The impact of vegetation cover on soil erosion in the drainage network of banana crop
El impacto de la cobertura vegetal en la erosión del suelo en la red de drenaje del cultivo de banano
DOI:
https://doi.org/10.15446/agron.colomb.v42n3.116294Keywords:
soil conservation, erosion estimation, Musaceae, soil loss (en)conservación de suelo, estimativa de erosión, Musaceae, pérdida de suelo (es)
Downloads
In Urabá (Colombia), precipitation generates high rates of soil erosion in banana drainage systems due to its intensity and frequency, as well as soil susceptibility resulting from exposure. One approach to mitigate this erosion is the use of a vegetation cover. The aim of this study was to determine the impact of vegetation cover on soil erosion rates in the drainage systems of a banana plantation. For this purpose, a comparison was made during the last quarter of 2022 between experimentally measured erosion rates (simulated in a greenhouse), observed erosion rates (using sedimentation boxes in field drainage channels), and potential estimation (using the USLE equation). In the greenhouse, bare soils presented higher losses at 38.16 t ha-1 year-1, statistically differing from conventional management (CMT) and vegetation cover (VCT) treatments, which recorded values of 24.70 and 18.97 t ha-1 year-1, respectively. A similar trend was observed in the field. Based on estimated erosion potential (USLE), no differences between treatments were identified, with CMT exhibiting the highest erosion potential at 96.47 t ha-1 year-1. Additionally, other soil variables, such as slope and type of soil, influenced erosion susceptibility regardless of the kind of existing cover.
En Urabá (Colombia), la precipitación genera tasas de erosión del suelo altas en los sistemas de drenaje de banano debido a la intensidad, frecuencia y susceptibilidad del suelo resultante de la exposición. Una alternativa para mitigar esto es el uso de cobertura vegetal. El objetivo de este estudio fue determinar el impacto de dicha cobertura en las tasas de erosión del suelo en los sistemas de drenaje de una plantación de banano. Para ello, se realizó una comparación durante el último trimestre de 2022 entre las tasas de erosión medidas experimentalmente, simuladas en un invernadero, y las tasas de erosión observadas utilizando cajas de sedimentación en los canales de drenaje en campo, junto con una estimación potencial utilizando la ecuación USLE. En el invernadero, los suelos sin cobertura presentaron mayores pérdidas con 38,16 t ha-1 año-1, diferenciándose estadísticamente de los tratamientos de manejo convencional (TMC) y cobertura vegetal (TCV), que tuvieron valores de 24,70 y 18,97 t ha-1 año-1, respectivamente. Esta tendencia se observó de manera similar en el campo. Con el potencial erosivo estimado (USLE), no se identificaron diferencias entre los tratamientos, siendo el TMC el que mostró el mayor potencial erosivo con 96,47 t ha-1 año-1. Notablemente, otras variables del suelo como la pendiente del terreno y el tipo de suelo influyen en la susceptibilidad a la erosión, independientemente del tipo de cobertura existente.
References
Almagro, A., Thomé, T. C., Colman, C. B., Pereira, R. B., Marcato Junior, J., Rodrigues, D. B. B., & Oliveira, P. T. S. (2019). Improving cover and management factor (C-factor) estimation using remote sensing approaches for tropical regions. International Soil and Water Conservation Research, 7(4), 325–334. https://doi.org/10.1016/j.iswcr.2019.08.005
Amellah, O., & el Morabiti, K. (2021). Assessment of soil erosion risk severity using GIS, remote sensing and RUSLE model in Oued Laou Basin (north Morocco). Soil Science Annual, 72(3), Article 142530. https://doi.org/10.37501/soilsa/142530
Bai, Y., & Cui, H. (2021). An improved vegetation cover and management factor for RUSLE model in prediction of soil erosion. Environmental Science and Pollution Research, 28(17), 21132–21144. https://doi.org/10.1007/s11356-020-11820-x
Belayneh, M., Yirgu, T., & Tsegaye, D. (2019). Potential soil erosion estimation and area prioritization for better conservation planning in Gumara watershed using RUSLE and GIS techniques. Environmental Systems Research, 8(1), Article 20. https://doi.org/10.1186/s40068-019-0149-x
Beniaich, A., Guimarães, D. V., Avanzi, J. C., Silva, B. M., Acuña-Guzman, S. F., Santos, W. P., & Silva, M. L. N. (2023). Spontaneous vegetation as an alternative to cover crops in olive orchards reduces water erosion and improves soil physical properties under tropical conditions. Agricultural Water Management, 279, Article 108186. https://doi.org/10.1016/j.agwat.2023.108186
Bond, S., Kirkby, M. J., Johnston, J., Crowle, A., & Holden, J. (2020). Seasonal vegetation and management influence overland Flow velocity and roughness in upland grasslands. Hydrological Processes, 34(18), 3777–3791. https://doi.org/10.1002/hyp.13842
Chen, J., Xiao, H., Li, Z., Liu, C., Wang, D., Wang, L., & Tang, C. (2019). Threshold effects of vegetation coverage on soil erosion control in small watersheds of the red soil hilly region in China. Ecological Engineering, 132, 109–114. https://doi.org/10.1016/j.ecoleng.2019.04.010
Cunha, E. R., Santos, C. A. G., Silva, R. M., Panachuki, E., Oliveira, P. T. S., Oliveira, N. S., & Falcão, K. S. (2022). Assessment of current and future land use/cover changes in soil erosion in the Rio da Prata basin (Brazil). Science of The Total Environment, 818, Article 151811. https://doi.org/10.1016/j.scitotenv.2021.151811
Delgado-Bejarano, L., González-Sánchez, H., & Castañeda-Sánchez, D. (2023). Soil erosion by hand tools for small-scale tillage on hillslopes assessed through the universal soil loss equation. Chilean Journal of Agricultural & Animal Sciences, 39(1), 75–89. https://doi.org/10.29393/CHJAA39-7SELD30007
Durango, J. C., Mercado, T., & Feria, J. J. (2020). Efecto del manto freático somero en el cultivo de banano (Musa AAA) en la zona de Urabá, Colombia. Revista Espacios, 41, 90–98. http://es.revistaespacios.com/a20v41n32/a20v41n32p08.pdf
Efthimiou, N., Lykoudi, E., & Psomiadis, E. (2020). Inherent relationship of the USLE, RUSLE topographic factor algorithms and its impact on soil erosion modelling. Hydrological Sciences Journal, 65(11), 1879–1893. https://doi.org/10.1080/02626667.2020.1784423
Gutiérrez, J. C., & Romero Zarate, M. F. (2010). Prácticas de manejo y conservación de suelos en el cultivo de banano. Asociación de Bananeros de Colombia – AUGURA. http://hdl.handle.net/20.500.12324/2221
Han, X., Xiao, J., Wang, L., Tian, S., Liang, T., & Liu, Y. (2021). Identification of areas vulnerable to soil erosion and risk assessment of phosphorus transport in a typical watershed in the Loess Plateau. Science of The Total Environment, 758, Article 143661. https://doi.org/10.1016/j.scitotenv.2020.143661
Hou, G., Bi, H., Huo, Y., Wei, X., & Zhu, Y. (2020). Determining the optimal vegetation coverage for controlling soil erosion in Cynodon dactylon grassland in North China. Journal of Cleaner Production, 244, Article 118771. https://doi.org/10.1016/j.jclepro.2019.118771
Huerta-Olague, J. J., Oropeza Mota, J. L., Guevara Gutiérrez, R. D., Ríos Berber, J. D.., Martínez Menes, M. R., Barreto García, O. A., Olguín López, J. L., & Mancilla Villa, O. R. (2018). Efecto de la cobertura vegetal de cuatro cultivos sobre la erosión del suelo. Idesia, 36(2), 153–162. https://doi.org/10.4067/S0718-34292018005000701
Instituto de Hidrología Meteorología y Estudios Ambientales (IDEAM). (2023). Promedios climatológicos. www.ideam.gov.co/web/tiempo-y-clima/clima
Jaramillo, D. F. (2014). El suelo: origen, propiedades, espacialidad (2nd ed.). Universidad Nacional de Colombia, Medellín.
Koirala, P., Thakuri, S., Joshi, S., & Chauhan, R. (2019). Estimation of soil erosion in Nepal using a RUSLE modeling and geospatial tool. Geosciences, 9(4), Article 147. https://doi.org/10.3390/geosciences9040147
Mahapatra, S. K., Obi Reddy, G. P., Nagdev, R., Yadav, R. P., Singh, S. K., & Sharda, V. N. (2018). Assessment of soil erosion in the fragile Himalayan ecosystem of Uttarakhand, India using USLE and GIS for sustainable productivity. Current Science, 115(1), 108–121. https://doi.org/10.18520/cs/v115/i1/108-121
Mohd Amnan, M. A., Pua, T. L., Lau, S. E., Tan, B. C., Yamaguchi, H., Hitachi, K., Tsuchida, K., & Komatsu, S. (2021). Osmotic stress in banana is relieved by exogenous nitric oxide. PeerJ, 9, Article e10879. https://doi.org/10.7717/peerj.10879
Moreno Roblero, M. J., Pineda Pineda, J., Colinas León, M. T., & Sahagún Castellanos, J. (2020). Oxygen in the root zone and its effect on plants. Revista Mexicana de Ciencias Agrícolas, 11(4), 931–943. https://doi.org/10.29312/remexca.v11i4.2128
Pacheco Gil, H. A., & Montilla Pacheco, A. J. (2021). RGB spectral indices for the analysis of soil protection by vegetation cover against erosive processes. In A. Vieira, & S. C. Rodrigues (Eds.), Soil erosion - Current challenges and future perspectives in a changing world (pp. 1–11). IntechOpen. https://doi.org/10.5772/intechopen.95055
R Core Team. (2023). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.r-project.org/
Renard, K. G., Foster, G. R., Weesies, G. A., & Porter, J. P. (1991). RUSLE: Revised universal soil loss equation. Journal of Soil & Water Conservation, 46(1), 30–33. https://www.tucson.ars.ag.gov/unit/publications/pdffiles/775.pdf
Salazar, C. A. (2010). El drenaje agrícola en el cultivo del banano aplicado a las zonas bananeras de Colombia (1st ed.). Editorial Académica Española.
Tang, C., Yi, Y., & Zhang, S. (2023). Flow and turbulence in unevenly obstructed channels with rigid and flexible vegetation. Journal of Environmental Management, 326, Article 116736. https://doi.org/10.1016/j.jenvman.2022.116736
Teoh, E. Y., Teo, C. H., Baharum, N. A., Pua, T.-L., & Tan, B. C. (2022). Waterlogging stress induces antioxidant defense responses, aerenchyma formation and alters metabolisms of banana plants. Plants, 11(15), Article 2052. https://doi.org/10.3390/plants11152052
Tessema, Y. M., Jasińska, J., Yadeta, L. T., Świtoniak, M., Puchałka, R., & Gebregeorgis, E. G. (2020). Soil loss estimation for conservation planning in the welmel watershed of the Genale Dawa Basin, Ethiopia. Agronomy, 10(6), Article 777. https://doi.org/10.3390/agronomy10060777
USDA – United States Department of Agriculture. (1999). Soil quality test kit guide. USDA. https://efotg.sc.egov.usda.gov/references/public/WI/Soil_Quality_Test_Kit_Guide.pdf
USDA – United States Department of Agriculture. (2018). Soil survey manual. USDA Handbook 18. USDA.
Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29–38. https://www.nrcs.usda.gov/resources/guides-and-instructions/soil-survey-manual
Wijesundara, N., Abeysingha, N., & Dissanayake, D. M. S. L. B. (2018). GIS-based soil loss estimation using RUSLE model: A case of Kirindi Oya river basin, Sri Lanka. Modeling Earth Systems and Environment, 4(1), 251–262. https://doi.org/10.1007/s40808-018-0419-z
Wischmeier, W. H., & Smith, D. D. (1978). Predicting rainfall erosion losses. A guide to conservation planning agriculture Handbook Number 537. United States Department of Agriculture. https://www.ars.usda.gov/ARSUserFiles/60600505/REEP/AH_537%20Predicting%20Rainfall%20Soil%20Losses.pdf
Xu, C., Yang, Z., Qian, W., Chen, S., Liu, X., Lin, W., Xiong, D., Jiang, M., Chang, C. T., Huang, J. C., & Yang, Y. (2019). Runoff and soil erosion responses to rainfall and vegetation cover under various afforestation management regimes in subtropical montane forest. Land Degradation & Development, 30(14), 1711–1724. https://doi.org/10.1002/LDR.3377
Zhang, R. (1997). Determination of soil sorptivity and hydraulic conductivity from the Disk Infiltrometer. Soil Science Society of America Journal, 61(4), 1024–1030. https://doi.org/10.2136/sssaj1997.03615995006100040005x
Zhao, B., Zhang, L., Xia, Z., Xu, W., Xia, L., Liang, Y., & Xia, D. (2019). Effects of rainfall intensity and vegetation cover on erosion characteristics of a soil containing rock fragments slope. Advances in Civil Engineering, 2019, Article 7043428. https://doi.org/10.1155/2019/7043428
Zhao, H., Yan, J., Yuan, S., Liu, J., & Zheng, J. (2019). Effects of submerged vegetation density on turbulent flow characteristics in an open channel. Water, 11(10), Article 2154. https://doi.org/10.3390/w11102154
Zhao, J., Feng, X., Deng, L., Yang, Y., Zhao, Z., Zhao, P., Peng, C., & Fu, B. (2020). Quantifying the effects of vegetation restorations on the soil erosion export and nutrient loss on the Loess Plateau. Frontiers in Plant Science, 11, Article 573126. https://doi.org/10.3389/fpls.2020.573126
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2024 Agronomía Colombiana

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)

Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.







