Fallow improves the growth and yield of green beans and changes the rhizosphere microbial communities
Suelos en barbecho mejoran el crecimiento y rendimiento de habichuela y modifican las comunidades microbianas de la rizosfera
DOI:
https://doi.org/10.15446/agron.colomb.v43n1.116146Keywords:
enzimatic activity, microbiome, Phaseolus vulgaris, soil health, soil fertility (en)actividad enzimática, microbioma, Phaseolus vulgaris, salud del suelo, fertilidad del suelo (es)
Downloads
Soil microorganisms support key ecosystem services for agriculture, and some agricultural practices can increase soil microbial activity and improve crop productivity. Fallow periods have been considered a strategy for restoring biological activity. However, our understanding of the link between fallow periods and the biological activity restored remains limited. The present study evaluated soil microbial communities under two different management strategies: continuous agriculture and fallow. Soil physicochemical parameters and microbial communities were determined through microbiological, biochemical, and molecular techniques. The results showed that fallow soil had significantly higher values (P<0.05) of organic matter, pH, counts of soil microorganisms, and soil enzymatic activities than agricultural soil. Finally, the evaluation of plant growth showed that plants in fallow soil grew significantly better (P<0.05) than those in agricultural soil. However, after sterilization, the differences between the two soils disappeared. Leaving the soil in fallow periods allows the accumulation of organic matter, the growth of key microbial functional groups, the enhancement of soil enzymatic activities, and a significant improvement in plant growth and yield.
Los microorganismos del suelo soportan servicios ecosistémicos clave para la agricultura, y algunas prácticas agrícolas pueden aumentar la actividad microbiana del suelo y mejorar la productividad de los cultivos. Los períodos de barbecho se han considerado una estrategia para la restauración de la actividad biológica. Sin embargo, nuestra comprensión de la relación entre los períodos de barbecho y la actividad biológica restaurada sigue siendo limitada. El presente estudio evaluó las comunidades microbianas del suelo bajo dos estrategias de manejo diferentes: agricultura continua y barbecho. Se determinaron parámetros fisicoquímicos del suelo y comunidades microbianas mediante técnicas microbiológicas, bioquímicas y moleculares. Los resultados mostraron que el suelo en barbecho presentó valores significativamente más altos (P<0.05) de materia orgánica, pH, conteo de microorganismos del suelo y actividades enzimáticas en comparación con el suelo agrícola. Además, la evaluación del crecimiento vegetal reveló que las plantas en suelo en barbecho crecieron significativamente mejor (P<0.05) que en suelo agrícola. Sin embargo, tras someter los suelos a un proceso de esterilización, las diferencias entre ellos desaparecieron. Dejar el suelo en barbecho permite la acumulación de materia orgánica, el crecimiento de grupos funcionales microbianos clave, la mejora de las actividades enzimáticas del suelo y un aumento significativo en el crecimiento y rendimiento de las plantas.
References
Alef, K., & Nannipieri, P. (1995). Enzyme activities. In K. Alef, & P. Nannipieri (Eds.), Methods in applied soil microbiology and biochemistry (pp. 311–373). Academic Press. https://doi.org/10.1016/B978-012513840-6/50022-7 DOI: https://doi.org/10.1016/B978-012513840-6/50022-7
Ayiti, O. E., & Babalola, O. O. (2022). Factors influencing soil nitrification process and the effect on environment and health. Frontiers in Sustainable Food Systems, 6, Article 821994. https://doi.org/10.3389/fsufs.2022.821994 DOI: https://doi.org/10.3389/fsufs.2022.821994
Bandinck, A. K., & Dick, R. P. (1999). Field management effects on soil enzyme activities. Soil Biology and Biochemistry, 31(11), 1471–1479. https://doi.org/10.1016/S0038-0717(99)00051-6 DOI: https://doi.org/10.1016/S0038-0717(99)00051-6
Banerjee, S., & van der Heijden, M. G. A. (2022). Soil microbiomes and one health. Nature Reviews Microbiology, 21(1), 6–20. https://doi.org/10.1038/s41579-022-00779-w DOI: https://doi.org/10.1038/s41579-022-00779-w
Barillot, C. D. C., Sarde, C. O., Bert, V., Tarnaud, E., & Cochet, N. (2013). A standardized method for the sampling of rhizosphere and rhizoplan soil bacteria associated to a herbaceous root system. Annals of Microbiology, 63(2), 471–476. https://doi.org/10.1007/s13213-012-0491-y DOI: https://doi.org/10.1007/s13213-012-0491-y
Brennan, E. B., & Acosta-Martinez, V. (2017). Cover cropping frequency is the main driver of soil microbial changes during six years of organic vegetable production. Soil Biology and Biochemistry, 109, 188–204. https://doi.org/10.1016/j.soilbio.2017.01.014 DOI: https://doi.org/10.1016/j.soilbio.2017.01.014
Brisson, V. L., Schmidt, J. E., Northen, T. R., Vogel, J. P., & Gaudin, A. C. M. (2019). Impacts of maize domestication and breeding on rhizosphere microbial community recruitment from a nutrient depleted agricultural soil. Scientific Reports, 9(1), Article 15611. https://doi.org/10.1038/s41598-019-52148-y DOI: https://doi.org/10.1038/s41598-019-52148-y
Burdukovskii, M., Kiseleva, I., Perepelkina, P., & Kosheleva, Y. (2020). Impact of different fallow durations on soil aggregate structure and humus status parameters. Soil and Water Research, 15(1), 1–8. https://doi.org/10.17221/174/2018-SWR DOI: https://doi.org/10.17221/174/2018-SWR
Chandrapati, S., & Williams, M. G. (2014). Total viable counts: Most probable number (MPN). In C. A. Batt, & M. L. Tortorello (Eds.), Encyclopedia of food microbiology (2nd ed., pp. 621–624). Academic Press. https://doi.org/10.1016/B978-0-12-384730-0.00333-5 DOI: https://doi.org/10.1016/B978-0-12-384730-0.00333-5
Chaulagain, D., & Frugoli, J. (2021). The regulation of nodule number in legumes is a balance of three signal transduction pathways. International Journal of Molecular Sciences, 22(3), Article 1117. https://doi.org/10.3390/ijms22031117 DOI: https://doi.org/10.3390/ijms22031117
Chaurasia, S. (2020). Green beans. In A. K. Jaiswal (Ed.), Nutritional composition and antioxidant properties of fruits and vegetables (pp. 289–300). Academic Press. https://doi.org/10.1016/B978-0-12-812780-3.00017-9 DOI: https://doi.org/10.1016/B978-0-12-812780-3.00017-9
Chen, X., Han, X.-Z., You, M.-Y., Yan, J., Lu, X.-C., Horwath, W. R., & Zou, W.-X. (2019). Soil macroaggregates and organic-matter content regulate microbial communities and enzymatic activity in a Chinese Mollisol. Journal of Integrative Agriculture, 18(11), 2605–2618. https://www.sciencedirect.com/science/article/pii/S2095311919627590?ref=pdf_download&fr=RR-2&rr=93d4a9a74c2d3ef5 DOI: https://doi.org/10.1016/S2095-3119(19)62759-0
Datta, R. (2024). Enzymatic degradation of cellulose in soil: A review. Heliyon, 10(1), Article e24022. https://doi.org/10.1016/j.heliyon.2024.e24022 DOI: https://doi.org/10.1016/j.heliyon.2024.e24022
Deng, S. P., & Tabatabai, M. A. (1994). Cellulase activity of soils. Soil Biology and Biochemistry, 26(10), 1347–1354. https://doi.org/10.1016/0038-0717(94)90216-X DOI: https://doi.org/10.1016/0038-0717(94)90216-X
Dotaniya, M. L., Aparna, K., Dotaniya, C. K., Singh, M., & Regar, K. L. (2019). Role of soil enzymes in sustainable crop production. In M. Kuddus (Ed.), Enzymes in food biotechnology: Production, applications, and future prospects (pp. 569–589). Academic Press. https://doi.org/10.1016/B978-0-12-813280-7.00033-5 DOI: https://doi.org/10.1016/B978-0-12-813280-7.00033-5
Edwards, J. A., Santos-Medellín, C. M., Liechty, Z. S., Nguyen, B., Lurie, E., Eason, S., Phillips, G., & Sundaresan, V. (2018). Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice. PLoS Biology, 16(2), Article e2003862. https://doi.org/10.1371/journal.pbio.2003862 DOI: https://doi.org/10.1371/journal.pbio.2003862
Eivazi, F., & Tabatabai, M. A. (1990). Factors affecting glucosidase and galactosidase activities in soils. Soil Biology and Biochemistry, 22(7), 891–897. https://doi.org/10.1016/0038-0717(90)90126-K DOI: https://doi.org/10.1016/0038-0717(90)90126-K
Eivazi, F., & Tabatabai, M. A. (1977). Phosphatases in soils. Soil Biology and Biochemistry, 9, 167–172. DOI: https://doi.org/10.1016/0038-0717(77)90070-0
Fachin, P. A., Costa, Y. T., & Thomaz, E. L. (2021). Evolution of the soil chemical properties in slash-and-burn agriculture along several years of fallow. Science of The Total Environment, 764, Article 142823. https://doi.org/10.1016/j.scitotenv.2020.142823 DOI: https://doi.org/10.1016/j.scitotenv.2020.142823
FAOSTAT. (2024, June). Crops and livestock products. FAOSTAT. https://www.fao.org/faostat/en/#data/QCL
Ferreira, A. S., Espíndola, S. P., & Campos, M. R. C. (2016). Assessment and kinetics of soil phosphatase in Brazilian Savanna systems. Anais da Academia Brasileira de Ciências, 88(2), 1035–1044. https://doi.org/10.1590/0001-3765201620140033 DOI: https://doi.org/10.1590/0001-3765201620140033
Fierer, N. (2017). Embracing the unknown: Disentangling the complexities of the soil microbiome. Nature Reviews Microbiology, 15(10), 579–590. https://doi.org/10.1038/nrmicro.2017.87 DOI: https://doi.org/10.1038/nrmicro.2017.87
Garba, I. I., Fay, D., Apriani, R., Yusof, D. Y. P., Chu, D., & Williams, A. (2022). Fallow replacement cover crops impact soil water and nitrogen dynamics in a semi-arid sub-tropical environment. Agriculture, Ecosystems & Environment, 338, Article 108052. https://doi.org/10.1016/J.AGEE.2022.108052 DOI: https://doi.org/10.1016/j.agee.2022.108052
Hartemink, A. E., & Barrow, N. J. (2023). Soil pH – nutrient relationships: The diagram. Plant and Soil, 486(1), 209–215. https://doi.org/10.1007/s11104-022-05861-z DOI: https://doi.org/10.1007/s11104-022-05861-z
Howard, M. M., Muñoz, C. A., Kao-Kniffin, J., & Kessler, A. (2020). Soil microbiomes from fallow fields have species-specific effects on crop growth and pest resistance. Frontiers in Plant Science, 11, Article 1171. https://doi.org/10.3389/fpls.2020.01171 DOI: https://doi.org/10.3389/fpls.2020.01171
Kandasamy, S., Liu, E. Y. R., Patterson, G., Saldias, S., Ali, S., & Lazarovits, G. (2019). Introducing key microbes from high productive soil transforms native soil microbial community of low productive soil. Microbiology Open, 8(10), Article e895. https://doi.org/10.1002/mbo3.895 DOI: https://doi.org/10.1002/mbo3.895
Klein, D. A., Sorensen, D. L., & Redente, E. F. (1985). Soil enzymes: A predictor of reclamation poten ial and progress. In R. L. Tate, & D. A. Klein (Eds.), Soil reclamation processes: Microbiological analyses and applications (1st ed., pp. 141–172). CRC Press. https://doi.org/10.1201/9781003065340 DOI: https://doi.org/10.1201/9781003065340
Kuntz, M., Berner, A., Gattinger, A., Scholberg, J. M., Mäder, P., & Pfiffner, L. (2013). Influence of reduced tillage on earthworm and microbial communities under organic arable farming. Pedobiologia, 56(4–6), 251–260. https://doi.org/10.1016/j.pedobi.2013.08.005 DOI: https://doi.org/10.1016/j.pedobi.2013.08.005
Mann, C., Lynch, D., Fillmore, S., & Mills, A. (2019). Relationships between field management, soil health, and microbial community composition. Applied Soil Ecology, 144, 12–21. https://doi.org/10.1016/j.apsoil.2019.06.012 DOI: https://doi.org/10.1016/j.apsoil.2019.06.012
Martínez-García, L. B., Korthals, G., Brussaard, L., Jørgensen, H. B., & Deyn, G. B. (2018). Organic management and cover crop species steer soil microbial community structure and functionality along with soil organic matter properties. Agriculture, Ecosystems & Environment, 263, 7–17. https://doi.org/10.1016/j.agee.2018.04.018 DOI: https://doi.org/10.1016/j.agee.2018.04.018
Mendes, R., Garbeva, P., & Raaijmakers, J. M. (2013). The rhizosphere microbiome: Significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiology Reviews, 37(5), 634–663. https://doi.org/10.1111/1574-6976.12028 DOI: https://doi.org/10.1111/1574-6976.12028
Mendiburu, F. (2023). Agricolae: Statistical procedures for agricultural research. https://cran.rproject.org/web/packages/agricolae/agricolae.pdf
Mertz, O. (2002). The relationship between length of fallow and crop yields in shifting cultivation: A rethinking. Agroforestry Systems, 55(2), 149–159. https://doi.org/10.1023/A:1020507631848 DOI: https://doi.org/10.1023/A:1020507631848
Mertz, O., Wadley, R. L., Nielsen, U., Bruun, T. B., Colfer, C. J. P., de Neergaard, A., Jepsen, M. R., Martinussen, T., Zhao, Q., Noweg, G. T., & Magid, J. (2008). A fresh look at shifting cultivation: Fallow length an uncertain indicator of productivity. Agricultural Systems, 96(1), 75–84. https://doi.org/10.1016/j.agsy.2007.06.002 DOI: https://doi.org/10.1016/j.agsy.2007.06.002
Muyzer, G., & Smalla, K. (1998). Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie van Leeuwenhock, 73, 127–141. https://doi.org/10.1023/A:1000669317571 DOI: https://doi.org/10.1023/A:1000669317571
Nannipieri, P., Trasar-Cepeda, C., & Dick, R. P. (2018). Soil enzyme activity: A brief history and biochemistry as a basis for appropriate interpretations and meta-analysis. Biology and Fertility of Soils, 54(1), 11–19. https://doi.org/10.1007/s00374-017-1245-6 DOI: https://doi.org/10.1007/s00374-017-1245-6
Nautiyal, C. S. (1999). An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters, 170(1), 265–270. https://doi.org/10.1111/j.1574-6968.1999.tb13383.x DOI: https://doi.org/10.1111/j.1574-6968.1999.tb13383.x
Otero-Jiménez, V., Carreño-Carreño, J. P., Barreto-Hernandez, E., van Elsas, J. D., & Uribe-Vélez, D. (2021). Impact of rice straw management strategies on rice rhizosphere microbiomes. Applied Soil Ecology, 167, Article 104036. https://doi.org/10.1016/J.APSOIL.2021.104036 DOI: https://doi.org/10.1016/j.apsoil.2021.104036
Pansu, M., & Gautheyrou, J. (2006). Handbook of soil analysis: Mineralogical, organic and inorganic methods. Springer. https://doi.org/10.1007/978-3-540-31211-6 DOI: https://doi.org/10.1007/978-3-540-31211-6
Pérez-Jaramillo, J. E., Carrión, V. J., Bosse, M., Ferrão, L. F. V., de Hollander, M., Garcia, A. A. F., Ramírez, C. A., Mendes, R., & Raaijmakers, J. M. (2017). Linking rhizosphere microbiome composition of wild and domesticated Phaseolus vulgaris to genotypic and root phenotypic traits. The ISME Journal, 11(10), 2244–2257. https://doi.org/10.1038/ismej.2017.85 DOI: https://doi.org/10.1038/ismej.2017.85
Pérez-Jaramillo, J. E., de Hollander, M., Ramírez, C. A., Mendes, R., Raaijmakers, J. M., & Carrión, V. J. (2019). Deciphering rhizosphere microbiome assembly of wild and modern common bean (Phaseolus vulgaris) in native and agricultural soils from Colombia. Microbiome, 7(1), Article 114. https://doi.org/10.1186/s40168-019-0727-1 DOI: https://doi.org/10.1186/s40168-019-0727-1
R Core Team. (2021). R: A language and environment for statistical computing (4.1). R Foundation for Statistical Computing. https://cir.nii.ac.jp/crid/1370294721063650048
Reardon, C. L., Wuest, S. B., Melle, C. J., Klein, A. M., Williams, J. D., Barroso, J., & Long, D. S. (2019). Soil microbial and chemical properties of a minimum and conventionally tilled wheat–fallow system. Soil Science Society of America Journal, 83(4), 1100–1110. https://doi.org/10.2136/sssaj2018.09.0344 DOI: https://doi.org/10.2136/sssaj2018.09.0344
Romdhane, S., Spor, A., Banerjee, S., Breuil, M. C., Bru, D., Chabbi, A., Hallin, S., van der Heijden, M. G. A., Saghai, A., & Philippot, L. (2022). Land-use intensification differentially affects bacterial, fungal and protist communities and decreases microbiome network complexity. Environmental Microbiomes, 17, Article 1. https://doi.org/10.1186/S40793-021-00396-9 DOI: https://doi.org/10.1186/s40793-021-00396-9
Roper, M. M., Turpin, J. E., & Thompson, J. P. (1994). Nitrogenase activity (C2H2 reduction) by free-living bacteria in soil in a long-term tillage and stubble management experiment on a vertisol. Soil Biology and Biochemistry, 26(8), 1087–1091. https://doi.org/10.1016/0038-0717(94)90125-2 DOI: https://doi.org/10.1016/0038-0717(94)90125-2
Schinner, F., & von Mersi, W. (1990). Xylanase-, CM-cellulaseand invertase activity in soil: An improved method. Soil Biology and Biochemistry, 22(4), 511–515. https://doi.org/10.1016/0038-0717(90)90187-5 DOI: https://doi.org/10.1016/0038-0717(90)90187-5
Sinsabaugh, R. L., Lauber, C. L., Weintraub, M. N., Ahmed, B., Allison, S. D., Crenshaw, C., Contosta, A. R., Cusack, D., Frey, S., Gallo, M. E., Gartner, T. B., Hobbie, S. E., Holland, K., Keeler, B. L., Powers, J. S., Stursova, M., Takacs-Vesbach, C., Waldrop, M. P., Wallenstein, M. D., ..., & Zeglin, L. H. (2008). Stoichiometry of soil enzyme activity at global scale. Ecology Letters, 11(11), 1252–1264. https://doi.org/10.1111/j.1461-0248.2008.01245.x DOI: https://doi.org/10.1111/j.1461-0248.2008.01245.x
Skujiņš, J., & Burns, R. G. (1976). Extracellular enzymes in soil. Critical Reviews in Microbiology, 4(4), 383–421. https://doi.org/10.3109/10408417609102304 DOI: https://doi.org/10.3109/10408417609102304
Soil Survey Staff. (2022). Keys to soil taxonomy (13th ed.). USDANatural Resources Conservation Service. US Department of Agriculture. https://www.nrcs.usda.gov/sites/default/files/2022-09/Keys-to-Soil-Taxonomy.pdf
Stone, M. M., & Plante, A. F. (2014). Changes in phosphatase kinetics with soil depth across a variable tropical landscape. Soil Biology and Biochemistry, 71, 61–67. https://doi.org/10.1016/j.soilbio.2014.01.006 DOI: https://doi.org/10.1016/j.soilbio.2014.01.006
Tarafdar, J. C., & Jungk, A. (1987). Phosphatase activity in the rhizosphere and its relation to the depletion of soil organic phosphorus. Biology and Fertility of Soils, 3(4), 199–204. https://doi.org/10.1007/BF00640630 DOI: https://doi.org/10.1007/BF00640630
Totsche, K. U., Amelung, W., Gerzabek, M. H., Guggenberger, G., Klumpp, E., Knief, C., Lehndorff, E., Mikutta, R., Peth, S., Prechtel, A., Ray, N., & Kögel-Knabner, I. (2018). Microaggregates in soils. Journal of Plant Nutrition and Soil Science, 181(1), 104–136. https://doi.org/10.1002/jpln.201600451 DOI: https://doi.org/10.1002/jpln.201600451
Tridge. (2021). 2021 Industry report: Green beans. Market Intelligence Team. https://cdn.tridge.com/market_report_report/d5/0a/ce/d50ace8054e0dd0094fcfa891095a03e19ea08ae/Industry_Report_-_Green_Bean_-_v2.pdf
Vallejo Cabrera, F. A., Gutiérrez, A., Estrada Salazar, E. I., Cardozo Conde, C. I., García Dávila, M. A., Sánchez, M. S., & Baena García, D. (2004). Cultivo de habichuela: variedad UNAPAL milenio (2nd ed.). Universidad Nacional de Colombia, Palmira. https://repositorio.unal.edu.co/handle/unal/51964
Vanegas, J., Landazabal, G., Melgarejo, L. M., Beltran, M., & Uribe-Vélez, D. (2013). Structural and functional characterization of the microbial communities associated with the upland and irrigated rice rhizospheres in a neotropical Colombian savannah. European Journal of Soil Biology, 55, 1–8. https://doi.org/10.1016/j.ejsobi.2012.10.008 DOI: https://doi.org/10.1016/j.ejsobi.2012.10.008
Wallis, P. D., Haynes, R. J., Hunter, C. H., & Morris, C. D. (2010). Effect of land use and management on soil bacterial biodiversity as measured by PCR-DGGE. Applied Soil Ecology, 46(1), 147–150. https://doi.org/10.1016/j.apsoil.2010.06.006 DOI: https://doi.org/10.1016/j.apsoil.2010.06.006
Wickham, H. (2016). Ggplot2: Elegant graphics for data analysis (2nd ed.). Springer International Publishing. https://ggplot2-book.org/
Xiao, D., Huang, Y., Feng, S., Ge, Y., Zhang, W., He, X., & Wang, K. (2018). Soil organic carbon mineralization with fresh organic substrate and inorganic carbon additions in a red soil is controlled by fungal diversity along a pH gradient. Geoderma, 321, 79–89. https://doi.org/10.1016/j.geoderma.2018.02.003 DOI: https://doi.org/10.1016/j.geoderma.2018.02.003
Yadav, R., & Tarafdar, J. (2001). Influence of organic and inorganic phosphorus supply on the maximum secretion of acid phosphatase by plants. Biology and Fertility of Soils, 34(3), 140–143. https://doi.org/10.1007/s003740100376 DOI: https://doi.org/10.1007/s003740100376
Zhong, X., Wang, J., Shi, X., Bai, M., Yuan, C., Cai, C., Wang, N., Zhu, X., Kuang, H., Wang, X., Su, J., He., X., Liu, X., Yang, W., Yang, C., Kong, F., Wang, E., & Guan, Y. (2024). Genetically optimizing soybean nodulation improves yield and protein content. Nature Plants, 10, 736–742. https://doi.org/10.1038/s41477-024-01696-x DOI: https://doi.org/10.1038/s41477-024-01696-x
Zhou, X., u Rahman, M. K., Liu, J., & Wu, F. (2021). Soil acidification mediates changes in soil bacterial community assembly processes in response to agricultural intensification. Environmental Microbiology, 23(8), 4741–4755. https://doi.org/10.1111/1462-2920.15675 DOI: https://doi.org/10.1111/1462-2920.15675
Zuberer, D. A., & Silver, W. S. (1978). Biological dinitrogen fixation (acetylene reduction) associated with Florida mangroves. Applied and Environmental Microbiology, 35(3), 567–575. https://doi.org/10.1128/aem.35.3.567-575.1978 DOI: https://doi.org/10.1128/aem.35.3.567-575.1978
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2025 Agronomía Colombiana

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)

Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.







