Published

2024-08-31

Allelopathic potential of Artemisia absinthium L. on seed germination and seedling growth of various plant species

Potencial alelopático de Artemisia absinthium L. sobre la germinación de semillas y el crecimiento de plántulas de varias especies de plantas

DOI:

https://doi.org/10.15446/agron.colomb.v42n2.115942

Keywords:

allelopathy, weed management, secondary metabolites, plant-plant interactions, bioactive compounds (en)
alelopatia, manejo de malezas, metabolitos secundarios, interacciones planta-planta, compuestos bioactivos (es)

Downloads

Authors

In plant-plant interactions, the emission of secondary metabolites can have significant effects, potentially serving as a tool for weed management. The study of plant-derived substances offers an environmental alternative to traditional production processes. The aim of the research was to evaluate the allelopathic potential of the aqueous extract of Artemisia absinthium L. on the germination of seeds of five species: Calendula officinalis L., Taraxacum officinale L., Bidens pilosa L., Senecio vulgaris L., and Brassica juncea L. The experiment involved a factorial design with five species, five extract concentrations and five replicates, for a total of 125 experimental units (EU). The aqueous extract of A. absinthium was prepared from dried foliage at a concentration of 1/50 (w/v) and applied in varying proportions (0, 25, 50, 75, and 100%) according to the respective treatments. In each EU, 20 seeds of the corresponding species were placed and grown under controlled conditions for 21 d, during which germination was monitored. The results indicate that A. absinthium has significant potential as an inhibitor of seed germination and seedling growth in T. officinale and B. pilosa. In S. vulgaris and B. juncea, the response was highly dose-dependent. In C. officinalis, no inhibition was observed in the evaluated parameters. The results indicate that A. absinthium extract offers a sustainable alternative to weed management.

En las interacciones planta-planta, la emisión de metabolitos secundarios puede tener efectos significativos, los cuales son herramientas potenciales para el manejo de malezas, por lo que el estudio de estas sustancias de origen vegetal ofrece una alternativa medioambiental a los procesos de producción tradicionales. La investigación tuvo como objetivo evaluar el potencial alelopático del extracto acuoso de Artemisia absinthium L. sobre la germinación de semillas de cinco especies: Calendula officinalis L., Taraxacum officinale L., Bidens pilosa L., Senecio vulgaris L. y Brassica juncea L. El experimento tuvo un diseño factorial con cinco especies, cinco concentraciones de extracto y cinco repeticiones, para un total de 125 unidades experimentales (UE). El extracto acuoso de A. absinthium se obtuvo a partir de follaje seco a una concentración de 1/50 (p/v), y se aplicó en proporciones variables (0, 25, 50, 75 y 100%) según los respectivos tratamientos. En cada UE se colocaron 20 semillas de la especie correspondiente, que se cultivaron en condiciones controladas durante 21 d durante los cuales se monitoreó la germinación. Los resultados indican que A. absinthium tiene un potencial significativo como inhibidor de la germinación de semillas y el crecimiento de plántulas en T. officinale y B. pilosa. Para el caso de S. vulgaris y B. juncea, la respuesta fue altamente dependiente de la dosis y en C. officinalis no se observó inhibición en los parámetros evaluados. Los resultados señalan al extracto de A. absinthium como una alternativa sostenible en el manejo de malezas.

References

Avato, P., & Tava, A. (2022). Rare fatty acids and lipids in plant oilseeds: Occurrence and bioactivity. Phytochemistry Reviews, 21, 401–428. https://doi.org/10.1007/s11101-021-09770-4

Anibogwu, R., Jesus, K. D., Pradhan, S., Van Leuven, S., & Sharma, K. (2024). Sesquiterpene lactones and flavonoid from the leaves of basin big sagebrush (Artemisia tridentata subsp. tridentata): Isolation, characterization and biological activities. Molecules, 29(4), Article 802. https://doi.org/10.3390/molecules29040802

Badami, R. C., & Morris, L. J. (1965). The oxygenated fatty acid of calendula seed oil. Journal of the American Oil Chemists’ Society, 42(12 part 2), 1119−1121. https://doi.org/10.1007/bf02636925

Barrera, C. (2015). Efecto alelopático de malezas leñosas invasoras sobre la germinación de hierbas pratenses [Undergraduate thesis, Universidad Austral de Chile]. http://cybertesis.uach.cl/tesis/uach/2015/fcb272e/doc/fcb272e.pdf

Basher, K. H. C., Ozek, T., Demirchakmak, B., Nuriddinov, Kh. R., Abduganiev, B. Yo., Aripov, Kh. N., Khodzimatov, K. Kh., Nigmatullaev, O. A., & Shamyanov, E. D. (1997). Essential oils of some artemisia species from Central Asia. Chemistry of Natural Compounds, 33(3), 293–295. https://doi.org/10.1007/BF02234877

Beltrán-Rodríguez, L., García-Madrid, I., & Saynes-Vásquez, A. (2017). Apropiación cultural de una planta europea en la herbolaria tradicional mexicana: el caso del ajenjo (Artemisia absinthium L. Asteraceae). Etnobiología, 15(2), 46–67. https://revistaetnobiologia.mx/index.php/etno/article/view/135

Bharati, A., Kar, M., & Sabat, S. C. (2014). Artemisinin inhibits chloroplast electron transport activity: Mode of action. PLoS ONE, 7(6), Article e38942. https://doi.org/10.1371/journal.pone.0038942

Chaimovitsh, D., Shachter, A., Abu-Abied, M., Rubin, B., Sadot, E., & Dudai, N. (2017). Herbicidal activity of monoterpenes is associated with disruption of microtubule functionality and membrane integrity. Weed Science, 65(1), 19–30. https://doi.org/10.1614/WS-D-16-00044.1

Cheng, F., & Cheng, Z. (2015). Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Frontiers in Plant Science, 6, Article 1020. https://doi.org/10.3389/fpls.2015.01020

Chenyin, P., Yu, W., Fenghou, S., & Yongbao, S. (2023). Review of the current research progress of seed germination inhibitors.Horticulturae, 9(4), Article 462. https://doi.org/10.3390/horticulturae9040462

Choudhary, C. S., Behera, B., Raza, M. B., Mrunalini, K., Bhoi, T. K., Lal, M. K., Nongmaithem, D., Pradhan, S., Song, B., & Das, T. K. (2023). Mechanisms of allelopathic interactions for sustainable weed management. Rhizosphere, 25, Article 100667. https://doi.org/10.1016/j.rhisph.2023.100667

Chu, C., Du, Y., Yu, X., Shi, J., Yuan, X., Liu, X., Liu, Y., Zhang, H., Zhang, Z., & Yan, N. (2020). Dynamics of antioxidant activities, metabolites, phenolic acids, flavonoids, and phenolic biosynthetic genes in germinating Chinese wild rice (Zizania latifolia). Food Chemistry, 318, Article 126483. https://doi.org/10.1016/j.foodchem.2020.126483

Conforti, F., Loizzo, M. R., Statti, G. A., Houghton, P. J., & Menichini F. (2006). Biological properties of different extracts of two Senecio species. International Journal of Food Science and Nutrition, 57(1-2), 1–8. https://doi.org/10.1080/09637480500131236

Craine, J. M., & Dybzinski, R. (2013). Mechanisms of plant competition for nutrients, water and light. Functional Ecology, 27(4), 833–840. https://doi.org/10.1111/1365-2435.12081

Dayan, F. E., Cantrell, C. L., & Duke, S. O. (2009). Natural products in crop protection. Bioorganic & Medicinal Chemistry, 17(12), 4022–4034. https://doi.org/10.1016/j.bmc.2009.01.046

Dayan, F. E., Hernández, A., Allen, S N., Moraes, R. M., Vroman, J. A., Avery, M. A., & Duke, S. O. (1999). Comparative phytotoxicity of artemisinin and several sesquiterpene analogues. Phytochemistry, 50(4), 607–614. https://doi.org/10.1016/S0031-9422(98)00568-8

Dotor, M., & Cabezas, M. (2015). Determinación de la habilidad competitiva entre Daucus carota L. y Senecio vulgaris L. Revista U.D.C.A Actualidad & Divulgación Científica, 18(1), 81–89. https://doi.org/10.31910/rudca.v18.n1.2015.456

Escobar Escobar, D. F., & Cardoso, V. J. M. (2015). Seed germination and dormancy of Miconia chartacea (Melastomataceae) in response to light, temperature, and plant hormones. Revista de Biología Tropical, 63(4), 1169–1184. https://doi.org/10.15517/rbt.v63i4.17955

Froese, N. T., & Van Acker, R. C. (2003). Distribution and interference of dandelion (Taraxacum officinale) in spring canola. Weed Science, 51(3), 435–442. http://www.jstor.org/stable/4046681

Green, J. M., & Owen, M. D. K. (2011). Herbicide-resistant crops: Utilities and limitations for herbicide-resistant weed management. Journal of Agricultural and Food Chemistry, 59(11), 5819–5829. https://doi.org/10.1021/jf101286h

Hasan, M., Ahmad-Hamdani, M., Rosli, A. M., & Hamdan, H. (2021). Bioherbicides: An eco-friendly tool for sustainable weed management. Plants, 10(6), Article 1212. https://doi.org/10.3390/plants10061212

Hbika, A., Daoudi, N. E., Bouyanzer, A., Bouhrim, M., Mohti, H., Loukili, E. H., Mechchate, H., Al-Salahi, R., Nasr, F. A., Bnouham, M., & Zaid, A. (2022). Artemisia absinthium L. aqueous and ethyl acetate extracts: Antioxidant effect and potential activity in vitro and in vivo against pancreatic α-amylase and intestinal α-glucosidase. Pharmaceutics, 14(3), Article 481. https://doi.org/10.3390/pharmaceutics14030481

Judžentienė, A. (2016). Wormwood (Artemisia absinthium L.) oils. In V. R. Preedy (Ed.), Essential oils in food preservation, flavor and safety (pp. 849–856). Academic Press. https://doi.org/10.1016/B978-0-12-416641-7.00097-3

Khalid, K. A., & Silva, J. A. T. (2012). Biology of Calendula officinalis Linn.: Focus on pharmacology, biological activities and agronomic practices. Medicinal and Aromatic Plant Science and Biotechnology, 6(1), 12–27.

Khamare, Y., Chen, J., & Marble, S. C. (2022). Allelopathy and its application as a weed management tool: A review. Frontiers in Plant Science, 13, Article 1034649. https://doi.org/10.3389/fpls.2022.1034649

Koitabashi, R., Suzuki, T., Kawazu, T., Sakai, A., Kuroiwa, H., & Kuroiwa, T. (1997). 1,8-Cineole inhibits root growth and DNA synthesis in the root apical meristem of Brassica campestris L. Journal of Plant Research, 110(1), 1–6. https://doi.org/10.1007/BF02506836

Latif, S., Chiapusio, G., & Weston, L. A. (2017). Allelopathy and the role of allelochemicals in plant defense. In G. Becard (Ed.), Advances in botanical research (Vol. 82, pp. 19–54). Academic Press. https://doi.org/10.1016/bs.abr.2016.12.001

Lee, Y.-J., Thiruvengadam, M., Chung, I.-M., & Nagella, P. (2013). Polyphenol composition and antioxidant activity from the vegetable plant Artemisia absinthium L. Australian Journal of Crop Science, 7(12), 1921–1926. http://www.cropj.com/november2013.html

Li, J., Chen, L., Chen, Q., Miao, Y., Peng, Z., Huang, B., Guo, L., Liu, D., & Du, H. (2021). Allelopathic effect of Artemisia argyi on the germination and growth of various weeds. Scientific Reports, 11, Article 4303. https://doi.org/10.1038/s41598-021-83752-6

Mirjalili, M. H., Tabatabaei, S. M. F., Hadian, J., Ebrahimi, S. N., & Sonboli, A. (2007). Phenological variation of the essential oil of Artemisia scoparia Waldst. et Kit from Iran. Journal of Essential Oil Research, 19(4), 326–329. https://doi.org/10.1080/10412905.2007.9699294

Nikolova, M., Lyubenova, A., Yankova-Tsvetkova, E., Georgiev, B., Berkov, S., Aneva, I., & Trendafilova, A. (2023). Artemisia santonicum L. and Artemisia lerchiana Web. essential oils and exudates as sources of compounds with pesticidal action. Plants, 12(19), Article 3491. https://doi.org/10.3390/plants12193491

Ninkuu, V., Zhang, L., Yan, J., Fu, Z., Yang, T., & Zeng, H. (2021). Biochemistry of terpenes and recent advances in plant protection. International Journal of Molecular Sciences, 22(11), Article 5710. https://doi.org/10.3390/ijms22115710

Nishida, N., Tamotsu, S., Nagata, N., Saito, C., & Sakai, A. (2005). Allelopathic effects of volatile monoterpenoids produced by Salvia leucophylla: Inhibition of cell proliferation and DNA synthesis in the root apical meristem of Brassica campestris seedlings. Journal of Chemical Ecology, 31(5), 1187–1203. https://doi.org/10.1007/s10886-005-4256-y

Pouresmaeil, M., Nojadeh, M., Movafeghi, A., & Maggi, F. (2020). Exploring the bio-control efficacy of Artemisia fragrans essential oil on the perennial weed Convolvulus arvensis: Inhibitory effects on the photosynthetic machinery and induction of oxidative stress. Industrial Crops and Products, 155, Article 112785. https://doi.org/10.1016/j.indcrop.2020.112785

Radchuk, V., & Borisjuk, L. (2014). Physical, metabolic, and developmental functions of the seed coat. Frontiers in Plant Science, 5, Article 510. https://doi.org/10.3389/fpls.2014.00510

Radhakrishnan, R., Alqarawi, A. A., & Abd-Allah, E. F. (2018). Bioherbicides: Current knowledge on weed control mechanisms. Ecotoxicology and Environmental Safety, 158, 131−138. https://doi.org/10.1016/j.ecoenv.2018.04.018

Ranal, M. A., & Santana, D. G. (2006). How and why to measure the germination process? Brazilian Journal of Botany, 29, 1–11. https://doi.org/10.1590/S0100-84042006000100002

Schandry, N., & Becker, C. (2020). Allelopathic plants: Models for studying plant–interkingdom interactions. Trends in Plant Science, 25(2), 176–185. https://doi.org/10.1016/j.tplants.2019.11.004

Shao, H., Hu, Y., Han, C., Wei, C., Zhou, S., Zhang, C., & Zhang, C. (2018). Chemical composition and phytotoxic activity of Seriphidium terrae‐albae (Krasch) Poljakov (Compositae) essential oil. Chemistry & Biodiversity, 15(11), Article e1800348. https://doi.org/10.1002/cbdv.201800348

Singh, H. P., Kaur, S., Mittal, S., Batish, D. R., & Kohli, R. K. (2009). Essential oil of Artemisia scoparia inhibits plant growth by generating reactive oxygen species and causing oxidative damage. Journal of Chemical Ecology. https://doi.org/10.1007/s10886-009-9595-7

Tarasevičienė, Ž., Viršilė, A., Danilčenko, H., Duchovskis, P., Paulauskienė, A., & Gajewski, M. (2019). Effects of germination time on the antioxidant properties of edible seeds. CyTA-Journal of Food, 17(1), 447–454. https://doi.org/10.1080/19476337.2018.1553895

Tian, Y., & Deng, F. (2020). Phytochemistry and biological activity of mustard (Brassica juncea): A review. CyTA-Journal of Food, 18(1), 704–718. https://doi.org/10.1080/19476337.2020.1833988

Verdeguer, M., Sánchez-Moreiras, A. M., & Araniti, F. (2020). Phytotoxic effects and mechanism of action of essential oils and terpenoids. Plants, 9(11), Article 1571. https://doi.org/10.3390/plants9111571

Victoria, J. A., Bonilla C. R., & Sánchez, M. S. (2007). Morfoanatomía y efecto del secado en la germinación de semillas de caléndula y eneldo. Acta Agronómica, 56(2), 61–68. https://revistas.unal.edu.co/index.php/acta_agronomica/article/view/640

Weidenhamer, J. D., Cipollini, D., Morris, K., Gurusinghe, S., & Weston, L. A. (2023). Ecological realism and rigor in the study of plant-plant allelopathic interactions. Plant and Soil, 489, 1–39. https://doi.org/10.1007/s11104-023-06022-6

Zhang, Z., Liu, Y., Yuan, L., Weber, E., & van Kleunen, M. (2021). Effect of allelopathy on plant performance: A meta-analysis. Ecology Letters, 24(2), 348–362. https://doi.org/10.1111/ele.13627

Zohaib, A., Abbas, T., & Tabassum, T. (2016). Weeds cause losses in field crops through allelopathy. Notulae Scientia Biologicae, 8(1), 47–56. https://doi.org/10.15835/nsb.8.1.9752

How to Cite

APA

Burgos de la Cruz, C. M. and Dotor Robayo, M. Y. (2024). Allelopathic potential of Artemisia absinthium L. on seed germination and seedling growth of various plant species. Agronomía Colombiana, 42(2), e115942. https://doi.org/10.15446/agron.colomb.v42n2.115942

ACM

[1]
Burgos de la Cruz, C.M. and Dotor Robayo, M.Y. 2024. Allelopathic potential of Artemisia absinthium L. on seed germination and seedling growth of various plant species. Agronomía Colombiana. 42, 2 (May 2024), e115942. DOI:https://doi.org/10.15446/agron.colomb.v42n2.115942.

ACS

(1)
Burgos de la Cruz, C. M.; Dotor Robayo, M. Y. Allelopathic potential of Artemisia absinthium L. on seed germination and seedling growth of various plant species. Agron. Colomb. 2024, 42, e115942.

ABNT

BURGOS DE LA CRUZ, C. M.; DOTOR ROBAYO, M. Y. Allelopathic potential of Artemisia absinthium L. on seed germination and seedling growth of various plant species. Agronomía Colombiana, [S. l.], v. 42, n. 2, p. e115942, 2024. DOI: 10.15446/agron.colomb.v42n2.115942. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/115942. Acesso em: 23 apr. 2025.

Chicago

Burgos de la Cruz, Carlos Manuel, and Mónica Yadira Dotor Robayo. 2024. “Allelopathic potential of Artemisia absinthium L. on seed germination and seedling growth of various plant species”. Agronomía Colombiana 42 (2):e115942. https://doi.org/10.15446/agron.colomb.v42n2.115942.

Harvard

Burgos de la Cruz, C. M. and Dotor Robayo, M. Y. (2024) “Allelopathic potential of Artemisia absinthium L. on seed germination and seedling growth of various plant species”, Agronomía Colombiana, 42(2), p. e115942. doi: 10.15446/agron.colomb.v42n2.115942.

IEEE

[1]
C. M. Burgos de la Cruz and M. Y. Dotor Robayo, “Allelopathic potential of Artemisia absinthium L. on seed germination and seedling growth of various plant species”, Agron. Colomb., vol. 42, no. 2, p. e115942, May 2024.

MLA

Burgos de la Cruz, C. M., and M. Y. Dotor Robayo. “Allelopathic potential of Artemisia absinthium L. on seed germination and seedling growth of various plant species”. Agronomía Colombiana, vol. 42, no. 2, May 2024, p. e115942, doi:10.15446/agron.colomb.v42n2.115942.

Turabian

Burgos de la Cruz, Carlos Manuel, and Mónica Yadira Dotor Robayo. “Allelopathic potential of Artemisia absinthium L. on seed germination and seedling growth of various plant species”. Agronomía Colombiana 42, no. 2 (May 1, 2024): e115942. Accessed April 23, 2025. https://revistas.unal.edu.co/index.php/agrocol/article/view/115942.

Vancouver

1.
Burgos de la Cruz CM, Dotor Robayo MY. Allelopathic potential of Artemisia absinthium L. on seed germination and seedling growth of various plant species. Agron. Colomb. [Internet]. 2024 May 1 [cited 2025 Apr. 23];42(2):e115942. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/115942

Download Citation