Characterization of yeast communities vectored by Drosophila melanogaster during post-harvest fermentation of coffee
Relaciones entre hongos fermentadores asociados a la larva (Drosophila melanogaster) en procesos de beneficio del café
DOI:
https://doi.org/10.15446/agron.colomb.v43n1.116395Keywords:
microbiology, associated yeasts, fermentative microbiome, Coffea arabica (en)microbiología, levaduras asociadas, microbioma fermentador, Coffea arabica (es)
Downloads
Drosophila melanogaster, present in coffee processing stages, feeds on mucilage and coffee “cherries”, inoculating yeasts that influence coffee bean fermentation. This pioneering study in Colombia evaluated the microorganisms associated with the larvae of this fly, determining their kinetic behavior, observing their morphophysiological structures, and characterizing the types of yeasts present. Understanding the interaction between these microorganisms and coffee bean quality is crucial in the coffee industry, given that in other industries, such as winemaking, they have been shown to directly affect the organoleptic characteristics of the final product. This study was carried out in three coffee-growing municipalities in northern Nariño. The yeasts present in the oral apparatus of D. melanogaster larvae were analyzed. These were cultivated in YGC media differentiated by color and growth type. Quantification was performed using colony forming units (CFUs) and lactophenol blue staining. Additionally, the number of CFUs was correlated with spectrophotometric measurements. The results revealed the presence of yeast species such as Geotrichum, Galactomyces, Trichosporon, and Blastoschizomyces. This research provides an approximation to the microbiome of coffee-growing environments and its biotechnological potential. Moreover, it lays the foundation to formulate methodologies for the morphophysiological classification of yeast strains associated with insects, their role in coffee fermentation processes, and their potential to determine flavor and quality of the final product.
Drosophila melanogaster, presente en los procesos de beneficio del café, se alimenta del mucílago y la cereza, inoculando levaduras que influyen en la fermentación del grano. Esta investigación, pionera en Colombia, evaluó los microorganismos asociados con las larvas de esta mosca, determinando su comportamiento cinético, observando sus estructuras morfo-fisiológicas y caracterizando el tipo de levaduras presentes. En la industria cafetera, comprender la interacción entre estos microorganismos y el grano es crucial dado que, en otras industrias, como la vinícola, se ha demostrado que influyen directamente en las características organolépticas del producto final. El estudio se realizó en tres municipios cafeteros del norte de Nariño, donde se analizaron las levaduras presentes en el aparato bucal de las larvas de D. melanogaster. Estas se cultivaron en medios YGC, diferenciándose por color y tipo de crecimiento, y se cuantificaron mediante unidades de formación de colonias (UFC) y tinción con azul de lactofenol. Además, se correlacionó el número de UFC con mediciones espectrofotométricas. Los resultados mostraron la presencia de especies como Geotrichum, Galactomyces, Trichosporon y Blastoschizomyces. Esta investigación ofrece una aproximación al microbioma de los entornos cafetaleros y a su potencial biotecnológico. Además, sienta las bases para formular metodologías de clasificación morfo-fisiológica de cepas de levaduras asociadas a insectos, su papel en los procesos de fermentación del café y su potencial para determinar el sabor y la calidad del producto final.
References
Anagnostou, C., LeGrand, E. A., & Rohlfs, M. (2010). Friendly food for fitter flies? – Influences of dietary microbial species on food choices and parasitoid resistance in Drosophila. Oikos, 119(3), 533–541. https://doi.org/10.1111/j.1600-0706.2009.18001.x DOI: https://doi.org/10.1111/j.1600-0706.2009.18001.x
Arbogast, R. T., Torto, B., Willms, S., Fombong, A. T., Duehl, A., & Teal, P. E. A. (2012). Estimating reproductive success of Aethina tumida (Coleoptera: Nitidulidae) in honey bee colonies by trapping emigrating larvae. Environmental Entomology, 41(1), 152–158. https://doi.org/10.1603/EN11186 DOI: https://doi.org/10.1603/EN11186
Behjati, S., & Tarpey, P. S. (2013). What is next generation sequencing? Archives of Disease in Childhood – Education and Practice, 98(6), 236–238. https://doi.org/10.1136/archdischild-2013-304340 DOI: https://doi.org/10.1136/archdischild-2013-304340
Berg, G., Rybakova, D., Fischer, D., Cernava, T., Vergès, M. C. C., Charles, T., Chen, X., Cocolin, L., Eversole, K., Herrero Corral, G., Kazou, M., Kinkel, L., Lange, L., Lima, N., Loy, A., Macklin, J. A., Maguin, E., Mauchline, T., McClure, R., ...; & Schloter, M. (2020). Microbiome definition re-visited: old concepts and new challenges. Microbiome, 8(1), Article 103. https://doi.org/10.1186/s40168-020-00875-0 DOI: https://doi.org/10.1186/s40168-020-00875-0
Blackwell, M. (2017). Made for each other: Ascomycete yeasts and insects. Microbiology Spectrum, 5(3), 1–18. https://doi.org/10.1128/microbiolspec.FUNK-0081-2016 DOI: https://doi.org/10.1128/microbiolspec.FUNK-0081-2016
Bressani, A. P. P., Martínez, S. J., Evangelista, S. R., Dias, D. R., & Schwan, R. F. (2018). Characteristics of fermented coffee inoculated with yeast starter cultures using different inoculation methods. LWT – Food Science and Technology, 92, 212–219. https://doi.org/10.1016/j.lwt.2018.02.029 DOI: https://doi.org/10.1016/j.lwt.2018.02.029
Bruyn, F., Zhang, S. J., Pothakos, V., Torres, J., Lambot, C., Moroni, A. V., & Vuyst, L. (2017). Exploring the impacts of postharvest processing on the microbiota and metabolite profiles during green coffee bean production. Applied and Environmental Microbiology, 83(1), Article e02398-16. https://doi.org/10.1128/AEM.02398-16 DOI: https://doi.org/10.1128/AEM.02398-16
Chalón, M. C., Terán, V., Arena, M. E., Oliszewski, R., & González, S. N. (2013). Microbiological culture broth designed from food waste. Journal of Environmental Management, 115, 1–4. https://doi.org/10.1016/j.jenvman.2012.10.005 DOI: https://doi.org/10.1016/j.jenvman.2012.10.005
De Guidi, I., Legras, J.-L., Galeote, V., & Sicard, D. (2023). Yeast domestication in fermented food and beverages: Past research and new avenues. Current Opinion in Food Science, 51, Article 101032. https://doi.org/10.1016/j.cofs.2023.101032 DOI: https://doi.org/10.1016/j.cofs.2023.101032
Federación Nacional de Cafeteros. (2021, January 24). Producción de café de Colombia en 2020 fue de 13,9 millones de sacos. https://federaciondecafeteros.org/wp/listado-noticias/produccionde-cafe-de-colombia-en-2020-fue-de-139-millones-de-sacos
Freydière, A. M., Guinet, R., & Boiron, P. (2001). Yeast identification in the clinical microbiology laboratory: Phenotypical methods. Medical Mycology, 39(1), 9–33. https://doi.org/10.1080/mmy.39.1.9.33 DOI: https://doi.org/10.1080/714030980
Ganter, P. F. (2006). Yeast and invertebrate associations. In C. Péter, & A. Rosa (Eds.), Biodiversity and ecophysiology of yeasts. The yeast handbook (pp. 303–370). Springer. https://doi.org/10.1007/3-540-30985-3_14 DOI: https://doi.org/10.1007/3-540-30985-3_14
Gomaa, E. Z. (2017). Effect of prebiotic substances on growth, fatty acid profile and probiotic characteristics of Lactobacillus brevis NM101-1. Microbiology, 86, 618–628. https://doi.org/10.1134/S0026261717050095 DOI: https://doi.org/10.1134/S0026261717050095
Hamby, K. A., Hernández, A., Boundy-Mills, K., & Zalom, F. C. (2012). Associations of yeasts with spotted-wing Drosophila (Drosophila suzukii) in cherries and raspberries. Applied and Environmental Microbiology, 78(14), 4869–4873. https://doi.org/10.1128/AEM.00841-12 DOI: https://doi.org/10.1128/AEM.00841-12
Herrera, K., Cóbar, O., Barrios, R., Piérola, K., Chamalé, W., Quan, J., Moreno, M., Pastor, J., & Maas, J. (2015). Evaluación de la contaminación del aire por hongos microscópicos en dos colecciones biológicas y dos museos de la ciudad de Guatemala. Revista Científica, 25(2), 43–58. http://www.revistasguatemala.usac.edu.gt/index.php/qyf/article/view/455/pdf DOI: https://doi.org/10.54495/Rev.Cientifica.v25i2.90
Hood, M. I., Mortensen, B. L., Moore, J. L., Zhang, Y., Kehl-Fie, T. E., Sugitani, N., Chazin, W. J., Caprioli, R. M., & Skaar, E. P. (2013). Correction: Identification of an Acinetobacter baumannii zinc acquisition system that facilitates resistance to calprotectin-mediated zinc sequestration. PLoS Pathogens, 9(1), Article 10.1371. https://doi.org/10.1371/annotation/2968451e-04b8-4705-bee9-9e40bceffe67 DOI: https://doi.org/10.1371/annotation/2968451e-04b8-4705-bee9-9e40bceffe67
Ioannou, P., Vamvoukaki, R., & Samonis, G. (2019). Rhodotorula species infections in humans: A systematic review. Mycoses, 62(2), 90–100. https://doi.org/10.1111/myc.12856 DOI: https://doi.org/10.1111/myc.12856
Jimbo Zapata, F. A. (2018). Aplicación de pruebas bioquímicas microbiológicas a hongos levaduriformes, como apoyo en el diagnóstico de micosis en pacientes del hospital Carlos Andrade Marín durante el período febrero – julio del año 2017 [Undegraduate thesis, Universidad Central del Ecuador]. http://www.dspace.uce.edu.ec/handle/25000/15469
Kauffman, C. A. (2011). Essentials of clinical mycology (2nd ed.). Springer. DOI: https://doi.org/10.1007/978-1-4419-6640-7
Madigan, M. T., Bender, K. S., Buckley, D. H., Sattley, W. M., & Stahl, D. A. (2018). Brock biology of microorganisms (15th ed.). Pearson.
Marcos-Zambrano, L. J., Escribano, P., Rueda, C., Zaragoza, Ó., Bouza, E., & Guinea, J. (2013). Comparison between the EUCAST procedure and the Etest for determination of the susceptibility of Candida species isolates to micafungin. Antimicrobial Agents and Chemotherapy, 57(12), 5767–5770. https://doi.org/10.1128/aac.01032-13 DOI: https://doi.org/10.1128/AAC.01032-13
Mota, M. C. B., Batista, N. N., Rabelo, M. H. S., Ribeiro, D. E., Borém, F. M., & Schwan, R. F. (2020). Influence of fermentation conditions on the sensorial quality of coffee inoculated with yeast. Food Research International, 136, Article 109482. https://doi.org/10.1016/j.foodres.2020.109482 DOI: https://doi.org/10.1016/j.foodres.2020.109482
Moya-Salazar, J., & Rojas, R. (2018). Comparative study for identification of Candida albicans with germ tube test in human serum and plasma. Clinical Microbiology and Infectious diseases, 3(3), 1–4. https://doi.org/10.15761/CMID.1000143 DOI: https://doi.org/10.15761/CMID.1000143
Navarathna, D. H. M. L. P., Pathirana, R. U., Lionakis, M. S., Nickerson, K. W., & Roberts, D. D. (2016). Candida albicans ISW2 regulates chlamydospore suspensor cell formation and virulence in vivo in a mouse model of disseminated candidiasis. PLoS ONE, 11(10), Article e0164449. https://doi.org/10.1371/journal.pone.0164449 DOI: https://doi.org/10.1371/journal.pone.0164449
Ortiz, R. (2012). The adoption of modern biotechnology and its suitability for sustainable agriculture. Idesia, 30(3), 3–10. https://doi.org/10.4067/S0718-34292012000300001 DOI: https://doi.org/10.4067/S0718-34292012000300001
Puerta, G. I., Marín, J., & Osorio, G. A. (2012). Microbiología de la fermentación del mucílago de café según su madurez y selección. Revista Cenicafé, 63(2), 58–78. http://hdl.handle.net/10778/536
Reyes Martínez, I., Pérez Morales, L., Morffi García, M., & Barletta Castillo, J. E. (2013). Aislamiento de Rhodotorula: presentación de un caso en paciente con leucemia mieloide aguda. MediSur, 11(5), 542–545. https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=46241
Rohlfs, M., & Kurschner, L. (2010). Saprophagous insect larvae, Drosophila melanogaster, profit from increased species richness in beneficial microbes. Journal of Applied Entomology, 134(8), 667–671. https://doi.org/10.1111/j.1439-0418.2009.01458.x DOI: https://doi.org/10.1111/j.1439-0418.2009.01458.x
Satoh K., Ooe K., Nagayama H., & Makimura K. (2010). Prototheca cutis sp. nov., a newly discovered pathogen of protothecosis isolated from inflamed human skin. International Journal of Systematic and Evolutionary Microbiology, 60(5), 1236–1240. https://doi.org/10.1099/ijs.0.016402-0 DOI: https://doi.org/10.1099/ijs.0.016402-0
Tuon, F. F., & Costa, S. F. (2008). Rhodotorula infection: A systematic review of 128 cases from literature. Revista Iberoamericana de Micología, 25(3), 135–140. https://doi.org/10.1016/S1130-1406(08)70032-9 DOI: https://doi.org/10.1016/S1130-1406(08)70032-9
Zafra, G., Absalón, Á. E., Anducho-Reyes, M. Á., Fernández, F. J., & Cortés-Espinosa, D. V. (2017). Construction of PAH-degrading mixed microbial consortia by induced selection in soil. Chemosphere, 172, 120–126. https://doi.org/10.1016/j.chemosphere.2016.12.038 DOI: https://doi.org/10.1016/j.chemosphere.2016.12.038
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2025 Agronomía Colombiana

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)

Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.







