Published

2024-12-31

Calcium and nitrogen concentrations and distribution in gerbera plants as affected by nitrogen forms

Concentraciónes y distribución de calcio y nitrógeno en plantas de gerbera, afectadas por las formas de nitrógeno

DOI:

https://doi.org/10.15446/agron.colomb.v42n3.117110

Keywords:

cut flowers, leaf nitrogen content, ratio of ammonium to nitrate (en)
flores del corte, contenido de nitrógeno en las hojas, relación de amonio a nitrato (es)

Downloads

Authors

  • Mohammad Ali Khalaj Agricultural Research, Education and Extension Organization - Horticultural Sciences Research Institute - Ornamental Plants Research Center - Department of Technology and Production Management - Mahallat, Iran https://orcid.org/0000-0003-0550-7372
  • Mostafa Koozehgar Kaleji Gorgan University of Agricultural Sciences and Natural Resources - Department of Agriculture - Gorgan, Iran https://orcid.org/0000-0003-4926-9732
  • Ebrahim Beyramizadeh Agricultural Research, Education and Extension Organization - Horticultural Sciences Research Institute - Ornamental Plants Research Center - Department of Genetics and Breeding - Mahallat, Iran https://orcid.org/0000-0003-4926-9732

Ammonium and nitrate are the two forms of nitrogen necessary for the development, metabolism, and key processes in plants. The effects of ammonium to nitrate ratio on gerbera plants and their significance in post-harvest vase life are still poorly understood. This study aimed to investigate how different nutrient solutions affect nutrient levels in various plant organs. The experiment was conducted using a completely randomized design with three replicates at the National Research Institute of Flowers and Ornamental Plants in Mahallat City, Iran, in 2018. The factors studied were the four ratios of ammonium to nitrate: 0:100, 20:80, 40:60, and 60:40, and two gerbera varieties: Stanza and Double Dutch. The results showed that nitrogen content in different plant organs (roots, stem, and leaves) increased with higher concentrations of ammonium in the nutrient solutions. The highest nitrogen content in the roots of gerbera was observed 35 d after the first flowering stem appeared, with a concentration of 4.38 mg N g-1 dry weight in the 60:40 ratio of ammonium to nitrate. The lowest nitrogen content was found in the flowering stem at the time of harvest, with 2.00 mg N g-1 dry weight in the 0:100 ratio of ammonium to nitrate.

El amonio y el nitrato son las dos formas de nitrógeno necesarias para el desarrollo, el metabolismo y los procesos clave en las plantas. Los efectos de la proporción de amonio a nitrato en las plantas de gerbera y su importancia en la vida postcosecha en flores de corte aún son poco conocidos. Este estudio tuvo como objetivo investigar cómo diferentes soluciones nutritivas afectan los niveles de nutrientes en varios órganos de las plantas. El experimento se llevó a cabo utilizando un diseño completamente aleatorizado con tres repeticiones en el Instituto Nacional de Investigación de Flores y Plantas Ornamentales en la ciudad de Mahalat, Irán, en 2018. Los factores estudiados fueron las cuatro proporciónes de amonio a nitrato: 0:100, 20:80, 40:60 y 60:40, y dos variedades de flores de gerbera: Stanza y Double Dutch. Los resultados mostraron que los niveles de nitrógeno en los diferentes órganos de la planta (raíces, tallo y hojas) aumentaron con concentraciones más altas de amonio en las soluciones nutritivas. El contenido más alto de nitrógeno en las raíces de las flores de gerbera se observó 35 d después de la aparición del primer tallo floral, con una concentración de 4,38 mg N g-1 peso seco en la proporción de 60:40 de amonio a nitrato. El contenido más bajo de nitrógeno se encontró en el tallo floral al momento de la cosecha, con 2,00 mg N g-1 peso seco en la proporción de 0:100 de amonio a nitrato.

References

Barker, A. V., & Pilbeam, D. J. (2015). Handbook of plant nutrition (2nd ed.). CRC Press. https://doi.org/10.1201/b18458

Bar-Yosef, B., Mattson, N. S., & Lieth, H. J. (2009). Effects of NH4:NO3:Urea ratio on cut roses yield, leaf nutrients content and proton efflux by roots in closed hydroponic system. Scientia Horticulturae, 122(4), 610–619. https://doi.org/10.1016/j.scienta.2009.06.019

Bremner, J. M., & Mulvaney, C. S. (1982). Nitrogen-total. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of soil analysis. Part 2. Chemical and microbiological properties (pp. 595–624). American Society of Agronomy, Soil Science Society of America, Inc. Book Series. https://acsess.onlinelibrary.wiley.com/doi/book/10.2134/agronmonogr9.2.2ed

Cataldo, D. A., Maroon, M., Schrader, L. E., & Youngs, V. L. (1975). Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Communications in Soil Science and Plant Analysis. 6(1), 71−80. https://doi.org/10.1080/00103627509366547

Corrêa, R. M., Pinto, J. E. B. P., Pinto, C. A. B. P., Faquin, V., Reis, E. S., Monteiro, A. B., & Dyer. W. E. (2008). A comparison of potato seed tuber yields in beds, pots and hydroponic systems. Scientia Horticulturae, 116(1), 17–20. https://doi.org/10.1016/j.scienta.2007.10.031

Dai, Z., Fei, L., Huang, D., Zeng, J., Chen, L., & Cai, Y. (2019). Coupling effects of irrigation and nitrogen levels on yield, water and nitrogen use efficiency of surge-root irrigated jujube in a semiarid region. Agricultural Water Management, 213, 146−154. https://doi.org/10.1016/j.agwat.2018.09.035

De Kreij, C., Voogt, W., & Baas, R. (2003). Nutrient solutions and water quality for soilless cultures. Research Station for Floriculture and Greenhouse Vegetables. https://edepot.wur.nl/273945

Emami, A. (1996). Methods of chemical analysis of plant. Technical publication, No. 982 (Vol. 1, pp. 91–128). Soil and Water Research Institute, Tehran.

Guo, X. R., Zu, Y. G., & Tang, Z. H. (2012). Physiological responses of Catharanthus roseus to different nitrogen forms. Acta Physiologiae Plantarum, 34, 589–598. https://doi.org/10.1007/s11738-011-0859-9

Helali, S. M., Nebli, H., Kaddour, R., Mahmoudi, H., Lachaâl, M., & Ouerghi, Z. (2010). Influence of nitrate-ammonium ratio on growth and nutrition of Arabidopsis thaliana. Plant and Soil, 336, 65–74. https://doi.org/10.1007/s11104-010-0445-8

Hopkins, W. G. (1999). Introduction to plant physiology. John Wiley and Sons.

Hosseini Farahi, M., Kholdbarin, B., & Eshghi, S. (2014). Effect of NO3-:NH4+:Urea ratio in nutrient solution on mineral nutrient concentration and vase life of rose (Rosa hybrid L.) cut flower in soilless culture. Journal of Greenhouse Crop Science and Technology, 5(3), 133–146. https://jspi.iut.ac.ir/article-1-792-en.html&sw=Hosseini+Farahi

Konnerup, D., & Brix, H. (2010). Nitrogen nutrition of Canna indica: Effects of ammonium versus nitrate on growth, biomass allocation, photosynthesis, nitrate reductase activity and N uptake rates. Aquatic Botany, 92(2), 142−148. https://doi.org/10.1016/j.aquabot.2009.11.004

Kozlowski, T. T. (1985). Tree growth in response to environmental stresses. Arboricultural Journal, 11, 97–111. https://doi.org/10.48044/jauf.1985.023

Kronzucker, H. J., Glass, A. D. M., & Siddiqi, M. Y. (1999). Inhibition of nitrate uptake by ammonium in barley: Analysis of component fluxes. Plant Physiology, 120(1), 283–292. https://doi.org/10.1104/pp.120.1.283

Liu, G., Du, Q., & Li, J. (2017). Interactive effects of nitrate-ammonium ratios and temperatures on growth, photosynthesis, and nitrogen metabolism of tomato seedlings. Scientia Horticulturae, 214, 41–50. https://doi.org/10.1016/j.scienta.2016.09.006

Mancosu, N., Snyder, R. L., Kyriakakis, G., & Spano, D. (2015). Water scarcity and future challenges for food production. Water, 7, 975−992. https://doi.org/10.3390/w7030975

Marques, G., Aleixo, D., & Pitarma, R. (2019). Enhanced hydroponic agriculture environmental monitoring: An Internet of Things approach. In J. M. F. Rodrigues, P. J. S. Cardoso, J. Monteiro, R. Lam, V. V. Krzhizhanovskaya, M. H. Lees, J. J. Dongarra, & P. M. A. Sloot (Eds.), Computational science – ICCS 2019 (pp. 658–669). Springer International Publishing. https://doi.org/10.1007/978-3-030-22744-9_51

Marschner, P. (2012). Mineral nutrition of higher plants. Academic Press.

Na, L., Li, Z., Xiangxiang, M., & Ara, N., Jinghua, Y., & Mingfang, Z. (2014). Effect of nitrate/ammonium ratios on growth, root morphology and nutrient elements uptake of watermelon (Citrullus lanatus) seedlings. Journal of Plant Nutrition, 37(11), 1859–1872. http://dx.doi.org/10.1080/01904167.2014.911321

Nelson, D. W. (1983). Determination of ammonium in KCl extracts of soils by the salicylate method. Communications in Soil Science and Plant Analysis, 14(11), 1051−1062. https://doi.org/10.1080/00103628309367431

Pradhan, B., & Deo, B. (2019). Soilless farming − The next generation green revolution. Current Science, 116, 728–732. https://doi.org/10.18520/cs%2Fv116%2Fi5%2F728-732

Prinsi, B., Negrini, N., Morgutti, S., & Espen, L. (2020). Nitrogen starvation and nitrate or ammonium availability differently affect phenolic composition in green and purple basil. Agronomy, 10(4), Article 498. https://doi.org/10.3390/agronomy10040498

Roosta, H. R. (2014). Effect of ammonium: Nitrate ratios in the response of strawberry to alkalinity in hydroponics. Journal of Plant Nutrition, 37(10), 1676–1689. https://doi.org/10.1080/01904167.2014.888749

Tabatabaei, S . J., Yusefi, M., & Hajiloo, J. (2008). Effects of shading and NO3:NH4 ratio on the yield, quality and N metabolism in strawberry. Scientia Horticulturae, 116(3), 264−272. https://doi.org/10.1016/j.scienta.2007.12.008

Tschoep, H., Gibon, Y., Carillo, P., Armengaud, P., Szecowka, M., Nunes-Nesi, A., Fernie, A. R., Koehl, K., & Stitt, M. (2009). Adjustment of growth and central metabolism to a mild but sustained nitrogen-limitation in Arabidopsis. Plant, Cell & Environment, 32(3), 300–318. https://doi.org/10.1111/j.1365-3040.2008.01921.x

Varlagas, H., Savvas, D., Mouzakis, G., Liotsos, C., Karapanos, I., & Sigrimis, N. (2010). Modelling uptake of Na+ and Cl- by tomato in closed-cycle cultivation systems as influenced by irrigation water salinity. Agricultural Water Management, 97(9), 1242−1250. https://doi.org/10.1016/j.agwat.2010.03.004

Zhu, Z. B., Yu, M., Chen, Y., Guo, Q., Zhang, L., Shi, H., & Liu, L. (2014). Effects of ammonium to nitrate ratio on growth, nitrogen metabolism, photosynthetic and bioactive phytochemical production of Prunella vulgaris. Pharmaceutical Biology, 52(12), 1518–1525. https://doi.org/10.3109/13880209.2014.902081

Zhang, J., Lv, J., Dawuda, M. M., Xie, J., Yu, J., Li, J., Zhang, X., Tang, C., Wang, C., & Gan, Y. (2019). Appropriate ammonium-nitrate ratio improves nutrient accumulation and fruit quality in pepper (Capsicum annuum L.). Agronomy, 9(11), Article 683. https://doi.org/10.3390/agronomy9110683

Zhonghua, T., Yanju, L., Xiaorui, G., & Yuangang, Z. (2011). The combined efects of salinity and nitrogen forms on Catharanthus roseus: The role of internal ammonium and free amino acids during salt stress. Journal of Plant Nutrition and Soil Science,174(1), 135−144. https://doi.org/10.1002/jpln.200900354

How to Cite

APA

Khalaj , M. A., Koozehgar Kaleji, M. and Beyramizadeh, E. (2024). Calcium and nitrogen concentrations and distribution in gerbera plants as affected by nitrogen forms. Agronomía Colombiana, 42(3), e117110. https://doi.org/10.15446/agron.colomb.v42n3.117110

ACM

[1]
Khalaj , M.A., Koozehgar Kaleji, M. and Beyramizadeh, E. 2024. Calcium and nitrogen concentrations and distribution in gerbera plants as affected by nitrogen forms. Agronomía Colombiana. 42, 3 (Sep. 2024), e117110. DOI:https://doi.org/10.15446/agron.colomb.v42n3.117110.

ACS

(1)
Khalaj , M. A.; Koozehgar Kaleji, M.; Beyramizadeh, E. Calcium and nitrogen concentrations and distribution in gerbera plants as affected by nitrogen forms. Agron. Colomb. 2024, 42, e117110.

ABNT

KHALAJ , M. A.; KOOZEHGAR KALEJI, M.; BEYRAMIZADEH, E. Calcium and nitrogen concentrations and distribution in gerbera plants as affected by nitrogen forms. Agronomía Colombiana, [S. l.], v. 42, n. 3, p. e117110, 2024. DOI: 10.15446/agron.colomb.v42n3.117110. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/117110. Acesso em: 23 apr. 2025.

Chicago

Khalaj , Mohammad Ali, Mostafa Koozehgar Kaleji, and Ebrahim Beyramizadeh. 2024. “Calcium and nitrogen concentrations and distribution in gerbera plants as affected by nitrogen forms”. Agronomía Colombiana 42 (3):e117110. https://doi.org/10.15446/agron.colomb.v42n3.117110.

Harvard

Khalaj , M. A., Koozehgar Kaleji, M. and Beyramizadeh, E. (2024) “Calcium and nitrogen concentrations and distribution in gerbera plants as affected by nitrogen forms”, Agronomía Colombiana, 42(3), p. e117110. doi: 10.15446/agron.colomb.v42n3.117110.

IEEE

[1]
M. A. Khalaj, M. Koozehgar Kaleji, and E. Beyramizadeh, “Calcium and nitrogen concentrations and distribution in gerbera plants as affected by nitrogen forms”, Agron. Colomb., vol. 42, no. 3, p. e117110, Sep. 2024.

MLA

Khalaj , M. A., M. Koozehgar Kaleji, and E. Beyramizadeh. “Calcium and nitrogen concentrations and distribution in gerbera plants as affected by nitrogen forms”. Agronomía Colombiana, vol. 42, no. 3, Sept. 2024, p. e117110, doi:10.15446/agron.colomb.v42n3.117110.

Turabian

Khalaj , Mohammad Ali, Mostafa Koozehgar Kaleji, and Ebrahim Beyramizadeh. “Calcium and nitrogen concentrations and distribution in gerbera plants as affected by nitrogen forms”. Agronomía Colombiana 42, no. 3 (September 1, 2024): e117110. Accessed April 23, 2025. https://revistas.unal.edu.co/index.php/agrocol/article/view/117110.

Vancouver

1.
Khalaj MA, Koozehgar Kaleji M, Beyramizadeh E. Calcium and nitrogen concentrations and distribution in gerbera plants as affected by nitrogen forms. Agron. Colomb. [Internet]. 2024 Sep. 1 [cited 2025 Apr. 23];42(3):e117110. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/117110

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

17

Downloads