Physiological responses and initial growth of eggplant under nutrient exclusion from nutrient solution
Respuestas fisiológicas y de crecimiento inicial de la berenjena bajo la exclusión de nutrientes en la solución nutritiva
DOI:
https://doi.org/10.15446/agron.colomb.v42n1.114417Keywords:
Solanum melongena L., magnesium, boron, zinc, manganese (en)Solanum melongena L., magnesio, boro, zinc, manganeso (es)
Downloads
In order to grow eggplant, a certain amount of mineral nutrients is needed to meet plant requirements at the initial phase of growth; with the absence of some nutrients, its physiological responses become compromised. This research aimed to study the physiological responses and initial growth of eggplant under nutrient omission in nutrient solution. The experiment was carried out in 2023 at the Fundação Educacional de Andradina located in the municipality of Andradina, state of São Paulo (Brazil). The experimental design was completely randomized, with nutrient exclusion of magnesium (Mg), boron (B), zinc (Zn), manganese (Mn), or copper (Cu) plus a control group with the supply of all mineral nutrients, with four replicates totaling 20 plots. Magnesium exclusion caused greater damage to the initial growth of eggplant in nutrient solution, with a 33.76% reduction in the concentrations of chlorophylls a and b; the contents of chlorophylls correlated with the concentration of organic nitrogen in the leaves. Boron exclusion caused deformations of leaf blades.
Para cultivar berenjena, se necesita una cantidad de nutrientes minerales para cubrir sus necesidades en la fase inicial de crecimiento y con la exclusión de algunos nutrientes, sus respuestas fisiológicas se ven comprometidas. Este trabajo tuvo como objetivo estudiar las respuestas fisiológicas y el crecimiento inicial de berenjenas cultivadas bajo exclusión de nutrientes de la solución nutritiva. El experimento se realizó en 2023, en la Fundaçión Educacional de Andradina, ubicada en el municipio de Andradina, estado de São Paulo (Brasil). El diseño experimental fue completamente al azar, con omisión de los siguientes nutrientes: magnesio (Mg), boro (B), zinc (Zn) manganeso (Mn) o cobre (Cu) más un grupo control con el aporte de todos los nutrientes, con cuatro repeticiones y en total 20 parcelas. La eliminación de magnesio causó mayor daño al crecimiento inicial de la berenjena en la solución nutritiva, lo que provocó una reducción del 33,76% en las concentraciones de clorofilas a y b, y los contenidos de clorofilas se correlacionaron con la concentración de nitrógeno orgánico en las hojas. La exclusión de boro provocó deformaciones de las láminas foliares.
References
Abubakar, M., Yadav, D., Koul, B., & Song, M. (2023). Efficacy of eco-friendly bio-pesticides against the whitefly Bemisia tabaci (Gennadius) for sustainable eggplant cultivation in Kebbi State, Nigeria. Agronomy, 13(12), Article 3083. https://doi.org/10.3390/agronomy13123083 DOI: https://doi.org/10.3390/agronomy13123083
Banzatto, D. A., & Kronka. S. N. (2013). Experimentação agrícola (4th ed.). Funep.
Chang, F. H., & Troughton, J. H. (1972). Chlorophyll a/b ratios in C3 and C4 plants. Photosynthetica, 6, 57–65.
Clemens, S. (2021). The cell biology of zinc. Journal of Experimental Botany, 73(6), 1688–1698. https://doi.org/10.1093/jxb/erab481 DOI: https://doi.org/10.1093/jxb/erab481
Easlon, H. M., & Bloom, A. J. (2014). Easy leaf area: Automated digital image analysis for rapid and accurate measurement of leaf area. Applications in Plant Sciences, 2(7), Article 1400033. https://doi.org/10.3732/apps.1400033 DOI: https://doi.org/10.3732/apps.1400033
Fernandes, M. S. (Ed.). (2006). Nutrição mineral de plantas. Sociedade Brasileira de Ciência do solo. https://www.fito2009.com/fitop/micorrizaib237.pdf
Ferreira, M. M. M., Ferreira, G. B., Fontes, P. C. R., & Dantas, J. P. (2006). Índice spad e teor de clorofila no limbo foliar do tomateiro em função de doses de nitrogênio e da adubação orgânica, em duas épocas de cultivo. Revista Ceres, 53(305), 83–92. https://ojs.ceres.ufv.br/ceres/article/view/3114
Furlani, P. R. (1997). Instruções para o cultivo de hortaliças de folhas pela técnica de hidroponia – NFT (Boletim técnico, 168). Campinas: Instituto Agronômico de Campinas.
Ghani, M. I., Ali, A., Atif, M. J., Ali, M., Ahanger, M. A., Chen, X., & Cheng, Z. (2023). Different leafy vegetable cropping systems regulate growth, photosynthesis, and PSII functioning in mono-cropped eggplant by altering chemical properties and upregulating the antioxidant system. Frontiers in Plant Science, 14, 1–14. https://doi.org/10.3389/fpls.2023.1132861 DOI: https://doi.org/10.3389/fpls.2023.1132861
Kohli, S. K., Kaur, H., Khanna, K., Handa, N., Bhardwaj, R., Rinklebe, J., & Ahmad, P. (2023). Boron in plants: Uptake, deficiency and biological potential. Plant Growth Regulation, 100, 267–282. https://doi.org/10.1007/s10725-022-00844-7 DOI: https://doi.org/10.1007/s10725-022-00844-7
Lisboa, L. A. M., Figueiredo, P. A. M., Cavichioli, J. C., & Galindo, F. S. (2024). Effect of instantaneous light intensity after magnesium suppression in tomato and bell pepper cultivation. Revista de Agricultura Neotropical, 11(1), Article e8330. https://doi.org/10.32404/rean.v11i1.8330 DOI: https://doi.org/10.32404/rean.v11i1.8330
Lisboa, L. A. M., Galindo, F. S., Pagliari, P. H., Goncalves, J. I. U. P., Okazuka, M. H., Cunha, M. L. O., & Figueiredo, P. A. M. (2024). Morpho-physiological assessment of tomato and bell pepper in response to nutrient restriction. Stresses, 4(1), 172–184. https://doi.org/10.3390/stresses4010010 DOI: https://doi.org/10.3390/stresses4010010
Ohnishi, M., Maekawa, S., Wada, S., Ifuku, K., & Miyake, C. (2023). Evaluating the oxidation rate of reduced ferredoxin in Arabidopsis thaliana independent of photosynthetic linear electron flow: Plausible activity of ferredoxin-dependent cyclic electron flow around photosystem I. International Journal of Molecular Sciences, 24(15), Article 12145. https://doi.org/10.3390/ijms241512145 DOI: https://doi.org/10.3390/ijms241512145
Parry, C., Blonquist Jr., J. M., & Bugbee, B. (2014). In situ measurement of leaf chlorophyll concentration: Analysis of the optical/absolute relationship. Plant, Cell & Environment, 37(11), 2508–2520. https://doi.org/10.1111/pce.12324 DOI: https://doi.org/10.1111/pce.12324
Pranckietienė, I., Dromantienė, R., Smalstienė, V., Jodaugienė, D., Vagusevičienė, I., Marks, M., & Paulauskiene, A. (2020). Effect of liquid amide nitrogen fertilizer with magnesium and sulphur on spring wheat chlorophyll content, accumulation of nitrogen and yield. Journal of Elementology, 25(1), 139–152. https://doi.org/10.5601/jelem.2019.24.2.1742 DOI: https://doi.org/10.5601/jelem.2019.24.2.1742
R Core Team. (2015). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. https://www.R-project.org
Reis, A. R., Lisboa, L. A. M., Reis, H. P. G., Barcelos, J. P. Q., Santos, E. F., Santini, J. M. K., Meyer-Sand. B. R. V., Putti, F. F., Galindo, F. S., Kaneko, F. H., Barbosa, J. Z.., Paixão, A. P., Junior, E. F., Figueiredo. P. A. M., & Lavres, J. (2018). Depicting the physiological and ultrastructural responses of soybean plants to Al stress conditions. Plant Physiology and Biochemistry, 130, 377–390. https://doi.org/10.1016/j.plaphy.2018.07.028 DOI: https://doi.org/10.1016/j.plaphy.2018.07.028
Rengel, Z., Cakmak, I., & White P. J. (2023). Marschner’s mineral nutrition of plants, (4th ed.). Academic Press.
Sharma, H., Sharma, A., Yashvika, Sidhu, S., & Upadhyay, S. K. (2022). A glimpse of boron transport in plants. In S. K. Upadhyay (Ed.), Cation transporters in plants (pp. 281–306). Academic Press. https://doi.org/10.1016/b978-0-323-85790-1.00017-8 DOI: https://doi.org/10.1016/B978-0-323-85790-1.00017-8
Shaul, O. (2022). Magnesium transport and function in plants: The tip of the iceberg. Biometals, 15, 307–321. https://doi.org/10.1023/A:1016091118585 DOI: https://doi.org/10.1023/A:1016091118585
Silva, L. M., & Berti, M. P. S. (2022). Manganês no solo e nas plantas: uma revisão. Scientific Electronic Archives, 15(3), 21–25. https://doi.org/10.36560/15320221512 DOI: https://doi.org/10.36560/15320221512
Silva, M. A., Santos, C. M., Vitorino, H. S., & Rhein, A. F. L. (2014). Pigmentos fotossintéticos e índice SPAD como descritores de intensidade do estresse por deficiência hídrica em cana-de-açúcar. Bioscience Journal, 30(1), 173–181. https://seer.ufu.br/index.php/biosciencejournal/article/view/15057
Taiz, L., & Zeiger, E. (2013). Fisiologia vegetal (5th ed.). Artmed.
Yruela, I. (2005). Copper in plants. Brazilian Journal of Plant Physiology, 17(1), 145–156. https://doi.org/10.1590/s1677-04202005000100012 DOI: https://doi.org/10.1590/S1677-04202005000100012
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2024 Agronomía Colombiana
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)
Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.