Published

2025-04-30

UV-C radiation and gaseous ozone improve the physicochemical characteristics of refrigerated strawberries

La radiación UV-C y el ozono gaseoso mejoran las características fisicoquímicas de fresas refrigeradas

DOI:

https://doi.org/10.15446/agron.colomb.v43n1.116649

Keywords:

ozonation, postharvest quality, ultraviolet radiation, ripening, Fragaria x ananassa (en)
ozonización, calidad poscosecha, radiación ultravioleta, maduración, Fragaria x ananassa (es)

Downloads

Authors

The use of new preservation techniques, such as the application of gaseous ozone (OZ) and ultraviolet (UV-C) radiation, enables agricultural products to be maintained in optimal conditions for consumers. Additionally, these methods reduce risks to human health by decreasing the presence of pathogens in treated foods. The aim of this study was to evaluate the effect of gaseous ozone and UV-C radiation exposure on the physicochemical characteristics of strawberries. Strawberries were exposed to radiation doses of 0 kJ m-2(control), 2.02 kJ m-2, 3.04 kJ m-2, and 4.05 kJ m-2 and to gaseous ozone concentrations of 0.267 and 0.586 mg L-1 for 35 and 70 s at each concentration. The experimental units were then packaged in PET packaging and stored at 5±1°C and 85±5% relative humidity (RH) for 5 d. Physicochemical tests included weight loss, color, pH, titratable acidity, total soluble solids, and respiration rate. The UV-C and ozone treatments demonstrated better performance compared to the control maintained at 5±1°C. Notably, the treatments that showed the most favorable outcomes for the physicochemical properties of strawberries were OZ3 (exposure to 0.586 mg L-1 of O3 for 35 s) and UVC3 (exposure to radiation dose of 4.05 kJ m-2), indicating these methods are suitable for the preservation of strawberries.

El uso de nuevas técnicas de conservación, como la aplicación de ozono (OZ) gaseoso y radiación ultravioleta (UV-C), permite mantener los productos agrícolas en condiciones óptimas para los consumidores. Además, estos métodos reducen los riesgos para la salud humana al disminuir la presencia de patógenos en los alimentos tratados. El objetivo de este estudio fue evaluar el efecto de la exposición al ozono gaseoso y a la radiación UV-C sobre las características fisicoquímicas de las fresas. Las fresas fueron expuestas a dosis de radiación de 0 kJ m-2 (control), 2,02 kJ m-2, 3,04 kJ m-2 y 4,05 kJ m-2, y a concentraciones de ozono gaseoso de 0,267 y 0,586 mg L-1 durante 35 y 70 s para cada concentración. Las unidades experimentales se envasaron en empaques de PET y se almacenaron a 5±1°C y 85±5% HR durante 5 d. Las pruebas fisicoquímicas realizadas incluyeron pérdida de peso, color, pH, acidez titulable, sólidos solubles totales y tasa de respiración. Los tratamientos con UV-C y ozono demostraron un mejor rendimiento en comparación con el control mantenido a 5±1°C. Notablemente, los tratamientos que mostraron los resultados más favorables para las propiedades fisicoquímicas de las fresas fueron OZ3 (tratamiento con exposición a 0,586 mg L-1 de O₃ durante 35 s) y UVC3 (tratamiento con exposición a dosis de radiación de 4,05 kJ m-2),  indicando que estos métodos son adecuados para la conservación de las fresas.

References

Ali, L. M., Ahmed, A. E. R. A. E. R., Hasan, H. E. S., Suliman, A. E. R. E., & Saleh, S. S. (2022). Quality characteristics of strawberry fruit following a combined treatment of laser sterilization and guava leaf-based chitosan nanoparticle coating. Chemical and Biological Technologies in Agriculture, 9(1), Article 80. https://doi.org/10.1186/s40538-022-00343-x DOI: https://doi.org/10.1186/s40538-022-00343-x

Alvarado-Cepeda, Y. A., Mendoza-Villarreal, R., Sandoval-Rangel, A., Vega-Chávez, J. L., Franco-Gaytán, I., Alvarado-Cepeda, Y. A., Mendoza-Villarreal, R., Sandoval-Rangel, A., Vega-Chávez, J. L., & Franco-Gaytán, I. (2020). Calidad fisicoquímica y sensorial de frutos de fresas obtenidos en dos sistemas de cultivo. RIIIT. Revista Internacional de Investigación e Innovación Tecnológica, 8(43), 18–29. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-97532020000200002&lng=es&nrm=iso&tlng=es

Alves, H., Alencar, E. R., Ferreira, W. F. S., Silva, C. R., & Ribeiro, J. L. (2019). Aspectos microbiológicos e físico-químicos de morango exposto ao gás ozônio em diferentes concentrações durante o armazenamento. Brazilian Journal of Food Technology, 22, Article e20. https://doi.org/10.1590/1981-6723.00218 DOI: https://doi.org/10.1590/1981-6723.00218

Azam, M., Ejaz, S., Naveed Ur Rehman, R., Khan, M., & Qadri, R. (2019). Postharvest quality management of strawberries. In T. Asao, & Md. Azaduzzaman (Eds.), Strawberry – Pre- and postharvest management techniques for higher fruit quality (Chapter 4). IntechOpen. https://doi.org/10.5772/intechopen.82341 DOI: https://doi.org/10.5772/intechopen.82341

Bajaj, K., Adhikary, T., Gill, P. P. S., & Kumar, A. (2023). Edible coatings enriched with plant-based extracts preserve postharvest quality of fruits: A review. Progress in Organic Coatings, 182, Article 107669. https://doi.org/10.1016/J.PORGCOAT.2023.107669 DOI: https://doi.org/10.1016/j.porgcoat.2023.107669

Bhullar, M. S., Patras, A., Kilanzo-Nthenge, A., Pokharel, B., Yannam, S. K., Rakariyatham, K., Pan, C., Xiao, H., & Sasges, M. (2018). Microbial inactivation and cytotoxicity evaluation of UV irradiated coconut water in a novel continuous flow spiral reactor. Food Research International, 103, 59–67. https://doi.org/10.1016/J.FOODRES.2017.10.004 DOI: https://doi.org/10.1016/j.foodres.2017.10.004

Cavasini, R. (2017). Caracterização topográfica da epiderme de hortaliças folhosas e mistura gasosa de ozônio na qualidade de alface [Doctoral dissertation, Universidade Estadual de Campinas]. https://doi.org/10.47749/T/UNICAMP.2017.984513 DOI: https://doi.org/10.47749/T/UNICAMP.2017.984513

Chen, C., Zhang, H., Zhang, X., Dong, C., Xue, W., & Xu, W. (2020). The effect of different doses of ozone treatments on the postharvest quality and biodiversity of cantaloupes. Postharvest Biology and Technology, 163, Article 111124. https://doi.org/10.1016/J.POSTHARVBIO.2020.111124 DOI: https://doi.org/10.1016/j.postharvbio.2020.111124

Cherono, K., Sibomana, M., & Workneh, T. S. (2018). Effect of infield handling conditions and time to pre-cooling on the shelf-life and quality of tomatoes. Brazilian Journal of Food Technology, 21, Article e2017016. https://doi.org/10.1590/1981-6723.01617 DOI: https://doi.org/10.1590/1981-6723.01617

Coelho, C. C. S., Freitas-Silva, O., Campos, R. S., Bezerra, V. S., & Cabral, L. M. C. (2015). Ozonização como tecnologia pós-colheita na conservação de frutas e hortaliças: Uma revisão. Revista Brasileira de Engenharia Agrícola e Ambiental, 19(4), 369–375. https://doi.org/10.1590/1807-1929/agriambi.v19n4p369-375 DOI: https://doi.org/10.1590/1807-1929/agriambi.v19n4p369-375

Contigiani, E. V. (2019). Desarrollo de estrategias alternativas para la conservación post-cosecha de frutillas [Doctoral dissertation, Universidad de Buenos Aires]. https://core.ac.uk/download/pdf/224999329.pdf

Cote Daza, S. P. (2011). Efecto de la intensidad de la radiación UV-C sobre la calidad sensorial, microbiológica y nutricional de frutos [Master thesis, Universidad Nacional de La Plata]. https://lipa.multisitio.sedici.unlp.edu.ar/wp-content/uploads/sites/29/2020/03/Tesis-de-Maestría-Sandra-Cote-Daza.pdf

Cunha Junior, L. C., Jacomino, A. P., Trevisan, M. J., & Scarpare Filho, J. A. (2011). Altas concentrações de oxigênio favorecem a conservação de morango “Oso Grande”. Revista Brasileira de Fruticultura, 33(4), 1074–1083. https://doi.org/10.1590/S0100-29452011000400005 DOI: https://doi.org/10.1590/S0100-29452011000400005

Darré, M., Vicente, A. R., Cisneros-Zevallos, L., & Artés-Hernández, F. (2022). Postharvest ultraviolet radiation in fruit and vegetables: Applications and factors modulating its efficacy on bioactive compounds and microbial growth. Foods, 11(5), Article 653. https://doi.org/10.3390/foods11050653 DOI: https://doi.org/10.3390/foods11050653

Delorme, M. M., Guimarães, J. T., Coutinho, N. M., Balthazar, C. F., Rocha, R. S., Silva, R., Margalho, L. P., Pimentel, T. C., Silva, M. C., Freitas, M. Q., Granato, D., Sant’Ana, A. S., Duart, M. C. K. H., & Cruz, A. G. (2020). Ultraviolet radiation: An interesting technology to preserve quality and safety of milk and dairy foods. Trends in Food Science & Technology, 102, 146–154. https://doi.org/10.1016/J.TIFS.2020.06.001 DOI: https://doi.org/10.1016/j.tifs.2020.06.001

Fung, F., Wang, H. S., & Menon, S. (2018). Food safety in the 21st century. Biomedical Journal, 41(2), 88–95. https://doi.org/10.1016/J.BJ.2018.03.003 DOI: https://doi.org/10.1016/j.bj.2018.03.003

Gabriel, A. A., Cayabyab, J. E. C., Tan, A. K. L., Corook, M. L. F., Ables, E. J. O., & Tiangson-Bayaga, C. L. P. (2015). Development and validation of a predictive model for the influences of selected product and process variables on ascorbic acid degradation in simulated fruit juice. Food Chemistry, 177, 295–303. https://doi.org/10.1016/J.FOODCHEM.2015.01.049 DOI: https://doi.org/10.1016/j.foodchem.2015.01.049

Gil, M. I., Selma, M. V., Suslow, T., Jacxsens, L., Uyttendaele, M., & Allende, A. (2015). Pre- and postharvest preventive measures and intervention strategies to control microbial food safety hazards of fresh leafy vegetables. Critical Reviews in Food Science and Nutrition, 55(4), 453–468. https://doi.org/10.1080/10408398.2012.657808 DOI: https://doi.org/10.1080/10408398.2012.657808

Gol, N. B., Patel, P. R., & Rao, T. V. R. (2013). Improvement of quality and shelf-life of strawberries with edible coatings enriched with chitosan. Postharvest Biology and Technology, 85, 185–195. https://doi.org/10.1016/J.POSTHARVBIO.2013.06.008 DOI: https://doi.org/10.1016/j.postharvbio.2013.06.008

Gonçalves, G. A. S., Resende, N. S., Carvalho, E. E. N., Resende, J. V., & Vilas Boas, E. V. B. (2018). Physicochemical and volatile profile alterations in pasteurized and frozen strawberry Pulp during storage. Journal of Food Processing and Preservation, 42(1), Article e13317. https://doi.org/10.1111/jfpp.13317 DOI: https://doi.org/10.1111/jfpp.13317

Jiang, Y., Yu, L., Hu, Y., Zhu, Z., Zhuang, C., Zhao, Y., & Zhong, Y. (2020). The preservation performance of chitosan coating with different molecular weight on strawberry using electrostatic spraying technique. International Journal of Biological Macromolecules, 151, 278–285. https://doi.org/10.1016/J.IJBIOMAC.2020.02.169 DOI: https://doi.org/10.1016/j.ijbiomac.2020.02.169

Ladika, G., Strati, I. F., Tsiaka, T., Cavouras, D., & Sinanoglou, V. J. (2024). On the assessment of strawberries’ shelf-life and quality, based on image análisis, physicochemical methods, and chemometrics. Foods, 13(2), Article 234. https://doi.org/10.3390/foods13020234 DOI: https://doi.org/10.3390/foods13020234

Lemessa, A., Popardowski, E., Hebda, T., & Jakubowski, T. (2022). The effect of UV-C irradiation on the mechanical and physiological properties of potato tuber and different products. Applied Sciences, 12(12), Article 5907. https://doi.org/10.3390/app12125907 DOI: https://doi.org/10.3390/app12125907

Liu, C., Zheng, H., Sheng, K., Liu, W., & Zheng, L. (2018). Effects of melatonin treatment on the postharvest quality of strawberry fruit. Postharvest Biology and Technology, 139, 47–55. https://doi.org/10.1016/J.POSTHARVBIO.2018.01.016 DOI: https://doi.org/10.1016/j.postharvbio.2018.01.016

Lu, H., Li, L., Limwachiranon, J., Xie, J., & Luo, Z. (2016). Effect of UV-C on ripening of tomato fruits in response to wound. Scientia Horticulturae, 213, 104–109. https://doi.org/10.1016/J.SCIENTA.2016.10.017 DOI: https://doi.org/10.1016/j.scienta.2016.10.017

Ma, L., Wang, Q., Li, L., Grierson, D., Yuan, S., Zheng, S., Wang, Y., Wang, B., Bai, C., Fu, A., Gao, L., Zhu, B., Luo, Y., Mu, J., & Zuo, J. (2021). UV-C irradiation delays the physiological changes of bell pepper fruit during storage. Postharvest Biology and Technology, 180, Article 111506. https://doi.org/10.1016/j.postharvbio.2021.111506 DOI: https://doi.org/10.1016/j.postharvbio.2021.111506

Macías-Gallardo, F., Barajas-Díaz, C. G.-M., Mireles-Arriaga, A. I., & Ozuna, C. (2023). Strawberry variety influences the effectiveness of postharvest treatment with gaseous ozone: Impact on the physicochemical, microbiological, and bioactive properties of the fruit. Processes, 11(2), Article 346. https://doi.org/10.3390/pr11020346 DOI: https://doi.org/10.3390/pr11020346

Mishra, R., & Kar, A. (2014). Effect of storage on the physicochemical and flavour attributes of two cultivars of strawberry cultivated in Northern India. The Scientific World Journal, 2014(1), Article 794926. https://doi.org/10.1155/2014/794926 DOI: https://doi.org/10.1155/2014/794926

Muley, A. B., & Singhal, R. S. (2020). Extension of postharvest shelf life of strawberries (Fragaria ananassa) using a coating of chitosan-whey protein isolate conjugate. Food Chemistry, 329, Article 127213. https://doi.org/10.1016/J.FOODCHEM.2020.127213 DOI: https://doi.org/10.1016/j.foodchem.2020.127213

Mussin, J. E., Avalos Llano, K. R., & Sgroppo, S. C. (2014). Cambios en contenido de pigmentos, azúcares y acidez de frutillas cv. '`Camino real'` tratadas con luz UV-C y almacenadas a 4oC. XX Reunión de Comunicaciones Científicas y Tecnológicas. http://repositorio.unne.edu.ar/handle/123456789/51698

Navas Cajamarca, S. M. (2015). Ozonização como método alternativo na conservação de morango produzido em sistema orgánico [Master thesis, Universidade de Brasília]. RIUnB Repositório Institucional. https://doi.org/10.26512/2015.02.D.17992 DOI: https://doi.org/10.26512/2015.02.D.17992

Octavia, L., & Choo, W. S. (2017). Folate, ascorbic acid, anthocyanin and colour changes in strawberry (Fragaria × annanasa) during refrigerated storage. LWT, 86, 652–659. https://doi.org/10.1016/J.LWT.2017.08.049 DOI: https://doi.org/10.1016/j.lwt.2017.08.049

Ornelas-Paz, J. J., Yahia, E. M., Ramírez-Bustamante, N., Pérez-Martínez, J. D., Escalante-Minakata, M. P., Ibarra-Junquera, V., Acosta-Muñiz, C., Guerrero-Prieto, V., & Ochoa-Reyes, E. (2013). Physical attributes and chemical composition of organic strawberry fruit (Fragaria x ananassa Duch, Cv. Albion) at six stages of ripening. Food Chemistry, 138(1), 372–381. https://doi.org/10.1016/J.FOODCHEM.2012.11.006 DOI: https://doi.org/10.1016/j.foodchem.2012.11.006

Ortiz-Araque, L.-C. (2021). Influencia de la intensidad de radiación UV, y del fraccionamiento de los tratamientos UV-C sobre la calidad y maduración y activación de respuesta defensiva en frutos [Doctoral dissertation, Universidad Nacional de La Plata]. https://sedici.unlp.edu.ar/handle/10915/123476

Pandiselvam, R., Subhashini, S., Banuu Priya, E. P., Kothakota, A., Ramesh, S. V., & Shahir, S. (2019). Ozone based food preservation: A promising green technology for enhanced food safety. Ozone: Science & Engineering, 41(1), 17–34. https://doi.org/10.1080/01919512.2018.1490636 DOI: https://doi.org/10.1080/01919512.2018.1490636

Panou, A. A., Akrida-Demertzi, K., Demertzis, P., & Riganakos, K. A. (2021). Effect of gaseous ozone and heat treatment on quality and shelf life of fresh strawberries during cold storage. International Journal of Fruit Science, 21(1), 218–231. https://doi.org/10.1080/15538362.2020.1866735 DOI: https://doi.org/10.1080/15538362.2020.1866735

Peng, H., Pang, Y., Liao, Q., Wang, F., & Qian, C. (2022). The effect of preharvest UV light irradiation on berries quality: A review. Horticulturae, 8(12), Article 1171. https://doi.org/10.3390/horticulturae8121171 DOI: https://doi.org/10.3390/horticulturae8121171

Pinheiro, D. F., Resende, J. T. V., Constantino, L. V., Hata, F. T., Hata, N. N. Y., & Lustosa, S. B. C. (2021). Physical, biochemical, and sensory properties of strawberries grown in high-altitude tropical climate. Ciência e Agrotecnologia, 45, Article e008221. https://doi.org/10.1590/1413-7054202145008221 DOI: https://doi.org/10.1590/1413-7054202145008221

Pott, D. M., Abreu e Lima, F., Soria, C., Willmitzer, L., Fernie, A. R., Nikoloski, Z., Osorio, S., & Vallarino, J. G. (2020). Metabolic reconfiguration of strawberry physiology in response to postharvest practices. Food Chemistry, 321, Article 126747. https://doi.org/10.1016/J.FOODCHEM.2020.126747 DOI: https://doi.org/10.1016/j.foodchem.2020.126747

Qureshi Quarshi, H., Ahmed, W., Azmant, R., Chendouh-Brahmi, N., Quyyum, A., & Abbas, A. (2023). Post-harvest problems of strawberry and their solutions. In N. E. Kafkas (Ed.), Recent studies on strawberries (Chapter 13). IntechOpen. https://doi.org/10.5772/intechopen.102963 DOI: https://doi.org/10.5772/intechopen.102963

São José, J. F. B., & Vanetti, M. C. D. (2015). Application of ultrasound and chemical sanitizers to watercress, parsley and strawberry: Microbiological and physicochemical quality. LWT - Food Science and Technology, 63(2), 946–952. https://doi.org/10.1016/J.LWT.2015.04.029 DOI: https://doi.org/10.1016/j.lwt.2015.04.029

Sarron, E., Gadonna-Widehem, P., & Aussenac, T. (2021). Ozone treatments for preserving fresh vegetables quality: A critical review. Foods, 10(3), Article 605. https://doi.org/10.3390/foods10030605 DOI: https://doi.org/10.3390/foods10030605

Schifferstein, H. N. J., Wehrle, T., & Carbon, C. C. (2019). Consumer expectations for vegetables with typical and atypical colors: The case of carrots. Food Quality and Preference, 72, 98–108. https://doi.org/10.1016/J.FOODQUAL.2018.10.002 DOI: https://doi.org/10.1016/j.foodqual.2018.10.002

Sethi, S., Joshi, A., & Arora, B. (2018). UV treatment of fresh fruits and vegetables. In M. W. Siddiqui (Ed.), Postharvest disinfection of fruits and vegetables (pp. 137–157). Academic Press. https://doi.org/10.1016/B978-0-12-812698-1.00007-8 DOI: https://doi.org/10.1016/B978-0-12-812698-1.00007-8

Shehata, S. A., Abdelrahman, S. Z., Megahed, M. M. A., Abdeldaym, E. A., El-Mogy, M. M., & Abdelgawad, K. F. (2021). Extending shelf life and maintaining quality of tomato fruit by calcium chloride, hydrogen peroxide, chitosan, and ozonated water. Horticulturae, 7(9), Article 309. https://doi.org/10.3390/horticulturae7090309 DOI: https://doi.org/10.3390/horticulturae7090309

Singh, H., Bhardwaj, S. K., Khatri, M., Kim, K. H., & Bhardwaj, N. (2021). UVC radiation for food safety: An emerging technology for the microbial disinfection of food products. Chemical Engineering Journal, 417, Article 128084. https://doi.org/10.1016/J.CEJ.2020.128084 DOI: https://doi.org/10.1016/j.cej.2020.128084

Snyder, A. B., & Worobo, R. W. (2018). The incidence and impact of microbial spoilage in the production of fruit and vegetable juices as reported by juice manufacturers. Food Control, 85, 144–150. https://doi.org/10.1016/J.FOODCONT.2017.09.025 DOI: https://doi.org/10.1016/j.foodcont.2017.09.025

Souza, F. (2012). Utilização combinada de radiação UV-C e atmosfera modificada para conservação do figo após a colheita [Doctoral dissertation, Universidade Estadual de Campinas]. https://repositorio.unicamp.br/Acervo/Detalhe/881486

Souza, J. F. (2014). Utilização de luz ultravioleta contínua (UVC) e luz pulsada para conservação de mangas CV. Tommy Atkins minimamente processadas [Doctoral dissertation, Universidade Estadual Paulista “Júlio de Mesquita Filho”]. https://repositorio.unesp.br/server/api/core/bitstreams/12f479f7-5393-43e6-b69a-96041bb0d826/content

Tahir, H. E., Xiaobo, Z., Jiyong, S., Mahunu, G. K., Zhai, X., & Mariod, A. A. (2018). Quality and postharvest-shelf life of cold-stored strawberry fruit as affected by gum arabic (Acacia senegal) edible coating. Journal of Food Biochemistry, 42(3), Article e12527. https://doi.org/10.1111/jfbc.12527 DOI: https://doi.org/10.1111/jfbc.12527

Templalexis, C., Lentzou, D., Samioti, A., & Xanthopoulos, G. (2023). The individual and combined effect of ozone and UV-C on mass loss, respiration, texture and colour changes of fresh-cut lettuce. Food Research, 7(3), 29–41. https://doi.org/10.26656/fr.2017.7(3).367 DOI: https://doi.org/10.26656/fr.2017.7(3).367

Vettraino, A. M., Vinciguerra, V., Pacini, G., Forniti, R., Goffi, V., & Botondi, R. (2020). Gaseous ozone as a suitable solution for postharvest chestnut storage: Evaluation of quality parameter trends. Food and Bioprocess Technology, 13(1), 187–193. https://doi.org/10.1007/s11947-019-02378-9 DOI: https://doi.org/10.1007/s11947-019-02378-9

Xie, Z., Fan, J., Charles, M. T., Charlebois, D., Khanizadeh, S., Rolland, D., Roussel, D., & Zhang, Z. (2016). Preharvest ultraviolet-C irradiation: Influence on physicochemical parameters associated with strawberry fruit quality. Plant Physiology and Biochemistry, 108, 337–343. https://doi.org/10.1016/J.PLAPHY.2016.07.026 DOI: https://doi.org/10.1016/j.plaphy.2016.07.026

Xu, Y., Charles, M. T., Luo, Z., Roussel, D., & Rolland, D. (2017). Potential link between fruit yield, quality parameters and phytohormonal changes in preharvest UV-C treated strawberry. Plant Physiology and Biochemistry, 116, 80–90. https://doi.org/10.1016/J.PLAPHY.2017.05.010 DOI: https://doi.org/10.1016/j.plaphy.2017.05.010

Yan, Y., Duan, S., Zhang, H., Liu, Y., Li, C., Hu, B., Liu, A., Wu, D., He, J., & Wu, W. (2020). Preparation and characterization of Konjac glucomannan and pullulan composite films for strawberry preservation. Carbohydrate Polymers, 243, Article 116446. https://doi.org/10.1016/J.CARBPOL.2020.116446 DOI: https://doi.org/10.1016/j.carbpol.2020.116446

Zhang, H., Li, K., Zhang, X., Dong, C., Ji, H., Ke, R., Ban, Z., Hu, Y., Lin, S., & Chen, C. (2020). Effects of ozone treatment on the antioxidant capacity of postharvest strawberry. RSC Advances, 10(63), 38142–38157. https://doi.org/10.1039/D0RA06448C DOI: https://doi.org/10.1039/D0RA06448C

How to Cite

APA

Jiménez Moreno, J. A., Higuera Castro, E. L., Maduro Alves, R., Sánchez-Sáenz, C. M. & Colares Souza Usberti, F. (2025). UV-C radiation and gaseous ozone improve the physicochemical characteristics of refrigerated strawberries. Agronomía Colombiana, 43(1), e116649. https://doi.org/10.15446/agron.colomb.v43n1.116649

ACM

[1]
Jiménez Moreno, J.A., Higuera Castro, E.L., Maduro Alves, R., Sánchez-Sáenz, C.M. and Colares Souza Usberti, F. 2025. UV-C radiation and gaseous ozone improve the physicochemical characteristics of refrigerated strawberries. Agronomía Colombiana. 43, 1 (Jan. 2025), e116649. DOI:https://doi.org/10.15446/agron.colomb.v43n1.116649.

ACS

(1)
Jiménez Moreno, J. A.; Higuera Castro, E. L.; Maduro Alves, R.; Sánchez-Sáenz, C. M.; Colares Souza Usberti, F. UV-C radiation and gaseous ozone improve the physicochemical characteristics of refrigerated strawberries. Agron. Colomb. 2025, 43, e116649.

ABNT

JIMÉNEZ MORENO, J. A.; HIGUERA CASTRO, E. L.; MADURO ALVES, R.; SÁNCHEZ-SÁENZ, C. M.; COLARES SOUZA USBERTI, F. UV-C radiation and gaseous ozone improve the physicochemical characteristics of refrigerated strawberries. Agronomía Colombiana, [S. l.], v. 43, n. 1, p. e116649, 2025. DOI: 10.15446/agron.colomb.v43n1.116649. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/116649. Acesso em: 9 nov. 2025.

Chicago

Jiménez Moreno, Juver Andrey, Edna Lizeth Higuera Castro, Raysa Maduro Alves, Carolina María Sánchez-Sáenz, and Franciane Colares Souza Usberti. 2025. “UV-C radiation and gaseous ozone improve the physicochemical characteristics of refrigerated strawberries”. Agronomía Colombiana 43 (1):e116649. https://doi.org/10.15446/agron.colomb.v43n1.116649.

Harvard

Jiménez Moreno, J. A., Higuera Castro, E. L., Maduro Alves, R., Sánchez-Sáenz, C. M. and Colares Souza Usberti, F. (2025) “UV-C radiation and gaseous ozone improve the physicochemical characteristics of refrigerated strawberries”, Agronomía Colombiana, 43(1), p. e116649. doi: 10.15446/agron.colomb.v43n1.116649.

IEEE

[1]
J. A. Jiménez Moreno, E. L. Higuera Castro, R. Maduro Alves, C. M. Sánchez-Sáenz, and F. Colares Souza Usberti, “UV-C radiation and gaseous ozone improve the physicochemical characteristics of refrigerated strawberries”, Agron. Colomb., vol. 43, no. 1, p. e116649, Jan. 2025.

MLA

Jiménez Moreno, J. A., E. L. Higuera Castro, R. Maduro Alves, C. M. Sánchez-Sáenz, and F. Colares Souza Usberti. “UV-C radiation and gaseous ozone improve the physicochemical characteristics of refrigerated strawberries”. Agronomía Colombiana, vol. 43, no. 1, Jan. 2025, p. e116649, doi:10.15446/agron.colomb.v43n1.116649.

Turabian

Jiménez Moreno, Juver Andrey, Edna Lizeth Higuera Castro, Raysa Maduro Alves, Carolina María Sánchez-Sáenz, and Franciane Colares Souza Usberti. “UV-C radiation and gaseous ozone improve the physicochemical characteristics of refrigerated strawberries”. Agronomía Colombiana 43, no. 1 (January 1, 2025): e116649. Accessed November 9, 2025. https://revistas.unal.edu.co/index.php/agrocol/article/view/116649.

Vancouver

1.
Jiménez Moreno JA, Higuera Castro EL, Maduro Alves R, Sánchez-Sáenz CM, Colares Souza Usberti F. UV-C radiation and gaseous ozone improve the physicochemical characteristics of refrigerated strawberries. Agron. Colomb. [Internet]. 2025 Jan. 1 [cited 2025 Nov. 9];43(1):e116649. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/116649

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

377

Downloads

Download data is not yet available.