.1007/s10725-022-00905-x
Lima, G. S., Souza, W. B. B., Paiva, F. J. S., Soares, L. A. A., Torres, R. A. F., Silva, S. T. A., Gheyi, H. R., & Lopes, K. P. (2023). Tolerance of sour passion fruit cultivars to salt stress in a semi-arid region. Revista Brasileira de Engenharia Agrícola e Ambiental, 27(10), 785–794. https://doi.org/10.1590/1807-1929/agriambi.v27n10p785-794 DOI: https://doi.org/10.1590/1807-1929/agriambi.v27n10p785-794
Lima, L. K. S., Nunes de Jesus, O., Soares, T. L., Santos, I. S., Oliveira, E. J., & Coelho Filho, M. A. (2020). Growth, physiological, anatomical and nutritional responses of two phenotypically distinct passion fruit species (Passiflora L.) and their hybrid under saline conditions. Scientia Horticulturae, 263, Article 109037. https://doi.org/10.1016/j.scienta.2019.109037 DOI: https://doi.org/10.1016/j.scienta.2019.109037
López-Gómez, M., Flor-Peregrín, E., Talavera, M., Sorribas, F. J., & Verdejo-Lucas, S. (2015). Population dynamics of Meloidogyne javanica and its relationship with the leaf chlorophyll content in zucchini. Crop Protection, 70, 8–14. https://doi.org/10.1016/j.cropro.2014.12.015 DOI: https://doi.org/10.1016/j.cropro.2014.12.015
López, M. C., Hurtado-Salazar, A., Ocampo, J., Silva, D. F. P., & Ceballos-Aguirre, N. (2023). Evaluation of purple passion fruit grafted onto a fusarium wilt-tolerant rootstock. Pesquisa Agropecuária Brasileira, 58, Article e03011. https://doi.org/10.1590/S1678-3921.pab2023.v58.03011 DOI: https://doi.org/10.1590/s1678-3921.pab2023.v58.03011
Lozano-Montaña, P. A., Sarmiento, F., Mejía-Sequera, L. M., Álvarez-Flórez, F., & Melgarejo, L. M. (2021). Physiological, biochemical and transcriptional responses of Passiflora edulis Sims f. edulis under progressive drought stress. Scientia Horticulturae, 275, Article 109655. https://doi.org/10.1016/j.scienta.2020.109655 DOI: https://doi.org/10.1016/j.scienta.2020.109655
Moura, R. S., Gheyi, H. R., Silva, E. M., Dias, E. A., Cruz, C. S., & Coelho Filho, M. A. (2020). Salt stress on physiology, biometry and fruit quality of grafted Passiflora edulis. Bioscience Journal, 36(3), 731–742. https://seer.ufu.br/index.php/biosciencejournal/article/view/47693 DOI: https://doi.org/10.14393/BJ-v36n3a2020-47693
Moura, R. S., Ribeiro, J. A., Simeão, M., Simão, L. P. L., Sousa, D. R., Silva, E. M., Lima. C. J. G. S., & Silva Júnior, G. B. (2016). Productivity and physico-chemical quality of yellow passionfruit cultivated under different nitrogen sources through fertigation. International Journal of Current Research, 8(11), 42003–42009. https://www.journalcra.com/article/productivity-and-physico-chemical-quality-yellow-passion-fruit-cultivated-under-different
Moura, R. S., Soares, T. L., Lima, L. K. S., Gheyi, H. R., Nunes Jesus, O., & Coelho Filho, M. A. (2019). Salinity-induced changes in biometric, physiological and anatomical parameters of Passiflora edulis Sims plants propagated by different methods. Archives of Agronomy and Soil Science, 66(12), 1692–1706. https://doi.org/10.1080/03650340.2019.1688789 DOI: https://doi.org/10.1080/03650340.2019.1688789
Mozafarian, M., Hawrylak-Nowak, B., & Kappel, N. (2023). Effect of different rootstocks on the salt stress tolerance and fruit quality of grafted eggplants (Solanum melongena L.). Plants, 12(20), Article 3631. https://doi.org/10.3390/plants12203631 DOI: https://doi.org/10.3390/plants12203631
Nascimento, E. S., Cavalcante, L. F., Gondim, S. C., Souza, J. T. A., Bezerra, F. T. C., & Bezerra, M. A. F. (2017). Formação de mudas de maracujazeiro amarelo irrigadas com águas salinas e biofertilizantes de esterco bovino. Agropecuária Técnica, 38(1), 1–8. https://doi.org/10.25066/agrotec.v38i1.28090 DOI: https://doi.org/10.25066/agrotec.v38i1.28090
Ocampo, J., Rodríguez, A., & Parra. M. (2020). Gulupa: Passiflora edulis f. edulis Sims. In A. Rodríguez, F. G. Faleiro, M. Parra, & A. M. Costa (Eds.), Pasifloras - especies cultivadas en el mundo (1st ed., pp. 139–157). ProImpress-Brasilia and Cepass.
Okon, O. G. (2019). Effect of salinity on physiological processes in plants. In B. Giri, & A. Varma (Eds.). Microorganisms in saline environments: Strategies and functions (pp. 237–262). Springer. https://doi.org/10.1007/978-3-030-18975-4_10 DOI: https://doi.org/10.1007/978-3-030-18975-4_10
Okur, B., & Örçen, N. (2020). Soil salinization and climate change. In P. M. Vara, & M. Pietrzykowski (Eds.), Climate change and soil interactions (pp. 331–350). Elsevier. https://doi.org/10.1016/B978-0-12-818032-7.00012-6 DOI: https://doi.org/10.1016/B978-0-12-818032-7.00012-6
Rakkammal, K., Maharajan, T., Ceasar, S. A., & Ramesh, M. (2023). Biostimulants and their role in improving plant growth under drought and salinity. Cereal Research Communications, 51(1), 61–74. https://doi.org/10.1007/s42976-022-00299-6 DOI: https://doi.org/10.1007/s42976-022-00299-6
Rodríguez, A., Ocampo, J., Rodríguez, O., Capera, A., & Parra. M. (2020). Cholupa: Passiflora maliformis L. In A. Rodríguez, F. G. Faleiro, M. Parra, & A. M. Costa (Eds.), Pasifloras - especies cultivadas en el mundo (1st ed., pp. 123–138). ProImpress-Brasilia and Cepass.
Rodríguez-Polanco, E., Bermeo-Fúquene, Segura-Amaya, J., & Parra-Alferes, E. (2022). Caracterización y tipificación de los sistemas de producción de gulupa (Passiflora edulis f. edulis Sims) en las regiones Norte y Centro-Occidente de Tolima. Revista de Investigación Agraria y Ambiental, 13(1), 89–107.https://doi.org/10.22490/21456453.4583 DOI: https://doi.org/10.22490/21456453.4583
Rouphael, Y., Carillo, P., Garcia-Perez, P., Cardarelli, M., Senizza, B., Miras-Moreno, B., Colla, G., & Lucini, L. (2022). Plant biostimulants from seaweeds or vegetal proteins enhance the salinity tolerance in greenhouse lettuce by modulating plant metabolism in a distinctive manner. Scientia Horticulturae, 305, Article 111368. https://doi.org/10.1016/j.scienta.2022.111368 DOI: https://doi.org/10.1016/j.scienta.2022.111368
Sá, J. M., Leitão, E. T. C., Gomes, C. D. L., Rodrigues, M. H. B. S., Sousa, V. F. O., Santos, G. L., Melo, R. A. P., Mendonça Júnior, A. F., Lacerda, J. S. P., & Santos, A. S. (2018). The initial growth of passion fruit plant irrigated with saline water and the application of biostimulants. Journal of Agricultural Science, 10(9), 357–362. https://doi.org/10.5539/jas.v10n9p357 DOI: https://doi.org/10.5539/jas.v10n9p357
Segura-Castruita, M. A., Ramírez-Seañez, A. R., García-Legaspi, G., Preciado-Rangel, P., García Hernández, J. L., Yescas-Coronado, P., Fortis-Hernández, M., Orozco-Vidal, J. A., & Montemayor-Trejo, J. A. (2011). Desarrollo de plantas de tomate en un sustrato de arena-pómez con tres diferentes frecuencias de riego. Revista Chapingo Serie Horticultura, 17(1), 25–31. https://doi.org/10.5154/r.rchsh.2011.17.034 DOI: https://doi.org/10.5154/r.rchsh.2011.17.034
Ullah, A., Bano, A., & Khan, N. (2021). Climate change and salinity effects on crops and chemical communication between plants and plant growth-promoting microorganisms under stress. Frontiers in Sustainable Food Systems, 5, Article 618092. https://doi.org/10.3389/fsufs.2021.618092 DOI: https://doi.org/10.3389/fsufs.2021.618092
Wellburn, A. R. (1994). The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144(3), 307–313. https://doi.org/10.1016/S0176-1617(11)81192-2 DOI: https://doi.org/10.1016/S0176-1617(11)81192-2
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2024 Agronomía Colombiana

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)

Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.







