Published

2024-12-31

Evaluation of defense gene expression and the virulence factor Cac1 in the interaction between Phaseolus vulgaris and Colletotrichum lindemuthianum

Evaluación de la expresión de genes de defensa y del factor de virulencia Cac1 en la interacción Phaseolus vulgaris y Colletotrichum lindemuthianum

DOI:

https://doi.org/10.15446/agron.colomb.v42n3.116629

Keywords:

Sutagao bean cultivar, anthracnose, Cac1 gene, plant defense, Orbiculare clade (en)
cultivar de frijol Sutagao, antracnosis, gen Cac1, defensa de plantas, clado Orbiculare (es)

Downloads

Authors

Anthracnose is one of the most limiting diseases in bean cultivation, leading to decreased yield. Mechanisms associated with the induction of the bean defense response during the interaction with Colletotrichum lindemuthianum have been studied, but little is known about the expression of certain virulence factors of this fungus during the infection process. The aim of this study was to evaluate specific molecular determinants triggered during the interaction between C. lindemuthianum and bean plants. For this purpose, qPCR was used to evaluate changes in the expression of the virulence factor Cac1 in two isolates of C. lindemuthianum (Cl(a) and Cl(b)) with contrasting virulence profiles, and to correlate them with the expression of plant defense genes PR1, PR3, PR4, and POD during the early stages post-infection. Molecular ITS analysis showed that both isolates belonged to the Orbiculare clade; however, they clustered differently, a characteristic associated with their distinct virulence profiles. When they were inoculated in bean plants, the Cl(a) isolate was more virulent than the Cl(b) isolate, generating the highest severity value. The Cl(b) isolate induced higher expression of the evaluated plant defense genes than the Cl(a) isolate. However, the virulence factor Cac1 of C. lindemuthianum showed significantly higher expression in Cl(a) than in Cl(b). These results suggest that the Sutagao bean cultivar exhibits a lower expression of defense genes exposed to an isolate of C. lindemuthianum expressing the virulence factor Cac1 in the initial stages of infection.

La antracnosis es una de las enfermedades más limitantes del cultivo de frijol, ocasionando disminución del rendimiento. Se han estudiado mecanismos asociados con la inducción de la respuesta de defensa del frijol durante la interacción con Colletotrichum lindemuthianum, pero poco se conoce sobre la expresión de algunos factores de virulencia de este hongo durante el proceso de infección. El objetivo de este estudio fue evaluar determinantes moleculares desencadenados durante la interacción entre C. lindemuthianum y frijol. Para ello, mediante qPCR se evaluaron cambios en la expresión del factor de virulencia Cac1 en dos aislados de C. lindemuthianum (Cl(a) y Cl(b)) con perfiles de virulencia contrastantes, y se correlacionaron con la expresión de los genes de la planta PR1, PR3, PR4 y POD, durante estadios tempranos de la infección. Los análisis ITS mostraron que ambos aislados pertenecían al clado Orbiculare, aunque se agruparon de manera diferente, característica asociada con sus diferentes perfiles de virulencia. Al inocularse en plantas de frijol, el aislamiento Cl(a) resultó ser más virulento que el Cl(b), generando la mayor severidad; pero Cl(b) indujo una mayor expresión de los genes de defensa de la planta en comparación con Cl(a). Sin embargo, el factor de virulencia Cac1 de C. lindemuthianum mostró una expresión significativamente mayor en Cl(a) que en Cl(b). Estos resultados sugieren que el cultivo de frijol Sutagao presenta una menor expresión de los genes de defensa cuando se enfrenta a un aislado de C. lindemuthianum que expresa el factor de virulencia Cac1 en las etapas iniciales de la infección.

References

Alvarez-Diaz, J. C., Laugé, R., Delannoy, E., Huguet, S., Paysant-Le Roux, C., Gratias, A., & Geffroy, V. (2022). Genome-wide transcriptomic analysis of the effects of infection with the hemibiotrophic fungus Colletotrichum lindemuthianum on common bean. Plants, 11(15), Article 1995. https://doi.org/10.3390/plants11151995

Ansari, K. I., Palacios, N., Araya, C., Langin, T., Egan, D., & Doohan, F. M. (2004). Pathogenic and genetic variability among Colletotrichum lindemuthianum isolates of different geographic origins. Plant Pathology, 53(5), 635−642. https://doi.org/10.1111/j.0032-0862.2004.01057.x

Bormann, J., Boenisch, M. J., Brückner, E., Firat, D., & Schäfer, W. (2014). The adenylyl cyclase plays a regulatory role in the morphogenetic switch from vegetative to pathogenic lifestyle of Fusarium graminearum on wheat. PLoS ONE, 9(3), Article e91135. https://doi.org/10.1371/journal.pone.0091135

Campa, A., Trabanco, N., & Ferreira, J. J. (2017). Identification of clusters that condition resistance to anthracnose in the common bean differential cultivars AB136 and MDRK. Phytopathology, 107(12), 1515–1521. https://doi.org/10.1094/PHYTO-01-17-0012-R

Castellanos, G., Jara, C. E., & Mosquera, G. (2011). Colletotrichum lindemuthianum. Enfermedad antracnosis. In G. Castellanos, C. E. Jara, & G. Mosquera (Eds.), Guías prácticas de laboratorio para el manejo de patógenos del frijol (pp. 1–39). Centro Internacional de Agricultura Tropical (CIAT). https://hdl.handle.net/10568/54435

Costa, L. C., Nalin, R. S., Dias, M. A., Ferreira, M. E., Song, Q., Pastor-Corrales, M. A., Hurtado-Gonzales, O. P., & Souza, E. A. (2021). Different loci control resistance to different isolates of the same race of Colletotrichum lindemuthianum in common bean. TAG. Theoretical and Applied Genetics, 134(2), 543–556. https://doi.org/10.1007/s00122-020-03713-x

Damm, U., Cannon, P. F., Liu, F., Barreto, R. W., Guatimosim, E., & Crous, P. W. (2013). The Colletotrichum orbiculare species complex: Important pathogens of field crops and weeds. Fungal Divers, 61(1), 29−59. https://doi.org/10.1007/s13225-013-0255-4

Fontenelle, M. R., Santana, M. F., Cnossen, A., Bazzoli, D. S. M., Bromonschenkel, S. H., Araújo, E. F., & Queiroz, M. V. (2017). Differential expression of genes during the interaction between Colletotrichum lindemuthianum and Phaseolus vulgaris. European Journal of Plant Pathology, 147, 653−670. https://doi.org/10.1007/s10658-016-1033-4

Fu, T., Park, H. H., & Kim, K. S. (2022). Role of the cAMP signaling pathway in the dissemination and development on pepper fruit anthracnose disease caused by Colletotrichum scovillei. Frontiers in Cellular and Infection Microbiology, 12, Article 1003195. https://doi.org/10.3389/fcimb.2022.1003195

Fu, T., Shin, J. H., Lee, N. H., Lee, K. H., & Kim, K. S. (2022). Mitogen-activated protein kinase CsPMK1 Is essential for pepper fruit anthracnose by Colletotrichum scovillei. Frontiers in Microbiology, 13, Article 770119. https://doi.org/10.3389/fmicb.2022.770119

Guevara-Suárez, M., Cárdenas, M., Jiménez, P., Afanador-Kafuri, L., & Restrepo, S. (2022). Colletotrichum species complexes associated with crops in northern South America: A review. Agronomy, 12(3), Article 548. https://doi.org/10.3390/agronomy12030548

Irinyi, L., Serena, C., Garcia-Hermoso, D., Arabatzis, M., Desnos-Ollivier, M., Vu, D., Cardinali, G., Arthur, I., Normand. A.-C., Cunha, K. C., Sandoval-Denis, M., Giraldo, A., Hendrickx, M., Satie Nishikaku, A., Melo, A. S. A, Bellinghausen Merseguel, Khan, A., Rocha, J. A. P., Sampaio, P., ..., & Meyer, W. (2015). International Society of Human and Animal Mycology (ISHAM)-ITS reference DNA barcoding database--The quality controlled standard tool for routine identification of human and animal pathogenic fungi. Medical Mycology, 53(4), 313–337. https://doi.org/10.1093/mmy/myv008

Jiang, L., Zhang, S., Su, J., Peck, S. C., & Luo, L. (2022). Protein kinase signaling pathways in plant-Colletotrichum interaction. Frontiers in Plant Science, 12, Article 829645. https://doi.org/10.3389/fpls.2021.829645

Liu, F., Cai, L., Crous, P. W., & Damm, U. (2013). Circumscription of the anthracnose pathogens Colletotrichum lindemuthianum and C. nigrum. Mycologia, 105(4), 844–860. https://doi.org/10.3852/12-315

Mahuku, S. G., & Riascos, J. J. (2004). Virulence and molecular diversity within C. lindemuthianum isolates from Andean and Mesoamerican bean varieties and regions. European Journal of Plant Pathology, 110(3), 253−263. https://doi.org/10.1023/B:EJPP.0000019795.18984.74

Mayo, S., Gutiérrez, S., Malmierca, M. G., Lorenzana, A., Campelo, M. P., Hermosa, R., & Casquero, P. A. (2015). Influence of Rhizoctonia solani and Trichoderma spp. in growth of bean (Phaseolus vulgaris L.) and in the induction of plant defenserelated genes. Frontiers in Plant Science, 6, Article 685. https://doi.org/10.3389/fpls.2015.00685

Nabi, N., Nabi, A., Fayaz, T., Lateff, I., Nisa, Q., Bashir, A., Rashid, Z., Sha, M. D., Itao, H., Shah, R. A., Bhat, Z. A., Masoodi, K. Z., Khan, I., Rashid, R., & Padder, B. A. (2014). Pathogenically altered Colletotrichum lindemuthianum transformants helps in understanding the biochemical defense and colonization dynamics in Phaseolus vulgaris. Physiological and Molecular Plant Pathology, 129, Article 102208. https://doi.org/10.1016/j.pmpp.2023.102208

Oliveira, M. B., Andrade, R. V., Grossi-de-Sá, M. F., & Petrofeza, S. (2015). Analysis of genes that are differentially expressed during the Sclerotinia sclerotiorum−Phaseolus vulgaris interaction. Frontiers in Microbiology,6, Article 1162. https://doi.org/10.3389/fmicb.2015.01162

Ortiz, H. E., Rivero, R., & Hoyos, C. L. (2011). Manual de prácticas de fitopatología general. Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Bogotá.

Ospina Parra, C. E., Martínez Medrano, J. C., Contreras Valencia, K., & Tautiva Merchán, L. A. (2020). Análisis socioeconómico del cultivo de fríjol en Cundinamarca (Colombia), para la identificación de un Sistema Agroalimentario Localizado (SIAL). Rivar, 7(21), 13−32. https://doi.org/10.35588/rivar.v7i21.4622

Parsa, S., García-Lemos, A. M., Castillo, K., Ortiz, V., López-Lavalle, L. A., Braun, J., & Vega, F. E. (2016). Fungal endophytes in germinated seeds of the common bean, Phaseolus vulgaris. Fungal Biology, 120(5), 783–790. https://doi.org/10.1016/j.funbio.2016.01.017

Pedroza-Padilla, M. C., Rodríguez-Arévalo, K. A., Rincón-Rivera, L. J., & González-Almario, A. (2022). Co-52 resistance allele contributes to induce basal defense against Colletotrichum lindemuthianum race 7. Pesquisa Agropecuaria Tropical, 52, Article e71746. https://doi.org/10.1590/1983-40632022v5271746

Peng, Y., Yang, J., Li, X., & Zhang, Y. (2021). Salicylic acid: Biosynthesis and signaling. Annual Review of Plant Biology, 72, 761–791. https://doi.org/10.1146/annurev-arplant-081320-092855

Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29(9), Article e45. https://doi.org/10.1093/nar/29.9.e45

Romero, G., González, S., Royero, W., & González, A. (2024). Morphological and transcriptional analysis of Colletotrichum lindemuthianum race 7 during early stages of infection in common bean. Genetics and Molecular Biology, 47(1), Article e20220263. https://doi.org/10.1590/1678-4685-GMB-2022-0263

Ruiz-Campos, C., Umaña-Rojas, G., & Gómez-Alpízar, L. (2022). Multilocus identification of Colletotrichum species associated with papaya anthracnose. Agronomía Mesoamericana, 33(1), Article 45495. https://doi.org/10.15517/am.v33i1.45495

Schwartz, H. F., & Pastor-Corrales, M. A. (2005). Anthracnose. In H. F. Schwartz, J. R. Steadman, R. Hall., & R. L. Forster (Eds.), Compendium of bean diseases (2nd ed., pp. 25−27). APS Press. https://my.apsnet.org/APSStore/Product-Detail.aspx?WebsiteKey=2661527A-8D44-496C-A730-8CFEB6239BE7&iProductCode=43275

Shams, E., Javan-Nikkhah, M., & Mirzadi-Gohari, A. (2020). Correction to: Dissecting molecular events and gene expression signatures involved in Colletotrichum lindemuthianum - Phaseolus vulgaris pathosystem in compatible and incompatible interactions. European Journal of Plant Pathology, 156(3), 993−994. https://doi.org/10.1007/s10658-020-01960-8

Shaner, G., & Finney, R. E. (1977). The effect of nitrogen fertilization on the expression of slow-mildewing resistance in knox wheat. Phytopathology, 67, 1051−1056. https://doi.org/10.1094/Phyto-67-1051

Van Schoonhoven, A., & Pastor-Corrales, M. A. (1987). Standard system for the evaluation of bean germplasm. Centro Internacional de Agricultura Tropical (CIAT).

Yamauchi, J., Takayanagi, N., Komeda, K., Takano, Y., & Okuno, T. (2004). cAMP-PKA signaling regulates multiple steps of fungal infection cooperatively with Cmk1 MAP kinase in Colletotrichum lagenarium. Molecular Plant-Microbe Interactions, 17(12), 1355–1365. https://doi.org/10.1094/MPMI.2004.17.12.1355

Yin, T., Zhang, Q., Wang, J., Liu, H., Wang, C., Xu, J. R., & Jiang, C. (2018). The cyclase-associated protein FgCap1 has both protein kinase A-dependent and -independent functions during deoxynivalenol production and plant infection in Fusarium graminearum. Molecular Plant Pathology, 19(3), 552–563. https://doi.org/10.1111/mpp.12540

Zhou, X., Zhang, H., Li, G., Shaw, B., & Xu, J. R. (2012). The cyclaseassociated protein Cap1 is important for proper regulation of infection-related morphogenesis in Magnaporthe oryzae. PLoS Pathogens, 8(9), Article e1002911. https://doi.org/10.1371/journal.ppat.1002911

How to Cite

APA

Saldarriaga Gómez, C. and González Almario, A. (2024). Evaluation of defense gene expression and the virulence factor Cac1 in the interaction between Phaseolus vulgaris and Colletotrichum lindemuthianum. Agronomía Colombiana, 42(3), e116629. https://doi.org/10.15446/agron.colomb.v42n3.116629

ACM

[1]
Saldarriaga Gómez, C. and González Almario, A. 2024. Evaluation of defense gene expression and the virulence factor Cac1 in the interaction between Phaseolus vulgaris and Colletotrichum lindemuthianum. Agronomía Colombiana. 42, 3 (Sep. 2024), e116629. DOI:https://doi.org/10.15446/agron.colomb.v42n3.116629.

ACS

(1)
Saldarriaga Gómez, C.; González Almario, A. Evaluation of defense gene expression and the virulence factor Cac1 in the interaction between Phaseolus vulgaris and Colletotrichum lindemuthianum. Agron. Colomb. 2024, 42, e116629.

ABNT

SALDARRIAGA GÓMEZ, C.; GONZÁLEZ ALMARIO, A. Evaluation of defense gene expression and the virulence factor Cac1 in the interaction between Phaseolus vulgaris and Colletotrichum lindemuthianum. Agronomía Colombiana, [S. l.], v. 42, n. 3, p. e116629, 2024. DOI: 10.15446/agron.colomb.v42n3.116629. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/116629. Acesso em: 23 apr. 2025.

Chicago

Saldarriaga Gómez, Catalina, and Adriana González Almario. 2024. “Evaluation of defense gene expression and the virulence factor Cac1 in the interaction between Phaseolus vulgaris and Colletotrichum lindemuthianum”. Agronomía Colombiana 42 (3):e116629. https://doi.org/10.15446/agron.colomb.v42n3.116629.

Harvard

Saldarriaga Gómez, C. and González Almario, A. (2024) “Evaluation of defense gene expression and the virulence factor Cac1 in the interaction between Phaseolus vulgaris and Colletotrichum lindemuthianum”, Agronomía Colombiana, 42(3), p. e116629. doi: 10.15446/agron.colomb.v42n3.116629.

IEEE

[1]
C. Saldarriaga Gómez and A. González Almario, “Evaluation of defense gene expression and the virulence factor Cac1 in the interaction between Phaseolus vulgaris and Colletotrichum lindemuthianum”, Agron. Colomb., vol. 42, no. 3, p. e116629, Sep. 2024.

MLA

Saldarriaga Gómez, C., and A. González Almario. “Evaluation of defense gene expression and the virulence factor Cac1 in the interaction between Phaseolus vulgaris and Colletotrichum lindemuthianum”. Agronomía Colombiana, vol. 42, no. 3, Sept. 2024, p. e116629, doi:10.15446/agron.colomb.v42n3.116629.

Turabian

Saldarriaga Gómez, Catalina, and Adriana González Almario. “Evaluation of defense gene expression and the virulence factor Cac1 in the interaction between Phaseolus vulgaris and Colletotrichum lindemuthianum”. Agronomía Colombiana 42, no. 3 (September 1, 2024): e116629. Accessed April 23, 2025. https://revistas.unal.edu.co/index.php/agrocol/article/view/116629.

Vancouver

1.
Saldarriaga Gómez C, González Almario A. Evaluation of defense gene expression and the virulence factor Cac1 in the interaction between Phaseolus vulgaris and Colletotrichum lindemuthianum. Agron. Colomb. [Internet]. 2024 Sep. 1 [cited 2025 Apr. 23];42(3):e116629. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/116629

Download Citation