Published

2025-04-30

Characterization of yeast communities vectored by Drosophila melanogaster during post-harvest fermentation of coffee

Relaciones entre hongos fermentadores asociados a la larva (Drosophila melanogaster) en procesos de beneficio del café

DOI:

https://doi.org/10.15446/agron.colomb.v43n1.116395

Keywords:

microbiology, associated yeasts, fermentative microbiome, Coffea arabica (en)
microbiología, levaduras asociadas, microbioma fermentador, Coffea arabica (es)

Downloads

Authors

Drosophila melanogaster, present in coffee processing stages, feeds on mucilage and coffee “cherries”, inoculating yeasts that influence coffee bean fermentation. This pioneering study in Colombia evaluated the microorganisms associated with the larvae of this fly, determining their kinetic behavior, observing their morphophysiological structures, and characterizing the types of yeasts present. Understanding the interaction between these microorganisms and coffee bean quality is crucial in the coffee industry, given that in other industries, such as winemaking, they have been shown to directly affect the organoleptic characteristics of the final product. This study was carried out in three coffee-growing municipalities in northern Nariño. The yeasts present in the oral apparatus of D. melanogaster larvae were analyzed. These were cultivated in YGC media differentiated by color and growth type. Quantification was performed using colony forming units (CFUs) and lactophenol blue staining. Additionally, the number of CFUs was correlated with spectrophotometric measurements. The results revealed the presence of yeast species such as Geotrichum, Galactomyces, Trichosporon, and Blastoschizomyces. This research provides an approximation to the microbiome of coffee-growing environments and its biotechnological potential. Moreover, it lays the foundation to formulate methodologies for the morphophysiological classification of yeast strains associated with insects, their role in coffee fermentation processes, and their potential to determine flavor and quality of the final product.

Drosophila melanogaster, presente en los procesos de beneficio del café, se alimenta del mucílago y la cereza, inoculando levaduras que influyen en la fermentación del grano. Esta investigación, pionera en Colombia, evaluó los microorganismos asociados con las larvas de esta mosca, determinando su comportamiento cinético, observando sus estructuras morfo-fisiológicas y caracterizando el tipo de levaduras presentes. En la industria cafetera, comprender la interacción entre estos microorganismos y el grano es crucial dado que, en otras industrias, como la vinícola, se ha demostrado que influyen directamente en las características organolépticas del producto final. El estudio se realizó en tres municipios cafeteros del norte de Nariño, donde se analizaron las levaduras presentes en el aparato bucal de las larvas de D. melanogaster. Estas se cultivaron en medios YGC, diferenciándose por color y tipo de crecimiento, y se cuantificaron mediante unidades de formación de colonias (UFC) y tinción con azul de lactofenol. Además, se correlacionó el número de UFC con mediciones espectrofotométricas. Los resultados mostraron la presencia de especies como Geotrichum, Galactomyces, Trichosporon y Blastoschizomyces. Esta investigación ofrece una aproximación al microbioma de los entornos cafetaleros y a su potencial biotecnológico. Además, sienta las bases para formular metodologías de clasificación morfo-fisiológica de cepas de levaduras asociadas a insectos, su papel en los procesos de fermentación del café y su potencial para determinar el sabor y la calidad del producto final.

References

Anagnostou, C., LeGrand, E. A., & Rohlfs, M. (2010). Friendly food for fitter flies? – Influences of dietary microbial species on food choices and parasitoid resistance in Drosophila. Oikos, 119(3), 533–541. https://doi.org/10.1111/j.1600-0706.2009.18001.x DOI: https://doi.org/10.1111/j.1600-0706.2009.18001.x

Arbogast, R. T., Torto, B., Willms, S., Fombong, A. T., Duehl, A., & Teal, P. E. A. (2012). Estimating reproductive success of Aethina tumida (Coleoptera: Nitidulidae) in honey bee colonies by trapping emigrating larvae. Environmental Entomology, 41(1), 152–158. https://doi.org/10.1603/EN11186 DOI: https://doi.org/10.1603/EN11186

Behjati, S., & Tarpey, P. S. (2013). What is next generation sequencing? Archives of Disease in Childhood – Education and Practice, 98(6), 236–238. https://doi.org/10.1136/archdischild-2013-304340 DOI: https://doi.org/10.1136/archdischild-2013-304340

Berg, G., Rybakova, D., Fischer, D., Cernava, T., Vergès, M. C. C., Charles, T., Chen, X., Cocolin, L., Eversole, K., Herrero Corral, G., Kazou, M., Kinkel, L., Lange, L., Lima, N., Loy, A., Macklin, J. A., Maguin, E., Mauchline, T., McClure, R., ...; & Schloter, M. (2020). Microbiome definition re-visited: old concepts and new challenges. Microbiome, 8(1), Article 103. https://doi.org/10.1186/s40168-020-00875-0 DOI: https://doi.org/10.1186/s40168-020-00875-0

Blackwell, M. (2017). Made for each other: Ascomycete yeasts and insects. Microbiology Spectrum, 5(3), 1–18. https://doi.org/10.1128/microbiolspec.FUNK-0081-2016 DOI: https://doi.org/10.1128/microbiolspec.FUNK-0081-2016

Bressani, A. P. P., Martínez, S. J., Evangelista, S. R., Dias, D. R., & Schwan, R. F. (2018). Characteristics of fermented coffee inoculated with yeast starter cultures using different inoculation methods. LWT – Food Science and Technology, 92, 212–219. https://doi.org/10.1016/j.lwt.2018.02.029 DOI: https://doi.org/10.1016/j.lwt.2018.02.029

Bruyn, F., Zhang, S. J., Pothakos, V., Torres, J., Lambot, C., Moroni, A. V., & Vuyst, L. (2017). Exploring the impacts of postharvest processing on the microbiota and metabolite profiles during green coffee bean production. Applied and Environmental Microbiology, 83(1), Article e02398-16. https://doi.org/10.1128/AEM.02398-16 DOI: https://doi.org/10.1128/AEM.02398-16

Chalón, M. C., Terán, V., Arena, M. E., Oliszewski, R., & González, S. N. (2013). Microbiological culture broth designed from food waste. Journal of Environmental Management, 115, 1–4. https://doi.org/10.1016/j.jenvman.2012.10.005 DOI: https://doi.org/10.1016/j.jenvman.2012.10.005

De Guidi, I., Legras, J.-L., Galeote, V., & Sicard, D. (2023). Yeast domestication in fermented food and beverages: Past research and new avenues. Current Opinion in Food Science, 51, Article 101032. https://doi.org/10.1016/j.cofs.2023.101032 DOI: https://doi.org/10.1016/j.cofs.2023.101032

Federación Nacional de Cafeteros. (2021, January 24). Producción de café de Colombia en 2020 fue de 13,9 millones de sacos. https://federaciondecafeteros.org/wp/listado-noticias/produccionde-cafe-de-colombia-en-2020-fue-de-139-millones-de-sacos

Freydière, A. M., Guinet, R., & Boiron, P. (2001). Yeast identification in the clinical microbiology laboratory: Phenotypical methods. Medical Mycology, 39(1), 9–33. https://doi.org/10.1080/mmy.39.1.9.33 DOI: https://doi.org/10.1080/714030980

Ganter, P. F. (2006). Yeast and invertebrate associations. In C. Péter, & A. Rosa (Eds.), Biodiversity and ecophysiology of yeasts. The yeast handbook (pp. 303–370). Springer. https://doi.org/10.1007/3-540-30985-3_14 DOI: https://doi.org/10.1007/3-540-30985-3_14

Gomaa, E. Z. (2017). Effect of prebiotic substances on growth, fatty acid profile and probiotic characteristics of Lactobacillus brevis NM101-1. Microbiology, 86, 618–628. https://doi.org/10.1134/S0026261717050095 DOI: https://doi.org/10.1134/S0026261717050095

Hamby, K. A., Hernández, A., Boundy-Mills, K., & Zalom, F. C. (2012). Associations of yeasts with spotted-wing Drosophila (Drosophila suzukii) in cherries and raspberries. Applied and Environmental Microbiology, 78(14), 4869–4873. https://doi.org/10.1128/AEM.00841-12 DOI: https://doi.org/10.1128/AEM.00841-12

Herrera, K., Cóbar, O., Barrios, R., Piérola, K., Chamalé, W., Quan, J., Moreno, M., Pastor, J., & Maas, J. (2015). Evaluación de la contaminación del aire por hongos microscópicos en dos colecciones biológicas y dos museos de la ciudad de Guatemala. Revista Científica, 25(2), 43–58. http://www.revistasguatemala.usac.edu.gt/index.php/qyf/article/view/455/pdf DOI: https://doi.org/10.54495/Rev.Cientifica.v25i2.90

Hood, M. I., Mortensen, B. L., Moore, J. L., Zhang, Y., Kehl-Fie, T. E., Sugitani, N., Chazin, W. J., Caprioli, R. M., & Skaar, E. P. (2013). Correction: Identification of an Acinetobacter baumannii zinc acquisition system that facilitates resistance to calprotectin-mediated zinc sequestration. PLoS Pathogens, 9(1), Article 10.1371. https://doi.org/10.1371/annotation/2968451e-04b8-4705-bee9-9e40bceffe67 DOI: https://doi.org/10.1371/annotation/2968451e-04b8-4705-bee9-9e40bceffe67

Ioannou, P., Vamvoukaki, R., & Samonis, G. (2019). Rhodotorula species infections in humans: A systematic review. Mycoses, 62(2), 90–100. https://doi.org/10.1111/myc.12856 DOI: https://doi.org/10.1111/myc.12856

Jimbo Zapata, F. A. (2018). Aplicación de pruebas bioquímicas microbiológicas a hongos levaduriformes, como apoyo en el diagnóstico de micosis en pacientes del hospital Carlos Andrade Marín durante el período febrero – julio del año 2017 [Undegraduate thesis, Universidad Central del Ecuador]. http://www.dspace.uce.edu.ec/handle/25000/15469

Kauffman, C. A. (2011). Essentials of clinical mycology (2nd ed.). Springer. DOI: https://doi.org/10.1007/978-1-4419-6640-7

Madigan, M. T., Bender, K. S., Buckley, D. H., Sattley, W. M., & Stahl, D. A. (2018). Brock biology of microorganisms (15th ed.). Pearson.

Marcos-Zambrano, L. J., Escribano, P., Rueda, C., Zaragoza, Ó., Bouza, E., & Guinea, J. (2013). Comparison between the EUCAST procedure and the Etest for determination of the susceptibility of Candida species isolates to micafungin. Antimicrobial Agents and Chemotherapy, 57(12), 5767–5770. https://doi.org/10.1128/aac.01032-13 DOI: https://doi.org/10.1128/AAC.01032-13

Mota, M. C. B., Batista, N. N., Rabelo, M. H. S., Ribeiro, D. E., Borém, F. M., & Schwan, R. F. (2020). Influence of fermentation conditions on the sensorial quality of coffee inoculated with yeast. Food Research International, 136, Article 109482. https://doi.org/10.1016/j.foodres.2020.109482 DOI: https://doi.org/10.1016/j.foodres.2020.109482

Moya-Salazar, J., & Rojas, R. (2018). Comparative study for identification of Candida albicans with germ tube test in human serum and plasma. Clinical Microbiology and Infectious diseases, 3(3), 1–4. https://doi.org/10.15761/CMID.1000143 DOI: https://doi.org/10.15761/CMID.1000143

Navarathna, D. H. M. L. P., Pathirana, R. U., Lionakis, M. S., Nickerson, K. W., & Roberts, D. D. (2016). Candida albicans ISW2 regulates chlamydospore suspensor cell formation and virulence in vivo in a mouse model of disseminated candidiasis. PLoS ONE, 11(10), Article e0164449. https://doi.org/10.1371/journal.pone.0164449 DOI: https://doi.org/10.1371/journal.pone.0164449

Ortiz, R. (2012). The adoption of modern biotechnology and its suitability for sustainable agriculture. Idesia, 30(3), 3–10. https://doi.org/10.4067/S0718-34292012000300001 DOI: https://doi.org/10.4067/S0718-34292012000300001

Puerta, G. I., Marín, J., & Osorio, G. A. (2012). Microbiología de la fermentación del mucílago de café según su madurez y selección. Revista Cenicafé, 63(2), 58–78. http://hdl.handle.net/10778/536

Reyes Martínez, I., Pérez Morales, L., Morffi García, M., & Barletta Castillo, J. E. (2013). Aislamiento de Rhodotorula: presentación de un caso en paciente con leucemia mieloide aguda. MediSur, 11(5), 542–545. https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=46241

Rohlfs, M., & Kurschner, L. (2010). Saprophagous insect larvae, Drosophila melanogaster, profit from increased species richness in beneficial microbes. Journal of Applied Entomology, 134(8), 667–671. https://doi.org/10.1111/j.1439-0418.2009.01458.x DOI: https://doi.org/10.1111/j.1439-0418.2009.01458.x

Satoh K., Ooe K., Nagayama H., & Makimura K. (2010). Prototheca cutis sp. nov., a newly discovered pathogen of protothecosis isolated from inflamed human skin. International Journal of Systematic and Evolutionary Microbiology, 60(5), 1236–1240. https://doi.org/10.1099/ijs.0.016402-0 DOI: https://doi.org/10.1099/ijs.0.016402-0

Tuon, F. F., & Costa, S. F. (2008). Rhodotorula infection: A systematic review of 128 cases from literature. Revista Iberoamericana de Micología, 25(3), 135–140. https://doi.org/10.1016/S1130-1406(08)70032-9 DOI: https://doi.org/10.1016/S1130-1406(08)70032-9

Zafra, G., Absalón, Á. E., Anducho-Reyes, M. Á., Fernández, F. J., & Cortés-Espinosa, D. V. (2017). Construction of PAH-degrading mixed microbial consortia by induced selection in soil. Chemosphere, 172, 120–126. https://doi.org/10.1016/j.chemosphere.2016.12.038 DOI: https://doi.org/10.1016/j.chemosphere.2016.12.038

How to Cite

APA

Apraez Muñoz, J. J., Ceballos Freire, A. J. & Solarte Guerrero, J. G. (2025). Characterization of yeast communities vectored by Drosophila melanogaster during post-harvest fermentation of coffee. Agronomía Colombiana, 43(1), e116395. https://doi.org/10.15446/agron.colomb.v43n1.116395

ACM

[1]
Apraez Muñoz, J.J., Ceballos Freire, A.J. and Solarte Guerrero, J.G. 2025. Characterization of yeast communities vectored by Drosophila melanogaster during post-harvest fermentation of coffee. Agronomía Colombiana. 43, 1 (Jan. 2025), e116395. DOI:https://doi.org/10.15446/agron.colomb.v43n1.116395.

ACS

(1)
Apraez Muñoz, J. J.; Ceballos Freire, A. J.; Solarte Guerrero, J. G. Characterization of yeast communities vectored by Drosophila melanogaster during post-harvest fermentation of coffee. Agron. Colomb. 2025, 43, e116395.

ABNT

APRAEZ MUÑOZ, J. J.; CEBALLOS FREIRE, A. J.; SOLARTE GUERRERO, J. G. Characterization of yeast communities vectored by Drosophila melanogaster during post-harvest fermentation of coffee. Agronomía Colombiana, [S. l.], v. 43, n. 1, p. e116395, 2025. DOI: 10.15446/agron.colomb.v43n1.116395. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/116395. Acesso em: 19 nov. 2025.

Chicago

Apraez Muñoz, José Julián, Alvaro Javier Ceballos Freire, and Jesús Geovanny Solarte Guerrero. 2025. “Characterization of yeast communities vectored by Drosophila melanogaster during post-harvest fermentation of coffee”. Agronomía Colombiana 43 (1):e116395. https://doi.org/10.15446/agron.colomb.v43n1.116395.

Harvard

Apraez Muñoz, J. J., Ceballos Freire, A. J. and Solarte Guerrero, J. G. (2025) “Characterization of yeast communities vectored by Drosophila melanogaster during post-harvest fermentation of coffee”, Agronomía Colombiana, 43(1), p. e116395. doi: 10.15446/agron.colomb.v43n1.116395.

IEEE

[1]
J. J. Apraez Muñoz, A. J. Ceballos Freire, and J. G. Solarte Guerrero, “Characterization of yeast communities vectored by Drosophila melanogaster during post-harvest fermentation of coffee”, Agron. Colomb., vol. 43, no. 1, p. e116395, Jan. 2025.

MLA

Apraez Muñoz, J. J., A. J. Ceballos Freire, and J. G. Solarte Guerrero. “Characterization of yeast communities vectored by Drosophila melanogaster during post-harvest fermentation of coffee”. Agronomía Colombiana, vol. 43, no. 1, Jan. 2025, p. e116395, doi:10.15446/agron.colomb.v43n1.116395.

Turabian

Apraez Muñoz, José Julián, Alvaro Javier Ceballos Freire, and Jesús Geovanny Solarte Guerrero. “Characterization of yeast communities vectored by Drosophila melanogaster during post-harvest fermentation of coffee”. Agronomía Colombiana 43, no. 1 (January 1, 2025): e116395. Accessed November 19, 2025. https://revistas.unal.edu.co/index.php/agrocol/article/view/116395.

Vancouver

1.
Apraez Muñoz JJ, Ceballos Freire AJ, Solarte Guerrero JG. Characterization of yeast communities vectored by Drosophila melanogaster during post-harvest fermentation of coffee. Agron. Colomb. [Internet]. 2025 Jan. 1 [cited 2025 Nov. 19];43(1):e116395. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/116395

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

117

Downloads

Download data is not yet available.