Screening for drought tolerance using physiological traits in upland cotton (Gossypium hirsutum L.)
Detección de tolerancia a la sequía utilizando rasgos fisiológicos en algodón americano (Gossypium hirsutum L.)
DOI:
https://doi.org/10.15446/agron.colomb.v42n3.116120Keywords:
transcriptional factors, physiological analysis, cell membrane stability, relative water content (en)factores transcripcionales, análisis fisiológico, estabilidad de la membrana celular, contenido relativo de agua (es)
Downloads
Climate change patterns indicate a serious threat to freshwater availability for crops. A selection of drought-tolerant genotypes is essential for breeders. Three key physiological parameters of abiotic stress, relative water content, excised leaf water content, and cell membrane stability were assessed with 68 upland cotton genotypes in Pakistan. The most tolerant and susceptible genotypes were evaluated in a greenhouse under controlled conditions. From the selected genotypes, heat and drought stress-related transcription factors were screened and included the following: GhNAC2, DREB2A, GhABF2, HSC70, HSFA2, GbMPK3, GbMpK17, GhMKK1, APX1, GHSP26, GHSP26, TPS, ANNAT8, GhMPK2, GhMKK3, GhWRKY41, HSPCB, HSP101, HSP3, GhPP2A1, and GbMYB5. Cell membrane stability may be a screening criterion for drought tolerance in cotton under field and greenhouse conditions. Under these conditions, the physiological and molecular analyses revealed that the genotypes CRIS-134, BH-184, and FH-114 were the most tolerant, and the genotypes CIM-240, CIM-446, and FH-900 were susceptible. The selected tolerant varieties can be recommended for cultivation in drought-prone areas. They can be used in future breeding programs for drought tolerance in cotton.
Los patrones de cambio climático indican una amenaza seria a la disponibilidad de agua dulce para las plantas cultivadas. La selección de genotipos tolerantes a la sequía es esencial para los fitomejoradores. Se evaluaron tres parámetros fisiológicos clave del estrés abiótico: contenido relativo de agua, contenido de agua en hojas extirpadas y estabilidad de la membrana celular, en 68 genotipos de algodón americano “Upland” en Pakistán. Los genotipos más tolerantes y susceptibles se evaluaron en invernadero bajo condiciones controladas. De los genotipos seleccionados, se evaluaron los factores de transcripción relacionados con el estrés por calor y sequía, como GhNAC2, DREB2A, GhABF2, HSC70, HSFA2, GbMPK3, GbMpK17, GhMKK1, APX1, GHSP26, GHSP26, TPS, ANNAT8, GhMPK2, GhMKK3, GhWRKY41, HSPCB, HSP101, HSP3, GhPP2A1 y GbMYB5. La estabilidad de la membrana celular puede utilizarse como criterio de selección para la tolerancia a la sequía en el algodón, tanto en condiciones de campo como de invernadero. En condiciones de campo y de invernadero, el análisis fisiológico y molecular reveló que los genotipos CRIS-134, BH-184 y FH-114 fueron los más tolerantes, y los genotipos CIM-240, CIM-446 y FH-900 fueron susceptibles. Las variedades resistentes seleccionadas pueden recomendarse para el cultivo en áreas propensas a la sequía y pueden utilizarse en futuros programas de mejoramiento para la tolerancia a la sequía en el algodón.
References
Abdelraheem, A., Hughs, S. E., Jones, D. C., & Zhang, J. (2015). Genetic analysis and quantitative trait locus mapping of PEGinduced osmotic stress tolerance in cotton. Plant Breeding, 134(1), 111–120. https://doi.org/10.1111/pbr.12228
Ahmad, R. T., Malik, T. A., Khan, I. A., & Jaskani, M. J. (2009). Genetic analysis of some morpho-physiological traits related to drought stress in cotton (Gossypium hirsutum). International Journal of Agriculture & Biology, 11(4), 235–240. https://www.academia.edu/50308776/Genetic_analysis_of_some_morpho_physiological_traits_related_to_drought_stress_in_cotton_Gossypium_hirsutum_
Ahmed, M. M., Akram, M. W., & Ali, Z. (2022). Breeding cotton for drought tolerance. In Z. Khan, Z. Ali, & A. A. Khan (Eds.), Cotton breeding and biotechnology (pp. 139–156). CRC Press. https://doi.org/10.1201/9781003096856-9
Alamri, S., Hu, Y., Mukherjee, S., Aftab, T., Fahad, S., Raza, A. Ahmad, M., & Siddiqui, M. H. (2020). Silicon-induced postponement of leaf senescence is accompanied by modulation of antioxidative defense and ion homeostasis in mustard (Brassica juncea) seedlings exposed to salinity and drought stress. Plant Physiology and Biochemistry, 157, 47–59. https://doi.org/10.1016/j.plaphy.2020.09.038
Aranjuelo, I., Molero, G., Erice, G., Avice, J. C., & Nogues, S. (2011). Plant physiology and proteomics reveal the leaf response to drought in alfalfa (Medicago sativa L.). Journal of Experimental Botany, 62(1), 111–123. https://doi.org/10.1093/jxb/erq249
Ashraf, M., Bokhari, M. H., & Chishti, S. N. (1992). Variation in osmotic adjustment of accessions of lentil (Lens culinaris Medic.) in response to drought stress. Acta Botanica Neerlandica, 41(1), 51–62. https://natuurtijdschriften.nl/pub/540852
Azhar, F. M., Ali, Z., Akhtar, M. M., Khan, A. A., & Trethowan, R. (2009). Genetic variability of heat tolerance, and its effect on yield and fibre quality traits in upland cotton (Gossypium hirsutum L.). Plant Breeding, 128(4), 356–362. https://doi.org/10.1111/j.1439-0523.2008.01574.x
Bajji, M., Kinet, J. M., & Lutts, S. (2002). The use of the electrolyte leakage method for assessing cell membrane stability as a wáter stress tolerance test in durum wheat. Plant Growth Regulation, 36, 61–70. https://doi.org/10.1023/A:1014732714549
Batool, T., Ali, S., Seleiman, M. F., Naveed, N. H., Ali, A., Ahmed, K., Abid, M., Rizwan, M., Shahid, M. R., Alotaibi, M., Al-Ashkar, I., & Mubushar, M. (2020). Plant growth promoting rhizobacteria alleviates drought stress in potato in response to suppressive oxidative stress and antioxidant enzymes activities. Scientific Reports, 10(1), Article 16975. https://doi.org/10.1038/s41598-020-73489-z
Bernardo, L., Carletti, P., Badeck, F. W., Rizza, F., Morcia, C., Ghizzoni, R., Rouphael, Y., Coll, G., Terzi, V., & Lucini, L. (2019). Metabolomic responses triggered by arbuscular mycorrhiza enhance tolerance to water stress in wheat cultivars. Plant Physiology and Biochemistry, 137, 203–212. https://doi.org/10.1016/j.plaphy.2019.02.007
Blum, A., & Ebercon, A. (1981). Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Science, 21(1), 43–47. https://doi.org/10.2135/cropsci1981.0011183X002100010013x
Chen, T., Li, W., Hu, X., Guo, J., Liu, A., & Zhang, B. (2015). A cotton MYB transcription factor, GbMYB5, is positively involved in plant adaptive response to drought stress. Plant and Cell Physiology, 56(5), 917–929. https://doi.org/10.1093/pcp/pcv019
Cheng, Y., Zhan, H., Yang, W., Jiang, Q., Wang, Y., & Guo, F. (2021). An ecohydrological perspective of reconstructed vegetation in the semi-arid region in drought seasons. Agricultural Water Management, 243, Article 106488. https://doi.org/10.1016/j.agwat.2020.106488
Chu, X., Wang, C., Chen, X., Lu, W., Li, H., Wang, X., Hao, L., & Guo, X. (2015). The cotton WRKY gene GhWRKY41 positively regulates salt and drought stress tolerance in transgenic Nicotiana benthamiana. PLoS ONE, 11(6), Article 0157026. https://doi.org/10.1371/journal.pone.0157026
Clarke, J. M., & McCaig, T. N. (1982). Excised-leaf water retention capability as an indicator of drought resistance of Triticum genotypes. Canadian Journal of Plant Science, 62(3), 571–578. https://doi.org/10.4141/cjps82-086
Clarke, J. M., & Townley-Smith, T. F. (1986). Heritability and relationship to yield of excised-leaf water retention in durum wheat. Crop Science, 26(2), 289–292. https://doi.org/10.2135/cropsci1986.0011183X002600020016x
Cui, J., Shao, G., Lu, J., Keabetswe, L., & Hoogenboom, G. (2020). Yield, quality and drought sensitivity of tomato to water déficit during different growth stages. Scientia Agrícola, 77, Article e20180390. https://doi.org/10.1590/1678-992X-2018-0390
Dahab, A. H. A., Mohamed, B. B., Husnain, T., & Saeed, M. (2012).bVariability for drought tolerance in cotton (Gossypium hirsutum L.) for growth and productivity traits using selection index. African Journal of Agricultural Research, 7(35), 4934–4942.
Doyle, J. J. (1990). Isolation of plant DNA from fresh tissue. Focus, 12(1), 13–15. https://www.researchgate.net/profile/Adhityo_Wicaksono/post/Quick_Extraction_of_plant_DNA_does_anyone_have_protocol/attachment/59d642dcc49f478072eaba57/AS:273804717166592@1442291539148/download/Doyle%26Doyle_Focus_1990_CTAB.pdf
Fanaei, H. R., Galavi, M., Kafi, M., & Ghanbari Bonjar, A. (2009). Amelioration of water stress by potassium fertilizer in two oilseed species. International Journal of Plant Production, 3(2), 41–54. https://doi.org/10.22069/IJPP.2012.640
Farooq, M. S., Uzair, M., Raza, A., Habib, M., Xu, Y., Yousuf, M., Yang, S. H., & Ramzan Khan, M. (2022). Uncovering the research gaps to alleviate the negative impacts of climate change on food security: A review. Frontiers in Plant Science, 13, Article 927535. https://doi.org/10.3389/fpls.2022.927535
Galindo, A., Collado-González, J., Griñán, I., Corell, M., Centeno, A., Martín-Palomo, M. J. Girón, I. F., Rodríguez, P., Cruz, Z. N., Memmi, H., Carbonell-Barrachina, A. A., Hernández, F., Torrecillas, A., Moriana, A., & Pérez-López, D. (2018). Déficit irrigation and emerging fruit crops as a strategy to sabe water in Mediterranean semi-arid agrosystems. Agricultural Water Management, 202, 311–324. https://doi.org/10.1016/j.agwat.2017.08.015
Hammad, S. A. R., & Ali, O. A. M. (2014). Physiological and biochemical studies on drought tolerance of wheat plants by application of amino acids and yeast extract. Annals of Agricultural Sciences, 59(1), 133–145. https://doi.org/10.1016/j.aoas.2014.06.018
Hearn, A. B. (1994). The principles of cotton water relations and their application in management. In G. A. Constable, & N. W. Forrester (Eds.), Challenging the future. Proceedings of the World Cotton Research Conference - 1 (pp. 17). Brisbane, Australia, February 14-17, 1994. CSIRO.
Hou, S., Zhu, G., Li, Y., Li, W., Fu, J., Niu, E., Li, L., Zhang, D., & Guo, W. (2018). Genome-wide association studies reveal genetic variation and candidate genes of drought stress related traits in cotton (Gossypium hirsutum L.). Frontiers in Plant Science, 9, Article 1276. https://doi.org/10.3389/fpls.2018.01276
Iqbal, K., Azhar, F. M., Khan, I. A., & Ullah, E. (2010). Assessment of cotton (Gossypium hirsutum) germplasm under water stress condition. International Journal of Agriculture and Biology, 12(2), 251–255. https://www.cabidigitallibrary.org/doi/pdf/10.5555/20103104931
Iqbal, M., Khan, M. A., Chattha, W. S., Abdullah, K., & Majeed, A. (2019). Comparative evaluation of Gossypium arboreum L. and Gossypium hirsutum L. genotypes for drought tolerance. Plant Genetic Resources, 17(6), 506–513. https://doi.org/10.1017/S1479262119000340
Iqbal, M., Ul-Allah, S., Naeem, M., Ijaz, M., Sattar, A., & Sher, A. (2017). Response of cotton genotypes to water and heat stress: from field to genes. Euphytica, 213(6), Article 131. https://doi.org/10.1007/s10681-017-1916-2
Jia, Q., Li, M., & Dou, X. (2022). Climate change affects crop production potential in semi-arid regions: A case study in Dingxi, Northwest China, in recent 30 years. Sustainability, 14(6), Article 3578. https://doi.org/10.3390/su14063578
Keerio, A., Soomro, A. W., Suthar, V., & Panhwar, B. U. (2022). Assessment of drought tolerant cotton genotypes through irrigation intervals. International Journal of Biology and Biotechnology, 19(1), 71–75. https://www.thepab.org/files/2018/December-2018/PAB-MS-18070191.pdf
Khan, N. U., Hassan, G., Marwat, K. B., Farhatullah, Batool, S., Makhdoom, K., Khan, I., Khan, I. A., & Ahmad, W. (2009). Genetic variability and heritability in upland cotton. Pakistán Journal of Botany, 41(4), 1695–1705.
Khan, M. A. U., Shahid, A. A., Rao, A. Q., Kiani, S., Ashraf, M. A., Muzaffar, A., & Husnain, T. (2011). Role of epicuticular waxes in the susceptibility of cotton leaf curl virus (CLCuV). African Journal of Biotechnology, 10(77), 17868–17874. https://doi.org/10.5897/AJB11.2199
Kwon, S. H., & Torrie, J. H. (1964). Heritability of and interrelationships among traits of two soybean populations. Crop Science, 4(2), 196–198. https://doi.org/10.2135/cropsci1964.0011183X000400020023x
Levitt, J. (1980). Responses of plants to environmental stresses (Vol. 2). Academic Press.
Mahmood, T., Iqbal, M. S., Li, H., Nazir, M. F., Khalid, S., Sarfraz, Z., Hu, D., Baojun, C., Tajo, S. M., Dey, W., Iqbal, Z., Zhao, P., Hu, G., & Du, X. (2022). Differential seedling growth and tolerance indices reflect drought tolerance in cotton. BMC Plant Biology, 22(1), Article 331. https://doi.org/10.1186/s12870-022-03724-4
Mahmood, T., Wang, X., Ahmar, S., Abdullah, M., Iqbal, M. S., Rana, R. M., Yasir, M., Khalid, S., Javed, T., Mora-Poblete, F., Chen, J. T., Shan, M. K. N., & Du, X. (2021). Genetic potential and inheritance pattern of phenological growth and drought tolerance in cotton (Gossypium hirsutum L.). Frontiers in Plant Science, 12, Article 705392. https://doi.org/10.3389/fpls.2021.705392
Makamov, A., Shavkiev, J., Kholmuradova, M., Boyqobilov, U., Normamatov, I., Norbekov, J., Khusenov, N., Kushakov, S. H., Yuldasheva, Z., Khoshimov, S., & Buriev, Z. (2023). Cotton genotypes appraisal for morpho-physiological and yield contributing traits under optimal and deficit irrigated conditions. SABRAO Journal of Breeding and Genetics, 55(1), 74–89. https://doi.org/10.54910/sabrao2023.55.1.7
Mubeen, M., Khaliq, T., Ahmad, A., Ali, A., Rasul, F., & Hussain, J. (2012). Quantification of seed cotton yield and water use efficiency of cotton under variable irrigation schedules. Crop & Environment, 3(1-2), 54–57.
Nasimi, R. A., Khan, I. A., Iqbal, M. A., & Khan, A. A. (2016). Genetic analysis of drought tolerance with respect to fiber traits in upland cotton. Genetics and Molecular Research, 15(4), Article 15048626. https://doi.org/10.4238/gmr.15048626
Nawaz, M., Liao, L., Azeem, F., Ashraf, U., Zohaib, A., Anjum, S. A., & Wang, Z. (2020). Protection mehcanism against drought in Axsonopus compressus: Insight of physio-biochemical traits, antioxident interplay and gene experssion. Research Square, preprint. https://doi.org/10.21203/rs.2.20552/v1
Niu, L., Liu, F., Zhang, S., Luo, J., Zhang, L., Ji, J., Gao, X., Ma, W., & Cui, J. (2020). Transgenic insect-resistant Bt cotton expressing Cry1Ac/CpTI does not affect the mirid bug Apolygus lucorum. Environmental Pollution, 264, Article 114762. https://doi.org/10.1016/j.envpol.2020.114762
Niu, J., Zhang, S., Liu, S., Ma, H., Chen, J., Shen, Q. Ge, C., Zhang, X., Pang, C., & Zhao, X. (2018). The compensation effects of physiology a drought stress. Journal of Plant Physiology, 224-225, 30–48. https://doi.org/10.1016/j.jplph.2018.03.001
Nonami, H. (1998). Plant water relations and control of cell elongation at low water potentials. Journal of Plant Research, 111, 373–382. https://doi.org/10.1007/BF02507801
Oosterhuis, D. M. (2000). Proceedings of the 2000 cotton research meeting and summaries of cotton research in progress. Special Report, Arkansas Agricultural Experiment Station.
Petrov, P., Petrova, A., Dimitrov, I., Tashev, T., Olsovska, K., Brestic, M., & Misheva, S. (2018). Relationships between leaf morpho-anatomy, water status and cell membrane stability in leaves of wheat seedlings subjected to severe soil drought. Journal of Agronomy and Crop Science, 204(3), 219–227. https://doi.org/10.1111/jac.12255
Rahman, S., Shaheen, M. S., Rahman, M., & Malik, T. A. (2000). Evaluation of excised leaf water loss and relative water content, as screening techniques for breeding drought resistant wheat. Pakistan Journal of Biological Sciences, 3(4), 663–665. https://doi.org/10.3923/pjbs.2000.663.665
Rai, G. K., Parveen, A., Jamwal, G., Basu, U., Kumar, R. R., Rai, P. K., Sharma, J. P., Alalawy, A. I., Al-Duais, M. A., Hossain, M. A., Habib ur Rahman, M., Raza, A., Danish, S., & Sakran, M. I. (2021). Leaf proteome response to drought stress and antioxidant potential in tomato (Solanum lycopersicum L.). Atmosphere, 12(8), Article 1021. https://doi.org/10.3390/atmos12081021
Raza, A., Razzaq, A., Mehmood, S. S., Zou, X., Zhang, X., Lv, Y., & Xu, J. (2019). Impact of climate change on crops adaptation and strategies to tackle its outcome: A review. Plants, 8(2), Article 34. https://doi.org/10.3390/plants8020034
Reddi, G. H. S., & Reddy, T. Y. (1995). Irrigation of principal crops. In G. H. S. Reddi, & T. Y. Reddy (Eds.), Efficient use of irrigation water (2nd ed., pp. 229–259). Kalyani Publishers, New Delhi.
Rehman, A. U., Rana, I. A., Majeed, S., Chaudhary, M. T., Zulfiqar, M., Yang, S. H., Chung, G., Jia, Y., Du, X., Hinze, L., & Azhar, M. T. (2021). Intra-plant variability for heat tolerance related attributes in upland cotton. Agronomy, 11(12), Article 2375. https://doi.org/10.3390/agronomy11122375
Saeed, M., Guo, W., Ullah, I., Tabbasam, N., Zafar, Y., ur-Rahman, M., & Zhang, T. (2011). QTL mapping for physiology, yield and plant architecture traits in cotton (Gossypium hirsutum L.) grown under well-watered versus water-stress conditions. Electronic Journal of Biotechnology, 14(3), 1–13. https://doi.org/10.2225/vol14-issue3-fulltext-3
Saneoka, H., Moghaieb, R. E. A., Premachandra, G. S., & Fujita, K. (2004). Nitrogen nutrition and water stress effects on cell membrane stability and leaf water relations in Agrostis palustris Huds. Environmental and Experimental Botany, 52(2), 131–138. https://doi.org/10.1016/j.envexpbot.2004.01.011
Singh, A. (2015). The mitigation of drought stress. In P. Gibbs (Ed.), Abiotic stress tolerance in crop plants (pp. 130–170). States Academic Press.
Saleem, M. A., Malik, T. A., Shakeel, A., Amjad, M. W., & Qayyum, A. (2015). Genetics of physiological and agronomic traits in upland cotton under drought stress. Pakistan Journal of Agricultural Sciences, 52(2), 317–324.
Saleem, M. A., Qayyum, A., Malik, W., & Amjid, M. W. (2020). Molecular breeding of cotton for drought stress tolerance. In S. Ahmad, & M. Hasanuzzaman (Eds.), Cotton production and uses: agronomy, crop protection, and postharvest technologies (pp. 495–508). Springer.
Shi, W. M., Muramoto, Y., Ueda, A., & Takabe, T. (2001). Cloning of peroxisomal ascorbate peroxidase gene from barley and enhanced thermotolerance by overexpressing in Arabidopsis thaliana. Gene, 273(1), 23–27. https://doi.org/10.1016/S0378-1119(01)00566-2
Silva, M. A., Jifon, J. L., Silva, J. A. G., & Sharma, V. (2007). Use of physiological parameters as fast tools to screen for drought tolerance in sugarcane. Brazilian Journal of Plant Physiology, 19(3), 193–201. https://doi.org/10.1590/S1677-04202007000300003
Smirnoff, N., & Colombe, S. V. (1988). Drought influences the activity of enzymes of the chloroplast hydrogen peroxide scavenging system. Journal of Experimental Botany, 39(8), 1097–1108. https://doi.org/10.1093/jxb/39.8.1097
Steel, R. G. D., Torrie, J. H., & Dickey, D. A. (1997). Principles and procedures of statistics: A biometrical approach. Mc Graw Hill.
Storozhenko, S., De Pauw, P., Van Montagu, M., Inzé, D., & Kushnir, S. (1998). The heat-shock element is a functional component of the Arabidopsis APX1 gene promoter. Plant Physiology, 118(3), 1005–1014. https://doi.org/10.1104/pp.118.3.1005
Tahara, M., Carver, B. F., Johnson, R. C., & Smith, E. L. (1990). Relationship between relative water content during reproductive development and winter wheat grain yield. Euphytica, 49, 255–262. https://doi.org/10.1007/BF00036297
Tripathy, J. N., Zhang, J., Robin, S., Nguyen, T. T., & Nguyen, H. T. (2000). QTLs for cell-membrane stability mapped in rice (Oryza sativa L.) under drought stress. Theoretical and Applied Genetics, 100, 1197–1202. https://doi.org/10.1007/s001220051424
Turner, N. C., Hearn, A. B., Begg, J. E., & Constable, G. A. (1986). Cotton (Gossypium hirsutum L.): Physiological and morphological responses to water deficits and their relationship to yield. Field Crops Research, 14, 153–170. https://doi.org/10.1016/0378-4290(86)90054-7
Ullah, I., Mehboob-ur-Rahman., Ashraf, M., & Zafar, Y. (2008). Genotypic variation for drought tolerance in cotton (Gossypium hirsutum L.): Leaf gas exchange and productivity. Flora-Morphology, Distribution, Functional Ecology of Plants, 203(2), 105–115. https://doi.org/10.1016/j.flora.2007.12.001
Ur Rahman, H., Malik, S. A., & Saleem, M. (2004). Heat tolerance of upland cotton during the fruiting stage evaluated using cellular membrane thermostability. Field Crops Research, 85(2-3), 149–158. https://doi.org/10.1016/S0378-4290(03)00159-X
Usman, M. (2016). On consistency and limitation of independent t-test Kolmogorov Smirnov Test and Mann Whitney U test. IOSR Journal of Mathematics, 12(4), 22–27. https://doi.org/10.9790/5728-1204052227
Varshney, R. K., Barmukh, R., Roorkiwal, M., Qi, Y., Kholova, J., Tuberosa, R., Reynolds, M. P., Tardieu, F., & Siddique, K. H. M. (2021). Breeding custom-designed crops for improved drought adaptation. Advanced Genetics, 2(3), Article e202100017. https://doi.org/10.1002/ggn2.202100017
Waghmare, V. N. (2022). Cotton breeding. In D. K. Yadava, H. K. Dikshit, G. P. Mishra, & S. Tripathi (Eds.), Fundamentals of field crop breeding (pp. 609–676). Springer. https://doi.org/10.1007/978-981-16-9257-4
Wang, C., Lu, W., He, X., Wang, F., Zhou, Y., Guo, X., & Guo, X. (2016). The cotton mitogen-activated protein kinase kinase 3 functions in drought tolerance by regulating stomatal responses and root growth. Plant and Cell Physiology, 57(8), 1629–1642. https://doi.org/10.1093/pcp/pcw090
Xoconostle-Cazares, B., Ramirez-Ortega, F. A., Flores-Elenes, L., & Ruiz-Medrano, R. (2010). Drought tolerance in crop plants. American Journal of Plant Physiology, 5(5), 241–256. https://doi.org/10.3923/ajpp.2010.241.256
Yagmur, B., Gurel, A., Oren, Y., Izcl, B., Edreva, A., Hakerlerler, H., Hayta, S., Akdemir, H., & Yilaiz-Aktas, L. (2014). Effects of different drought applications and potassium doses on cotton yield and fiber quality. Research Journal of Agricultural and Environmental Management, 3(1), 60–67. https://www.apexjournal.org/rjaem/archive/2014/Jan/fulltext/Yagmur%20et%20al.pdf
Yang, X., Wang, B., Chen, L., Li, P., & Cao, C. (2019). The different influences of drought stress at the flowering stage on rice physiological traits, grain yield, and quality. Scientific Reports, 9(1), Article 3742. https://doi.org/10.1038/s41598-019-40161-0
Yasmeen, A., Kiani, S., Butt, A., Rao, A. Q., Akram, F., Ahmad, A., Nasir, I. A., Husnain, T., Mansoor, S., Amin, I,, Aftab, S., Zubair, M., Tahir, M. N., Akhtar, S., Scheffler, J., & Scheffler, B. (2016). Amplicon-based RNA interference targeting V2 gene of Cotton leaf curl Kokhran virus-Burewala strain can provide resistance in transgenic cotton plants. Molecular Biotechnology, 58, 807–820. https://doi.org/10.1007/s12033-016-9980-8
Yehia, W., & El-Hashash, E. F. (2022). Response of cotton genotypes to water-deficit stress using drought tolerance indices and principal component analysis. Research Square, pre-print. https://doi.org/10.21203/rs.3.rs-2007212/v1
Zhang, X., & Huang, B. (2020). Drought priming-induced heat tolerance: Metabolic pathways and molecular mechanisms. In M. A. Hossain, F. Liu, D. Burritt, M. Fujita, & B. Huang (Eds.), Priming-mediated stress and cross-stress tolerance in crop plants (pp. 149–160). Academic Press. https://doi.org/10.1016/B978-0-12-817892-8.00009-X
Zhang, L., Ma, H., Chen, T., Pen, J., Yu, S., & Zhao, X. (2014). Morphological and physiological responses of cotton (Gossypium hirsutum L.) plants to salinity. PLoS ONE, 9(11), Article e112807. https://doi.org/10.1371/journal.pone.0112807
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2024 Agronomía Colombiana

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)

Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.