Rooting for pasta: Unleashing the rheological potential of tannia (Xanthosoma sagittifolium)
Enraizamiento de la pasta: liberando el potencial reológico de la malanga (Xanthosoma sagittifolium)
DOI:
https://doi.org/10.15446/agron.colomb.v42n1.113836Keywords:
starch, starchy raw material, sustainable agriculture, physicochemical properties, wheat, new cocoyam (en)almidón, materia prima amilácea, agricultura sostenible, propiedades fisicoquímicas, trigo, quequesque (es)
Downloads
The quest for technological advancements in food products has led to the exploration of unconventional raw materials and innovative formulations. This study investigated the feasibility of incorporating tannia (Xanthosoma sagittifolium) starch as a partial substitute for wheat flour in pasta formulations. Tannia tubers were sourced, and native starch was extracted following a wet method. Four pasta formulations were prepared with varying percentages of tannia starch substitution (5%, 10%, 15%, and 20%), alongside a control sample. Physicochemical analyses applied for moisture content, ash content, acidity, and pH revealed 11.97% moisture, 0.4% ash, 0.007% acidity, and 4.6 pH in tannia starch. The rheological analysis denoted as the parameters in the Mixolab showed alterations in hydration, moisture, and stability with increasing tannia starch substitution. Cooking tests demonstrated a reduction in optimal cooking time with higher levels of tannia starch substitution, attributed to lower gelatinization temperatures of the tannia starch. Weight loss increased with greater substitution of tannia starch, while water absorption varied, showing a non-linear trend. Quality indices reflected changes in dough characteristics and gluten strength with tannia starch substitution. Further optimization of formulations is recommended to balance technological enhancement with pasta quality attributes, paving the way for the development of novel pasta products
La búsqueda de mejoras tecnológicas en productos alimenticios ha llevado a la exploración de materias primas no convencionales y formulaciones innovadoras. Este estudio investigó la viabilidad de incorporar almidón demalanga (Xanthosoma sagittifolium) como un sustituto parcial de la harina de trigo en formulaciones de pasta. Se extrajo el almidón nativo de tubérculos de malanga siguiendo el método húmedo. Se prepararon 4 formulaciones de pasta con diferentes porcentajes de sustitución de almidón de malanga (5%, 10%, 15% y 20%), junto con una muestra de control. Los análisis fisicoquímicos ejecutados, humedad, cenizas, acidez y pH, revelaron 11,97% de humedad, 0,4% de cenizas, 0,007% de acidez y 4,6 de pH en el almidón de malanga. El análisis reológico denotado como los parámetros de Mixolab mostró alteraciones en la hidratación, humedad y estabilidad con el aumento de la sustitución de almidón de malanga. Las pruebas de cocción demostraron una reducción en el tiempo de cocción óptimo con niveles más altos de sustitución de almidón de malanga, atribuido a las temperaturas de gelatinización más bajas del almidón de malanga. La pérdida de peso aumentó con una mayor sustitución de almidón de malanga, mientras que la capacidad de hinchamiento varió, mostrando una tendencia no lineal. Los índices de calidad reflejaron cambios en las características de la masa y la fuerza del gluten con la sustitución de almidón de malanga. Se recomienda una mayor optimización de las formulaciones para equilibrar la mejora tecnológica con atributos de calidad de la pasta, allanando el camino para el desarrollo de productos de pasta novedosos.
References
Acurio, P., Villacrés, E., & Paredes, M. (2018). Modificación de las propiedades reológicas y panificables mediante fermentación del almidón de maíz variedad INIAP 122. Alimentos Ciencia e Ingeniería, 26(1), 17–25. https://doi.org/10.31243/aci.v26i1.1739
Adepeju, A. B., Gbadamosi, S. O., Adeniran, A. H., & Omobuwajo, T. O. (2011). Functional and pasting characteristics of breadfruit (Artocarpus altilis) flours. African Journal of Food Science, 5(9), 529–535. https://academicjournals.org/journal/AJFS/article-full-text-pdf/70FDCCF9758
Alamprese, C., Casiraghi, E., & Pagani, M. A. (2007). Development of gluten-free fresh egg pasta analogues containing buckwheat. European Food Research and Technology, 225, 205–213. https://doi.org/10.1007/s00217-006-0405-y
Alvis, A., Vélez, C. A., Villada, H. S., & Rada-Mendoza, M. (2008). Análisis físico-químico y morfológico de almidones de ñame, yuca y papa y determinación de la viscosidad de las pastas. Información Tecnológica, 19(1), 19–28. https://doi.org/10.4067/S0718-07642008000100004
Akanbi, T. O., Nazamid, S., & Adebowale, A. A. (2009). Functional and pasting properties of a tropical breadfruit (Artocarpus altilis) starch from Ile-Ife, Osun State, Nigeria. International Food Research Journal, 16, 151–157. http://www.ifrj.upm.edu.my/16%20(2)%202009/04-%20IFRJ-2008-129%20Akanbi%20Nigeria%202nd%20proof.pdf
Akanbi, T. O., Nazamid, S., Adebowale, A. A., Farooq, A., & Olaoye, A. O. (2011). Breadfruit starch-wheat flour noodles: Preparation, proximate compositions and culinary properties. International Food Research Journal, 18(4), 1283–1287. http://www.ifrj.upm.edu.my/18%20(04)%202011/(11)IFRJ-2011-071.pdf
AOAC International. (2005). Official methods of analysis of AOAC international (18th ed.). AOAC International.
Ashogbon, A. O., & Akintayo, E. T. (2014). Recent trend in the physical and chemical modification of starches from different botanical sources: A review. Starch‐Stärke, 66(1–2), 41–57. https://doi.org/10.1002/star.201300106
Awuchi, C. G., Igwe, V. S., & Echeta, C. K. (2019). The functional properties of foods and flours. International Journal of Advanced Academic Research, 5(11), 139–160. https://www.ijaar.org/articles/Volume5-Number11/Sciences-Technology-Engineering/ijaar-ste-v5n11-nov19-p16.pdf
Baiano, A., Lamacchia, C., Fares, C., Terracone, C., & La Notte, E. (2011). Cooking behaviour and acceptability of composite pasta made of semolina and toasted or partially defatted soy flour. LWT-Food Science and Technology, 44(4), 1226–1232. https://doi.org/10.1016/j.lwt.2010.11.029
Bárcenas, M. E., & Rosell, C. M. (2007). Different approaches for increasing the shelf life of partially baked bread: Low temperatures and hydrocolloid addition. Food Chemistry, 100(4), 1594–1601. https://doi.org/10.1016/j.foodchem.2005.12.043
Bertoft, E. (2017). Understanding starch structure: Recent progress. Agronomy, 7(3), Article 56. https://doi.org/10.3390/agronomy7030056
Boland, M., & Hill, J. (2020). World supply of food and the role of dairy protein. In M. Boland, & H Singh, Milk proteins (pp. 1–19). Academic Press. https://doi.org/10.1016/B978-0-12-815251-5.00001-3
Calero-Jiménez, A., Yunga-Guamán, A., Martínez-Mora, O., Bravo-Bravo, V., & Cuenca-Mayorga, F. P. (2021). Use of modified starch from breadfruit (Artocarpus altilis) cultivated in Ecuador in the development of edible films. Alimentos Hoy, 29(56), 3–14. https://alimentoshoy.acta.org.co/index.php/hoy/article/view/624
Chillo, S., Laverse, J., Falcone, P. M., & Nobile, M. A. (2007). Effect of carboxymethylcellulose and pregelatinized corn starch on the quality of amaranthus spaghetti. Journal of Food Engineering, 83(4), 492–500. https://doi.org/10.1016/j.jfoodeng.2007.03.037
Contreras Dioses, O., Quezada Correa, L., Cuenca Mayorga, F., Martínez Fernández, D., Ruilova Cueva, M., & Martínez Mora, E. (2017). Comportamiento reológico de mezclas: harina de trigo-almidón nativo de banano Cavendish destinadas para panificación. Revista de Investigación Talentos, 4(2), 50–54. https://talentos.ueb.edu.ec/index.php/talentos/article/view/18/19
Coțovanu, I., Batariuc, A., & Mironeasa, S. (2020). Characterization of quinoa seeds milling fractions and their effect on the rheological properties of wheat flour dough. Applied Sciences, 10(20), Article 7225. https://doi.org/10.3390/app10207225
Criollo Feijoo, J., Martínez Mora, E., Silverio Calderón, C., & Díaz-Torres, R. (2017). Pruebas de cocción de pastas alimenticias elaboradas con harina de trigo-almidón de banano. Cumbres, 3(2), 09–16. https://www.researchgate.net/publication/326752772_Pruebas_de_coccion_de_pas-tas_alimenticias_elaboradas_con_harina_de_trigo_-_almidon_de_banano
De, B., & Goswami, T. K. (2021). Feeding the future—Challenges and limitations. In M. Sen (Ed.), Food chemistry: The role of additives, preservatives and adulteration (pp. 249–274). Wiley. https://doi.org/10.1002/9781119792130.ch9
De Arcangelis, E., Cuomo, F., Trivisonno, M. C., Marconi, E., & Messia, M. C. (2020). Gelatinization and pasta making conditions for buckwheat gluten-free pasta. Journal of Cereal Science, 95, Article 103073. https://doi.org/10.1016/j.jcs.2020.103073
Djeukeu, W. A., Gouado, I., Leng, M. S., Vijaykrishnaraj, M., & Prabhasankar, P. (2017). Effect of dried yam flour (Dioscorea schimperiana) on cooking quality, digestibility profile and antioxidant potential of wheat based pasta. Journal of Food Measurement and Characterization, 11, 1421–1429. https://doi.org/10.1007/s11694-017-9521-6
Dubat, A., & Rosell, C. M. (2013). Effects of additives and tech¬nological aids (enzymes) on the Mixolab curve. In Mixolab: A new approach to rheology (pp. 71–76). AACC International Inc. St. Paul, Minnesota, USA. http://doi.org/10.1016/B978-1-891127-77-9.50014-5
García-Valle, D.E., Agama-Acevedo, E., del Carmen Núñez-Santiago, M., Álvarez-Ramírez, J., & Bello-Pérez, L. A. (2021). Extrusion pregelatinization improves texture, viscoelasticity and in vitro starch digestibility of mango and amaranth flours. Journal of Functional Foods, 80, Article 104441. https://doi.org/10.1016/j.jff.2021.104441
Gasparre, N., & Rosell, C. M. (2022). Wheat gluten: A functional protein still challenging to replace in gluten‐free cereal‐based foods. Cereal Chemistry, 100(2), 243–255. https://doi.org/10.1002/cche.10624
Gianibelli, M. C., Sissons, M. J., & Batey, I. (2005). Effect of source and proportion of waxy starches on pasta cooking quality. Cereal Chemistry, 82(3), 321–327. https://doi.org/10.1094/CC-82-0321
Giuberti, G., Gallo, A., Cerioli, C., Fortunati, P., & Masoero, F. (2015). Cooking quality and starch digestibility of gluten free pasta using new bean flour. Food Chemistry, 175, 43–49. https://doi.org/10.1016/j.foodchem.2014.11.127
Granito, M., Pérez, S., & Valero, Y. (2014). Calidad de cocción, aceptabilidad e índice glicémico de pasta larga enriquecida con leguminosas. Revista Chilena de Nutrición, 41(4), 425–432. https://doi.org/10.4067/S0717-75182014000400012
Gull, A., Prasad, K., & Kumar, P. (2018). Nutritional, antioxidant, microstructural and pasting properties of functional pasta. Journal of the Saudi Society of Agricultural Sciences, 17(2), 147–153. https://doi.org/10.1016/j.jssas.2016.03.002
Krisbianto, O., & Minantyo, H. (2024). Physicochemical characteristics of tannia cocoyam (Xanthosoma sagittifolium) corm flour compared to flours and starches of other grains and tubers. Food Research, 8(3), 54–61. https://doi.org/10.26656/fr.2017.8(3).226
Koksel, H., Kahraman, K., Sanal, T., Ozay, D. S., & Dubat, A. (2009). Potential utilization of Mixolab for quality evaluation of bread wheat genotypes. Cereal Chemistry Journal, 86(5), 522–526. https://doi.org/10.1094/cchem-86-5-0522
Li, M., Dhital, S., & Wei, Y. (2017). Multilevel structure of wheat starch and its relationship to noodle eating qualities. Com¬prehensive Reviews in Food Science and Food Safety, 16(5), 1042–1055. https://doi.org/10.1111/1541-4337.12272
Littardi, P., Paciulli, M., Carini, E., Rinaldi, M., Rodolfi, M., & Chiavaro, E. (2020). Quality evaluation of chestnut flour addition on fresh pasta. LWT-Food Science and Technology, 126, Article 109303. https://doi.org/10.1016/j.lwt.2020.109303
Ma, Y., Xu, D., Sang, S., Jin, Y., Xu, X., & Cui, B. (2021). Effect of superheated steam treatment on the structural and digestible properties of wheat flour. Food Hydrocolloids, 112, Article 106362. https://doi.org/10.1016/j.foodhyd.2020.106362
Madrigal-Ambriz, L. V., Hernández-Madrigal, J. V., Carranco-Jáuregui, M. E., Calvo-Carrillo, M. C., & Casas-Rosado, R. G. (2018). Caracterización física y nutricional de harina del tubérculo de “Malanga” (Colocasia esculenta L. Schott) de Actopan, Veracruz, México. Archivos Latinoamericanos de Nutrición, 68(2), 175–183. https://doi.org/10.37527/2018.68.2.008
Marchenkov, D., Khorenzhy, N., Voloshenko, O., Zhygunov, D., Marenchenko, О., & Zhurenko, O. (2021). Investigation of quality indicators of wholemeal industrial-made flour. Food Science and Technology, 15(4), 87–94. https://doi.org/10.15673/fst.v15i4.2258
Meaño Correa, N., Ciarfella Pérez, A. T., & Dorta Villegas, A. M. (2014). Evaluación de las propiedades químicas y funcionales del almidón nativo de ñame congo (Dioscorea bulbifera L.) para predecir sus posibles usos tecnológicos. Saber, 26(2), 182–188. https://ve.scielo.org/pdf/saber/v26n2/art11.pdf
Medina, J., & Catarí, E. (2022). Caracterización química de la corteza del árbol de la Quina (Cinchona officinalis) para su consideración como materia prima lignocelulósica. Ciencia en Revolución, 8(23), 36–59. https://cienciaenrevolucion.com.ve/index.php/cienciaenrevolucion/article/view/60
Mefleh, M., Conte, P., Fadda, C., Giunta, F., Piga, A., Hassoun, G., & Motzo, R. (2019). From ancient to old and modern durum wheat varieties: Interaction among cultivar traits, management, and technological quality. Journal of the Science of Food and Agriculture, 99(5), 2059–2067. https://doi.org/10.1002/jsfa.9388
Mitchell, G. A. (1990). Methods of starch analysis. Starch, 42(4), 131–134. https://doi.org/10.1002/star.19900420403
Nilusha, R. A. T., Jayasinghe, J. M. J. K., Perera, O. D. A. N., & Perera, P. I. P. (2019). Development of pasta products with nonconventional ingredients and their effect on selected quality characteristics: A brief overview. International Journal of Food Science, 2019, Article 6750726. https://doi.org/10.1155/2019/6750726
Nkwonta, C. G., Auma, C. I., & Gong, Y. (2023). Underutilised food crops for improving food security and nutrition health in Nigeria and Uganda – A review. Frontiers in Sustainable Food Systems, 7, Article 1126020. https://doi.org/10.3389/fsufs.2023.1126020
Noorfarahzilah, M., Lee, J. S., Sharifudin, M. S., Mohd Fadzelly, A. B., & Hasmadi, M. (2014). Applications of composite flour in development of food products. International Food Research Journal, 21(6), 2061–2074. http://www.ifrj.upm.edu.my/21%20(06)%202014/1%20IFRJ%2021%20(06)%202014%20Hasmadi%20124.pdf
Odey, G. N., & Lee, W. Y. (2020). Evaluation of the quality char¬acteristics of flour and pasta from fermented cassava roots. International Journal of Food Science & Technology, 55(2), 813–822. https://doi.org/10.1111/ijfs.14364
Pacheco de Delahaye, E., & Techeira, N. (2009). Propiedades químicas y funcionales del almidón nativo y modificado de ñame (Dioscorea alata). Interciencia, 34(4), 280–285. https://www.interciencia.net/wp-content/uploads/2018/01/280-c-TECHEIRA-6.pdf
Palomino, C., Molina, Y., & Pérez, E. (2010). Atributos físicos y composición química de harinas y almidones de los tubérculos de Colocasia esculenta (L.) Schott y Xanthosoma sagittifolium (L.) Schott. Revista de la Facultad de Agronomía (UCV), 36(2), 58–66.
Patindol, J. A., Siebenmorgen, T. J., & Wang, Y. J. (2015). Impact of environmental factors on rice starch structure: A review. Starch‐Stärke, 67(1-2), 42–54. https://doi.org/10.1002/star.201400174
Podio, N. S., Baroni, M. V., Pérez, G. T., & Wunderlin, D. A. (2019). Assessment of bioactive compounds and their in vitro bioaccessibility in whole-wheat flour pasta. Food Chemistry, 293, 408–417. https://doi.org/10.1016/j.foodchem.2019.04.117
Quezada-Correa, L., Contreras-Dioses, O., Martínez-Mora, E., Gómez-Aldapa, C., Ramírez-Moreno, E., & Cuenca-Mayorga, F. (2021). Thermal and functional properties of starch extracted from tubers cultivated in the Ecuadorian Andean region. Acta Agriculturae Slovenica, 117(2), 1–9. https://doi.org/10.14720/aas.2021.117.2.1755
Quezada Correa, L., Contreras Dioses, O., Martínez Mora, E., Mero Delgado, F., & González Valarezo, H. (2019). Efecto de la sustitución de harina de trigo por harina de papa china (Colocasia esculenta) sobre las propiedades reológicas de la masa y sensoriales de galletas dulces. Alimentos Hoy, 27(47), 49–63. https://www.acta.org.co/acta_sites/alimentoshoy/index.php/hoy/article/view/528
Rodríguez-Miranda, J., Ruiz-López, I. I., Herman-Lara, E., Mar¬tínez-Sánchez, C. E., Delgado-Licon, E., & Vivar-Vera, M. A. (2011). Development of extruded snacks using taro (Colocasia esculenta) and nixtamalized maize (Zea mays) flour blends. LWT - Food Science and Technology, 44(3), 673–680. https://doi.org/10.1016/j.lwt.2010.06.036
Sacón-Vera, E. F., Bernal-Bailón, I. I., Dueñas-Rivadeneira, A. A., Cobeña-Ruíz, G. A., & López-Bello, N. (2016). Reología de mezclas de harinas de camote y trigo para elaborar pan. Tecnología Química, 36(3), 384–394. https://www.redalyc.org/articulo.oa?id=445546669011
Sandoval, G., Álvarez, M., Paredes, M., & Lascano, A. (2012). Estudio reológico de las mezclas de harinas: trigo (Triticum vulgare), cebada (Hordeum vulgare) y papas (Solanum tuberosum) para la utilización en la elaboración de pan. Scientia Agropecuaria, 3(2), 123–131. https://doi.org/10.17268/sci.agropecu.2012.02.03
Sarkar, A., & Fu, B. X. (2022). Impact of quality improvement and milling innovations on durum wheat and end products. Foods. 11(12), Article 1796. https://doi.org/10.3390/foods11121796
Schmidt, M., & Raczyk, M. (2023). FODMAP reduction strategies for nutritionally valuable baking products: Current state and future challenges. Critical Reviews in Food Science and Nutrition, 64(22), 8036–8053. https://doi.org/10.1080/10408398.2023.2195026
Shang, J., Zhao, B., Liu, C., Li, L., Hong, J., Liu, M., Zhang, X., Lei, Y. & Zheng, X. (2023). Impact of wheat starch granule size on viscoelastic behaviors of noodle dough sheet and the underlying mechanism. Food Hydrocolloids, 134, 108–111. https://doi.org/10.1016/j.foodhyd.2022.108111
Sharif, M. K., Saleem, M., Sharif, H. R., & Saleem, R. (2022). Enrichment and fortification of traditional foods with plant protein isolates. In A. Manickavasagan, L-T. Lim, & A. Ali (Eds.), Plant protein foods (pp. 131–169). Springer. https://doi.org/10.1007/978-3-030-91206-2_5
Shirhatti, V. R., Marathe, S. J., Shah, N. N., & Singhal, R. S. (2023). Traditional food systems: Going backwards to move forward towards finding solutions to nutritional problems. In D. Ghosh, D. Bogueva, & R. Smarta (Eds.), Nutrition science, marketing nutrition, health claims, and public policy (pp. 95–117). Academic Press. https://doi.org/10.1016/B978-0-323-85615-7.00009-4
Singh, S., Raina, C. S., Bawa, A. S., & Saxena, D. C. (2004). Sweet potato‐based pasta product: Optimization of ingredient levels using response surface methodology. International Journal of Food Science & Technology, 39(2), 191–200. https://doi.org/10.1046/j.0950-5423.2003.00764.x
Sissons, M. (2008). Role of durum wheat composition on the quality of pasta and bread. Food, 2(2), 75–90. http://www.globalsciencebooks.info/Online/GSBOnline/images/0812/FOOD_2(2)/FOOD_2(2)75-90o.pdf
Suparthana, I. P., & Putu Timur Ina, N. (2020). Physicochemical properties and microstructure of the pregelatinized tannia flour prepared by a simple parboiling method. Asian Journal of Agriculture and Biology, 8(2), https://doi.org/10.35495/ajab.2019.06.257
Švec, I., & Hrušková, M. (2015). The Mixolab parameters of composite wheat/hemp flour and their relation to quality features. LWT - Food Science and Technology, 60(1), 623–629. https://doi.org/10.1016/j.lwt.2014.07.034
Torres Rapelo, A., Montero Castillo, P., & Durán Lengua, M. (2013). Propiedades fisicoquímicas, morfológicas y funcionales del almidón de malanga (Colocasia esculenta). Revista Lasallista de Investigación, 10(2), 52–61. http://revistas.unilasallista.edu.co/index.php/rldi/article/view/506
Uthayakumaran, S., & Wrigley, C. W. (2010). Wheat: Characteristics and quality requirements. In C. W. Wrigley, & I. L. Batey (Eds.), Cereal grains (pp. 59–111). Woodhead Publishing. https://doi.org/10.1533/9781845699529.2.59
Van Rooyen, J., Simsek, S., Oyeyinka, S. A., & Manley, M. (2023). Wheat starch structure–function relationship in breadmaking: A review. Comprehensive Reviews in Food Science and Food Safety, 22(3), 2292–2309. https://doi.org/10.1111/1541-4337.13147
Witczak, M., Ziobro, R., Juszczak, L., & Korus, J. (2016). Starch and starch derivatives in gluten-free systems – A review. Journal of Cereal Science, 67, 46–57. https://doi.org/10.1016/j.jcs.2015.07.007
Yadav, S., & Gupta, R. K. (2015). Formulation of noodles using apple pomace and evaluation of its phytochemicals and antioxidant activity. Journal of Pharmacognosy and Phytochemistry, 4(1), 99–106. https://www.phytojournal.com/vol4Issue1/Issue_may_2015/4-1-48.1.pdf
Zhu, F. (2017). Encapsulation and delivery of food ingredients using starch based systems. Food Chemistry, 229, 542–552. https://doi.org/10.1016/j.foodchem.2017.02.101
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2024 Agronomía Colombiana
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)
Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.