Published

2024-04-30

Physiological responses and initial growth of eggplant under nutrient exclusion from nutrient solution

Respuestas fisiológicas y de crecimiento inicial de la berenjena bajo la exclusión de nutrientes en la solución nutritiva

DOI:

https://doi.org/10.15446/agron.colomb.v42n1.114417

Keywords:

Solanum melongena L., magnesium, boron, zinc, manganese (en)
Solanum melongena L., magnesio, boro, zinc, manganeso (es)

Downloads

Authors

In order to grow eggplant, a certain amount of mineral nutrients is needed to meet plant requirements at the initial phase of growth; with the absence of some nutrients, its physiological responses become compromised. This research aimed to study the physiological responses and initial growth of eggplant under nutrient omission in nutrient solution. The experiment was carried out in 2023 at the Fundação Educacional de Andradina located in the municipality of Andradina, state of São Paulo (Brazil). The experimental design was completely randomized, with nutrient exclusion of magnesium (Mg), boron (B), zinc (Zn), manganese (Mn), or copper (Cu) plus a control group with the supply of all mineral nutrients, with four replicates totaling 20 plots. Magnesium exclusion caused greater damage to the initial growth of eggplant in nutrient solution, with a 33.76% reduction in the concentrations of chlorophylls a and b; the contents of chlorophylls correlated with the concentration of organic nitrogen in the leaves. Boron exclusion caused deformations of leaf blades.

Para cultivar berenjena, se necesita una cantidad de nutrientes minerales para cubrir sus necesidades en la fase inicial de crecimiento y con la exclusión de algunos nutrientes, sus respuestas fisiológicas se ven comprometidas. Este trabajo tuvo como objetivo estudiar las respuestas fisiológicas y el crecimiento inicial de berenjenas cultivadas bajo exclusión de nutrientes de la solución nutritiva. El experimento se realizó en 2023, en la Fundaçión Educacional de Andradina, ubicada en el municipio de Andradina, estado de São Paulo (Brasil). El diseño experimental fue completamente al azar, con omisión de los siguientes nutrientes: magnesio (Mg), boro (B), zinc (Zn) manganeso (Mn) o cobre (Cu) más un grupo control con el aporte de todos los nutrientes, con cuatro repeticiones y en total 20 parcelas. La eliminación de magnesio causó mayor daño al crecimiento inicial de la berenjena en la solución nutritiva, lo que provocó una reducción del 33,76% en las concentraciones de clorofilas a y b, y los contenidos de clorofilas se correlacionaron con la concentración de nitrógeno orgánico en las hojas. La exclusión de boro provocó deformaciones de las láminas foliares.

References

Abubakar, M., Yadav, D., Koul, B., & Song, M. (2023). Efficacy of eco-friendly bio-pesticides against the whitefly Bemisia tabaci (Gennadius) for sustainable eggplant cultivation in Kebbi State, Nigeria. Agronomy, 13(12), Article 3083. https://doi.org/10.3390/agronomy13123083 DOI: https://doi.org/10.3390/agronomy13123083

Banzatto, D. A., & Kronka. S. N. (2013). Experimentação agrícola (4th ed.). Funep.

Chang, F. H., & Troughton, J. H. (1972). Chlorophyll a/b ratios in C3 and C4 plants. Photosynthetica, 6, 57–65.

Clemens, S. (2021). The cell biology of zinc. Journal of Experimental Botany, 73(6), 1688–1698. https://doi.org/10.1093/jxb/erab481 DOI: https://doi.org/10.1093/jxb/erab481

Easlon, H. M., & Bloom, A. J. (2014). Easy leaf area: Automated digital image analysis for rapid and accurate measurement of leaf area. Applications in Plant Sciences, 2(7), Article 1400033. https://doi.org/10.3732/apps.1400033 DOI: https://doi.org/10.3732/apps.1400033

Fernandes, M. S. (Ed.). (2006). Nutrição mineral de plantas. Sociedade Brasileira de Ciência do solo. https://www.fito2009.com/fitop/micorrizaib237.pdf

Ferreira, M. M. M., Ferreira, G. B., Fontes, P. C. R., & Dantas, J. P. (2006). Índice spad e teor de clorofila no limbo foliar do tomateiro em função de doses de nitrogênio e da adubação orgânica, em duas épocas de cultivo. Revista Ceres, 53(305), 83–92. https://ojs.ceres.ufv.br/ceres/article/view/3114

Furlani, P. R. (1997). Instruções para o cultivo de hortaliças de folhas pela técnica de hidroponia – NFT (Boletim técnico, 168). Campinas: Instituto Agronômico de Campinas.

Ghani, M. I., Ali, A., Atif, M. J., Ali, M., Ahanger, M. A., Chen, X., & Cheng, Z. (2023). Different leafy vegetable cropping systems regulate growth, photosynthesis, and PSII functioning in mono-cropped eggplant by altering chemical properties and upregulating the antioxidant system. Frontiers in Plant Science, 14, 1–14. https://doi.org/10.3389/fpls.2023.1132861 DOI: https://doi.org/10.3389/fpls.2023.1132861

Kohli, S. K., Kaur, H., Khanna, K., Handa, N., Bhardwaj, R., Rinklebe, J., & Ahmad, P. (2023). Boron in plants: Uptake, deficiency and biological potential. Plant Growth Regulation, 100, 267–282. https://doi.org/10.1007/s10725-022-00844-7 DOI: https://doi.org/10.1007/s10725-022-00844-7

Lisboa, L. A. M., Figueiredo, P. A. M., Cavichioli, J. C., & Galindo, F. S. (2024). Effect of instantaneous light intensity after magnesium suppression in tomato and bell pepper cultivation. Revista de Agricultura Neotropical, 11(1), Article e8330. https://doi.org/10.32404/rean.v11i1.8330 DOI: https://doi.org/10.32404/rean.v11i1.8330

Lisboa, L. A. M., Galindo, F. S., Pagliari, P. H., Goncalves, J. I. U. P., Okazuka, M. H., Cunha, M. L. O., & Figueiredo, P. A. M. (2024). Morpho-physiological assessment of tomato and bell pepper in response to nutrient restriction. Stresses, 4(1), 172–184. https://doi.org/10.3390/stresses4010010 DOI: https://doi.org/10.3390/stresses4010010

Ohnishi, M., Maekawa, S., Wada, S., Ifuku, K., & Miyake, C. (2023). Evaluating the oxidation rate of reduced ferredoxin in Arabidopsis thaliana independent of photosynthetic linear electron flow: Plausible activity of ferredoxin-dependent cyclic electron flow around photosystem I. International Journal of Molecular Sciences, 24(15), Article 12145. https://doi.org/10.3390/ijms241512145 DOI: https://doi.org/10.3390/ijms241512145

Parry, C., Blonquist Jr., J. M., & Bugbee, B. (2014). In situ measurement of leaf chlorophyll concentration: Analysis of the optical/absolute relationship. Plant, Cell & Environment, 37(11), 2508–2520. https://doi.org/10.1111/pce.12324 DOI: https://doi.org/10.1111/pce.12324

Pranckietienė, I., Dromantienė, R., Smalstienė, V., Jodaugienė, D., Vagusevičienė, I., Marks, M., & Paulauskiene, A. (2020). Effect of liquid amide nitrogen fertilizer with magnesium and sulphur on spring wheat chlorophyll content, accumulation of nitrogen and yield. Journal of Elementology, 25(1), 139–152. https://doi.org/10.5601/jelem.2019.24.2.1742 DOI: https://doi.org/10.5601/jelem.2019.24.2.1742

R Core Team. (2015). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. https://www.R-project.org

Reis, A. R., Lisboa, L. A. M., Reis, H. P. G., Barcelos, J. P. Q., Santos, E. F., Santini, J. M. K., Meyer-Sand. B. R. V., Putti, F. F., Galindo, F. S., Kaneko, F. H., Barbosa, J. Z.., Paixão, A. P., Junior, E. F., Figueiredo. P. A. M., & Lavres, J. (2018). Depicting the physiological and ultrastructural responses of soybean plants to Al stress conditions. Plant Physiology and Biochemistry, 130, 377–390. https://doi.org/10.1016/j.plaphy.2018.07.028 DOI: https://doi.org/10.1016/j.plaphy.2018.07.028

Rengel, Z., Cakmak, I., & White P. J. (2023). Marschner’s mineral nutrition of plants, (4th ed.). Academic Press.

Sharma, H., Sharma, A., Yashvika, Sidhu, S., & Upadhyay, S. K. (2022). A glimpse of boron transport in plants. In S. K. Upadhyay (Ed.), Cation transporters in plants (pp. 281–306). Academic Press. https://doi.org/10.1016/b978-0-323-85790-1.00017-8 DOI: https://doi.org/10.1016/B978-0-323-85790-1.00017-8

Shaul, O. (2022). Magnesium transport and function in plants: The tip of the iceberg. Biometals, 15, 307–321. https://doi.org/10.1023/A:1016091118585 DOI: https://doi.org/10.1023/A:1016091118585

Silva, L. M., & Berti, M. P. S. (2022). Manganês no solo e nas plantas: uma revisão. Scientific Electronic Archives, 15(3), 21–25. https://doi.org/10.36560/15320221512 DOI: https://doi.org/10.36560/15320221512

Silva, M. A., Santos, C. M., Vitorino, H. S., & Rhein, A. F. L. (2014). Pigmentos fotossintéticos e índice SPAD como descritores de intensidade do estresse por deficiência hídrica em cana-de-açúcar. Bioscience Journal, 30(1), 173–181. https://seer.ufu.br/index.php/biosciencejournal/article/view/15057

Taiz, L., & Zeiger, E. (2013). Fisiologia vegetal (5th ed.). Artmed.

Yruela, I. (2005). Copper in plants. Brazilian Journal of Plant Physiology, 17(1), 145–156. https://doi.org/10.1590/s1677-04202005000100012 DOI: https://doi.org/10.1590/S1677-04202005000100012

How to Cite

APA

Lisboa, L. A. M., Santos, M. A. dos, Francisco, M. da C. and Pereira, M. H. R. (2024). Physiological responses and initial growth of eggplant under nutrient exclusion from nutrient solution. Agronomía Colombiana, 42(1), e114417. https://doi.org/10.15446/agron.colomb.v42n1.114417

ACM

[1]
Lisboa, L.A.M., Santos, M.A. dos, Francisco, M. da C. and Pereira, M.H.R. 2024. Physiological responses and initial growth of eggplant under nutrient exclusion from nutrient solution. Agronomía Colombiana. 42, 1 (Jan. 2024), e114417. DOI:https://doi.org/10.15446/agron.colomb.v42n1.114417.

ACS

(1)
Lisboa, L. A. M.; Santos, M. A. dos; Francisco, M. da C.; Pereira, M. H. R. Physiological responses and initial growth of eggplant under nutrient exclusion from nutrient solution. Agron. Colomb. 2024, 42, e114417.

ABNT

LISBOA, L. A. M.; SANTOS, M. A. dos; FRANCISCO, M. da C.; PEREIRA, M. H. R. Physiological responses and initial growth of eggplant under nutrient exclusion from nutrient solution. Agronomía Colombiana, [S. l.], v. 42, n. 1, p. e114417, 2024. DOI: 10.15446/agron.colomb.v42n1.114417. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/114417. Acesso em: 29 jan. 2025.

Chicago

Lisboa, Lucas Aparecido Manzani, Marcos Antonio dos Santos, Marcelo da Cruz Francisco, and Marcelo Henrique Ribeiro Pereira. 2024. “Physiological responses and initial growth of eggplant under nutrient exclusion from nutrient solution”. Agronomía Colombiana 42 (1):e114417. https://doi.org/10.15446/agron.colomb.v42n1.114417.

Harvard

Lisboa, L. A. M., Santos, M. A. dos, Francisco, M. da C. and Pereira, M. H. R. (2024) “Physiological responses and initial growth of eggplant under nutrient exclusion from nutrient solution”, Agronomía Colombiana, 42(1), p. e114417. doi: 10.15446/agron.colomb.v42n1.114417.

IEEE

[1]
L. A. M. Lisboa, M. A. dos Santos, M. da C. Francisco, and M. H. R. Pereira, “Physiological responses and initial growth of eggplant under nutrient exclusion from nutrient solution”, Agron. Colomb., vol. 42, no. 1, p. e114417, Jan. 2024.

MLA

Lisboa, L. A. M., M. A. dos Santos, M. da C. Francisco, and M. H. R. Pereira. “Physiological responses and initial growth of eggplant under nutrient exclusion from nutrient solution”. Agronomía Colombiana, vol. 42, no. 1, Jan. 2024, p. e114417, doi:10.15446/agron.colomb.v42n1.114417.

Turabian

Lisboa, Lucas Aparecido Manzani, Marcos Antonio dos Santos, Marcelo da Cruz Francisco, and Marcelo Henrique Ribeiro Pereira. “Physiological responses and initial growth of eggplant under nutrient exclusion from nutrient solution”. Agronomía Colombiana 42, no. 1 (January 1, 2024): e114417. Accessed January 29, 2025. https://revistas.unal.edu.co/index.php/agrocol/article/view/114417.

Vancouver

1.
Lisboa LAM, Santos MA dos, Francisco M da C, Pereira MHR. Physiological responses and initial growth of eggplant under nutrient exclusion from nutrient solution. Agron. Colomb. [Internet]. 2024 Jan. 1 [cited 2025 Jan. 29];42(1):e114417. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/114417

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

62

Downloads

Download data is not yet available.