Improvement of growth and productivity in potato (Solanum tuberosum L.) crop by using biostimulants
Mejora del crecimiento y productividad del cultivo de papa (Solanum tuberosum L.) mediante el uso de bioestimulantes
DOI:
https://doi.org/10.15446/agron.colomb.v42n2.114683Keywords:
seaweed extracts, carboxylic acids, plant biostimulation, sustainable production (en)extractos de algas marinas, ácidos carboxílicos, bioestimulación de plantas, producción sostenible (es)
Downloads
In Colombia, potato cultivation has significant social and economic importance for the population; however, rising input costs and low yields have led to a decline in the areas planted in the country. Biostimulants are substances or microorganisms that can enhance yield by improving the physiological processes of the plants. In Colombia, there are few studies evaluating their efficiency on potato productivity. Therefore, the aim of this research was to assess the effect of biostimulant applications on the growth and productivity of potato (Solanum tuberosum L.) variety ‘CIP 39’ under the conditions of the municipality of Paipa, Boyacá department. A completely randomized design was used, with four treatments corresponding to commercially registered biostimulants with an active hormonal ingredient, seaweed extract (SWE), or carboxylic acids, and a control. Variables such as fresh and dry weight of roots, shoots, and total biomass, leaf area index (LAI), yield by quality, and total yield were evaluated. The application of biostimulants resulted in improved physiological response of the plants. The SWE-based biostimulant exhibited a better balance in terms of fresh and dry biomass, as well as in LAI, leading to a significant increase in quality and yield. This indicates that the application of biostimulants can be an alternative to increase productivity in this production system.
En Colombia el cultivo de papa tiene gran importancia social y económica para la población; sin embargo, el aumento de los precios de los insumos y los bajos rendimientos han generado una caída en las áreas sembradas del país. Los bioestimulantes son sustancias o microorganismos que pueden mejorar el rendimiento, a través de la mejora de los procesos fisiológicos de la planta. En Colombia hay escasos estudios que evalúen la eficiencia de aquellos sobre la productividad en el cultivo de papa; por esto el objetivo de esta investigación fue evaluar el efecto de las aplicaciones de bioestimulantes en el crecimiento y productividad del cultivo de papa (Solanum tuberosum L.) variedad ‘CIP 39’ bajo condiciones del municipio de Paipa, departamento de Boyacá. Se utilizó un diseño completamente al azar, con cuatro tratamientos que correspondieron a bioestimulantes comerciales registrados cuyo compuesto activo fuera de tipo hormonal, extracto de algas marinas (EAM) o ácidos carboxílicos, y un control. Se evaluaron las variables de peso fresco y seco de raíz, parte aérea y total, índice de área foliar (IAF), rendimiento por calidades y total. La aplicación de bioestimulantes resultó en una mejor respuesta fisiológica de la planta. El bioestimulante a base de EAM mostró un mejor balance en cuanto a la biomasa fresca y seca, así como en el IAF; esto generó un aumento significativo de la calidad y el rendimiento. Esto indica que la aplicación de bioestimulantes puede ser una alternativa para aumentar la productividad en este sistema productivo.
References
Abbas, M., Anwar, J., Zafar-Ul-Hye, M., Khan, R. I., Saleem, M., Rahi, A. A., Danish, S., & Datta, R. (2020). Effect of seaweed extract on productivity and quality attributes of four onion cultivars. Horticulturae, 6(2), Article 28. https://doi.org/10.3390/horticulturae6020028
Asari, S., Tarkowská, D., Rolčík, J., Novák, O., Palmero, D. V., Bejai, S., & Meijer, J. (2017). Analysis of plant growth-promoting properties of Bacillus amyloliquefaciens UCMB5113 using Arabidopsis thaliana as host plant. Planta, 245(1), 15–30. https://doi.org/10.1007/s00425-016-2580-9
Bergamaschi, H., Dalmago, G. A., Bergonci, J. I., Krüger, C. A. M. B., Heckler, B. M. M., & Comiran, F. (2010). Intercepted solar radiation by maize crops subjected to different tillage systems and water availability levels. Pesquisa Agropecuaria Brasileira, 45(12), 1331–1341. https://doi.org/10.1590/s0100-204x2010001200001
Brown, P., & Saa, S. (2015). Biostimulants in agriculture. Frontiers in Plant Science, 6(6), 1571–1583. https://doi.org/10.3389/fpls.2015.00671
Bulgari, R., Franzoni, G., & Ferrante, A. (2019). Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy, 9(6), Article 306. https://doi.org/10.3390/agronomy9060306
Canellas, L. P., & Olivares, F. L. (2014). Physiological responses to humic substances as plant growth promoter. Chemical and Biological Technologies in Agriculture, 1(1), Article 3. https://doi.org/10.1186/2196-5641-1-3
Canellas, L. P., Olivares, F. L., Aguiar, N. O., Jones, D. L., Nebbioso, A., Mazzei, P., & Piccolo, A. (2015). Humic and fulvic acids as biostimulants in horticulture. Scientia Horticulturae, 196, 15–27. https://doi.org/10.1016/j.scienta.2015.09.013
Díaz, G., Rodríguez, G., Montana, L., Miranda, T., Basso, C., & Arcia, M. (2020). Efecto de la aplicación de bioestimulantes y Trichoderma sobre el crecimiento en plántulas de maracuyá (Passiflora edulis Sims) en vivero. Bioagro, 32(3), 195–204. https://revistas.uclave.org/index.php/bioagro/article/view/2787/1745
Di Benedetto, A., & Tognetti, J. (2016). Técnicas de análisis de crecimiento de plantas: su aplicación a cultivos intensivos. RIA. Revista de Investigaciones Agropecuarias, 42(3), 258–282. https://www.redalyc.org/articulo.oa?id=86449712008
Drobek, M., Frąc, M., & Cybulska, J. (2019). Plant biostimulants: Importance of the quality and yield of horticultural crops and the improvement of plant tolerance to abiotic stress – A review. Agronomy, 9(6), Article 335. https://doi.org/10.3390/agronomy9060335
Du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae, 196, 3–14. https://doi.org/10.1016/j.scienta.2015.09.021
Ertani, A., Francioso, O., Tinti, A., Schiavon, M., Pizzeghello, D., & Nardi, S. (2018). Evaluation of seaweed extracts from Laminaria and Ascophyllum nodosum spp. as biostimulants in Zea mays L. using a combination of chemical, biochemical and morphological approaches. Frontiers in Plant Science, 9, Article 428. https://doi.org/10.3389/fpls.2018.00428
Falcón Rodríguez, A., Costales Menéndez, D., González-Peña Fundora, D., & Nápoles García, M. (2015). Nuevos productos naturales para la agricultura: las oligosacarinas. Cultivos Tropicales, 36, 111–129. https://ediciones.inca.edu.cu/index.php/ediciones/article/view/1128/pdf
Ghaderiardakani, F., Collas, E., Damiano, D. K., Tagg, K., Graham, N. S., & Coates, J. C. (2019). Effects of green seaweed extract on Arabidopsis early development suggest roles for hormone signalling in plant responses to algal fertilisers. Scientific Reports, 9(1), Article 1983. https://doi.org/10.1038/s41598-018-38093-2
Guerrero-Guio, J. C., Cabezas Gutiérrez, M., & Galvis Quintero, J. H. (2019). Efecto de dos sistemas de riego sobre la producción y uso eficiente del agua en el cultivo de papa variedad Diacol Capiro. Revista de Investigación Agraria y Ambiental, 11(1), 41–52. https://doi.org/10.22490/21456453.3080
Guerrero-Riascos, R. (1998). Fertilización de cultivos en clima frio (2nd ed., pp. 370). Monómeros Colombo Venezolanos S.A.
Hack, H., Gall, H., Klemke, T. H., Klose, R., Meier, U., Stauss, R., & Witzenberger, A. (1993). Phänologische entwicklungsstadien der Kartoffel (Solanum tuberosum L.). Nachrichtenblatt Des Deutschen Pflanzenschutzdienstes, 45(1), 11–19. https://www.openagrar.de/receive/openagrar_mods_00067178
Hailu, G., Nigussie, D., Ali, M., & Derbew, B. (2017). Nitrogen and phosphorus use efficiency in improved potato (Solanum tuberosum L.) cultivars in Southern Ethiopia. American Journal of Potato Research, 94(6), 617–631. https://doi.org/10.1007/s12230-017-9600-6
Hernández-Hernández, F., López Cruz, I. L., Guevara-González, R. G., Rico-García, E., Ocampo-Velásquez, V. R., Herrera-Ruiz, G., Gonzalez-Chavira, M. M., & Torres-Pacheco, I. (2011). Simulación del crecimiento y desarrollo de pimiento (Capsicum annuum L.) bajo condiciones de invernadero. Revista Mexicana de Ciencias Agrícolas, 2(3), 385–397.
Hernández-Herrera, R. M., Santacruz-Ruvalcaba, F., Zañudo-Hernández, J., & Hernández-Carmona, G. (2016). Activity of seaweed extracts and polysaccharide-enriched extracts from Ulva lactuca and Padina gymnospora as growth promoters of tomato and mung bean plants. Journal of Applied Phycology, 28(4), 2549–2560. https://doi.org/10.1007/s10811-015-0781-4
Hunt, R. (2016). Growth analysis, individual plants. In B. Thomas, B. G. Murray, & D. J. Murphy (Eds.), Encyclopedia of applied plant sciences (2nd ed., Vol. 1, pp. 421–429). Academic Press. https://doi.org/10.1016/B978-0-12-394807-6.00226-4
ICONTEC. (1996). NTC 341. Instituto Colombiano de Normas Técnicas y Certificación ICONTEC.
Instituto Nacional de Innovación Agraria., & Red Latin Papa. (2012). Catalogo de nuevas variedades de papa: sabores y colores para el gusto peruano. Centro Internacional de la Papa, Lima, Peru. https://doi.org/10.4160/978-92-9060-419-8
Kisvarga, S., Farkas, D., Boronkay, G., Neményi, A., & Orlóci, L. (2022). Effects of biostimulants in horticulture, with emphasis on ornamental plant production. Agronomy, 12(5), Article 1043. https://doi.org/10.3390/agronomy12051043
Lazzarini, R., Müller, M., Lazzarini, P., Tamanini, C., Matos, C., & Kawakami, J. (2022). Humic substances: Effects on potato growth and yield. Horticultura Brasileira, 40(1), 33–38. https://doi.org/10.1590/s0102-0536-20220104
Lephatsi, M., Nephali, L., Meyer, V., Piater, L. A., Buthelezi, N., Dubery, I. A., Opperman, H., Brand, M., Huyser, J., & Tugizimana, F. (2022). Molecular mechanisms associated with microbial biostimulant-mediated growth enhancement, priming and drought stress tolerance in maize plants. Scientific Reports, 12(1), Article 10450. https://doi.org/10.1038/s41598-022-14570-7
Li, J., Van Gerrewey, T., & Geelen, D. (2022). A meta-analysis of biostimulant yield effectiveness in field trials. Frontiers in Plant Science, 13, Article 836702. https://doi.org/10.3389/fpls.2022.836702
Martínez González, L., Maqueira-López, L., Nápoles-García, M. C., & Núñez Vásquez, M. (2017). Biostimulant effect on yield of two biofertilized bean (Phaseolus vulgaris L.) cultivars. Cultivos Tropicales, 38(2), 113–118. https://www.cabidigitallibrary.org/doi/full/10.5555/20173291981
Mendoza-Pérez, C., Ramírez-Ayala, C., Ojeda-Bustamante, W., & Flores-Magdaleno, H. (2017). Estimation of leaf area index and yield of greenhouse-grown poblano pepper. Ingeniería Agrícola y Biosistemas, 9(1), 37–50. https://doi.org/10.5154/r.inagbi.2017.04.009
R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org
Reis, L. S., Azevedo, C. A. V., Albuquerque, A. W., & Junior, J. F. S. (2013). Índice de área foliar e produtividade do tomate sob condições de ambiente protegido. Revista Brasileira de Engenharia Agricola e Ambiental, 17(4), 386–391. https://doi.org/10.1590/S1415-43662013000400005
Santos, V. M., Melo, A. V., Cardoso, D. P., Gonçalves, A. H., Sousa, D. C. V., & Silva, Á. R. (2017). Uso de bioestimulantes no crescimento de plantas de soja. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 12(3), 512–517. https://doi.org/10.18378/rvads.v12i3.4139
Santos Castellanos, M., Segura Abril, M., & Ñustez López, C. E. (2010). Análisis de crecimiento y relación fuente-demanda de cuatro variedades de papa (Solanum tuberosum L.) en el municipio de Zipaquirá (Cundinamarca, Colombia). Revista Facultad Nacional de Agronomía Medellin, 63(1), 5253–5266. http://scielo.org.co/scielo.php?script=sci_arttext&pid=S0304-28472010000100004
Sebnie, W., Esubalew, T., & Mengesha, M. (2021). Response of potato (Solanum tuberosum L.) to nitrogen and phosphorus fertilizers at Sekota and Lasta districts of Eastern Amhara, Ethiopia. Environmental Systems Research, 10(1), Article 11. https://doi.org/10.1186/s40068-020-00213-1
Sharma, H. S. S., Fleming, C., Selby, C., Rao, J. R., & Martin, T. (2014). Plant biostimulants: a review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. Journal of Applied Phycology, 26(1), 465–490. https://doi.org/10.1007/s10811-013-0101-9
Torres-Hernández, D. F., Pinzón-Sandoval, E. H., Balaguera-López, H. E., Silva-Parra, A., & Galvis-Quintero, J. H. (2023). Responses of growth and yield of ‘Diacol Capiro’ potatoes to application of silicate fertilizer amendments. Revista Colombiana de Ciencias Hortícolas, 17(3), Article e16450. https://doi.org/10.17584/rcch.2023v17i3.16450
Van Dingenen, J., Hanzalova, K., Abd Allah Salem, M., Abel, C., Seibert, T., Giavalisco, P., & Wahl, V. (2019). Limited nitrogen availability has cultivar-dependent effects on potato tuber yield and tuber quality traits. Food Chemistry, 288, 170–177. https://doi.org/10.1016/j.foodchem.2019.02.113
Van Oosten, M. J., Pepe, O., De Pascale, S., Silletti, S., & Maggio, A. (2017). The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chemical and Biological Technologies in Agriculture, 4(1), Article 5. https://doi.org/10.1186/s40538-017-0089-5
Vélez Betancourt, A. F. (2020). Cadenas sostenibles ante un clima cambiante: La papa en Colombia. Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH. Puntoaparte Editores, Bogotá. https://www.giz.de/en/downloads/GIZ_CIAT_PapaPag_sencillas_web.pdf
Vinoth, S., Gurusaravanan, P., Sivakumar, S., & Jayabalan, N. (2019). Influence of seaweed extracts and plant growth regulators on in vitro regeneration of Lycopersicon esculentum from leaf explant. Journal of Applied Phycology, 31(3), 2039–2052. https://doi.org/10.1007/s10811-018-1703-z
Wadas, W., & Dziugieł, T. (2020). Quality of new potatoes (Solanum tuberosum L.) in response to plant biostimulants application. Agriculture (Switzerland), 10(7), 1–13. https://doi.10.3390/agriculture10070265
Wally, O. S. D., Critchley, A. T., Hiltz, D., Craigie, J. S., Han, X., Zaharia, L. I., Abrams, S. R., & Prithiviraj, B. (2013). Regulation of phytohormone biosynthesis and accumulation in Arabidopsis following treatment with commercial extract from the marine macroalga Ascophyllum nodosum. Journal of Plant Growth Regulation, 32(2), 324–339. https://doi.org/10.1007/s00344-012-9301-9
Yao, Y., Wang, X., Chen, B., Zhang, M., & Ma, J. (2020). Seaweed extract improved yields, leaf photosynthesis, ripening time, and net returns of tomato (Solanum lycopersicum Mill.). ACS Omega, 5(8), 4242–4249. https://doi.org/10.1021/acsomega.9b04155
Zou, P., Lu, X., Zhao, H., Yuan, Y., Meng, L., Zhang, C., & Li, Y. (2019). Polysaccharides derived from the brown algae Lessonia nigrescens enhance salt stress tolerance to wheat seedlings by enhancing the antioxidant system and modulating intracellular ion concentration. Frontiers in Plant Science, 10, Article 48. https://doi.org/10.3389/fpls.2019.00048
Zuzunaga-Rosas, J., González-Orenga, S., Calone, R., Rodríguez-Heredia, R., Asaff-Torres, A., Boscaiu, M., Ibáñez-Asensio, S., Moreno-Ramón, H., & Vicente, O. (2023). Use of a biostimulant to mitigate the effects of excess salinity in soil and irrigation water in tomato plants. Plants, 12(5), Article 1190. https://doi.org/10.3390/plants12051190
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2024 Agronomía Colombiana
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)
Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.