Calcium and nitrogen concentrations and distribution in gerbera plants as affected by nitrogen forms
Concentraciónes y distribución de calcio y nitrógeno en plantas de gerbera, afectadas por las formas de nitrógeno
DOI:
https://doi.org/10.15446/agron.colomb.v42n3.117110Keywords:
cut flowers, leaf nitrogen content, ratio of ammonium to nitrate (en)flores del corte, contenido de nitrógeno en las hojas, relación de amonio a nitrato (es)
Downloads
Ammonium and nitrate are the two forms of nitrogen necessary for the development, metabolism, and key processes in plants. The effects of ammonium to nitrate ratio on gerbera plants and their significance in post-harvest vase life are still poorly understood. This study aimed to investigate how different nutrient solutions affect nutrient levels in various plant organs. The experiment was conducted using a completely randomized design with three replicates at the National Research Institute of Flowers and Ornamental Plants in Mahallat City, Iran, in 2018. The factors studied were the four ratios of ammonium to nitrate: 0:100, 20:80, 40:60, and 60:40, and two gerbera varieties: Stanza and Double Dutch. The results showed that nitrogen content in different plant organs (roots, stem, and leaves) increased with higher concentrations of ammonium in the nutrient solutions. The highest nitrogen content in the roots of gerbera was observed 35 d after the first flowering stem appeared, with a concentration of 4.38 mg N g-1 dry weight in the 60:40 ratio of ammonium to nitrate. The lowest nitrogen content was found in the flowering stem at the time of harvest, with 2.00 mg N g-1 dry weight in the 0:100 ratio of ammonium to nitrate.
El amonio y el nitrato son las dos formas de nitrógeno necesarias para el desarrollo, el metabolismo y los procesos clave en las plantas. Los efectos de la proporción de amonio a nitrato en las plantas de gerbera y su importancia en la vida postcosecha en flores de corte aún son poco conocidos. Este estudio tuvo como objetivo investigar cómo diferentes soluciones nutritivas afectan los niveles de nutrientes en varios órganos de las plantas. El experimento se llevó a cabo utilizando un diseño completamente aleatorizado con tres repeticiones en el Instituto Nacional de Investigación de Flores y Plantas Ornamentales en la ciudad de Mahalat, Irán, en 2018. Los factores estudiados fueron las cuatro proporciónes de amonio a nitrato: 0:100, 20:80, 40:60 y 60:40, y dos variedades de flores de gerbera: Stanza y Double Dutch. Los resultados mostraron que los niveles de nitrógeno en los diferentes órganos de la planta (raíces, tallo y hojas) aumentaron con concentraciones más altas de amonio en las soluciones nutritivas. El contenido más alto de nitrógeno en las raíces de las flores de gerbera se observó 35 d después de la aparición del primer tallo floral, con una concentración de 4,38 mg N g-1 peso seco en la proporción de 60:40 de amonio a nitrato. El contenido más bajo de nitrógeno se encontró en el tallo floral al momento de la cosecha, con 2,00 mg N g-1 peso seco en la proporción de 0:100 de amonio a nitrato.
References
Barker, A. V., & Pilbeam, D. J. (2015). Handbook of plant nutrition (2nd ed.). CRC Press. https://doi.org/10.1201/b18458
Bar-Yosef, B., Mattson, N. S., & Lieth, H. J. (2009). Effects of NH4:NO3:Urea ratio on cut roses yield, leaf nutrients content and proton efflux by roots in closed hydroponic system. Scientia Horticulturae, 122(4), 610–619. https://doi.org/10.1016/j.scienta.2009.06.019
Bremner, J. M., & Mulvaney, C. S. (1982). Nitrogen-total. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of soil analysis. Part 2. Chemical and microbiological properties (pp. 595–624). American Society of Agronomy, Soil Science Society of America, Inc. Book Series. https://acsess.onlinelibrary.wiley.com/doi/book/10.2134/agronmonogr9.2.2ed
Cataldo, D. A., Maroon, M., Schrader, L. E., & Youngs, V. L. (1975). Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Communications in Soil Science and Plant Analysis. 6(1), 71−80. https://doi.org/10.1080/00103627509366547
Corrêa, R. M., Pinto, J. E. B. P., Pinto, C. A. B. P., Faquin, V., Reis, E. S., Monteiro, A. B., & Dyer. W. E. (2008). A comparison of potato seed tuber yields in beds, pots and hydroponic systems. Scientia Horticulturae, 116(1), 17–20. https://doi.org/10.1016/j.scienta.2007.10.031
Dai, Z., Fei, L., Huang, D., Zeng, J., Chen, L., & Cai, Y. (2019). Coupling effects of irrigation and nitrogen levels on yield, water and nitrogen use efficiency of surge-root irrigated jujube in a semiarid region. Agricultural Water Management, 213, 146−154. https://doi.org/10.1016/j.agwat.2018.09.035
De Kreij, C., Voogt, W., & Baas, R. (2003). Nutrient solutions and water quality for soilless cultures. Research Station for Floriculture and Greenhouse Vegetables. https://edepot.wur.nl/273945
Emami, A. (1996). Methods of chemical analysis of plant. Technical publication, No. 982 (Vol. 1, pp. 91–128). Soil and Water Research Institute, Tehran.
Guo, X. R., Zu, Y. G., & Tang, Z. H. (2012). Physiological responses of Catharanthus roseus to different nitrogen forms. Acta Physiologiae Plantarum, 34, 589–598. https://doi.org/10.1007/s11738-011-0859-9
Helali, S. M., Nebli, H., Kaddour, R., Mahmoudi, H., Lachaâl, M., & Ouerghi, Z. (2010). Influence of nitrate-ammonium ratio on growth and nutrition of Arabidopsis thaliana. Plant and Soil, 336, 65–74. https://doi.org/10.1007/s11104-010-0445-8
Hopkins, W. G. (1999). Introduction to plant physiology. John Wiley and Sons.
Hosseini Farahi, M., Kholdbarin, B., & Eshghi, S. (2014). Effect of NO3-:NH4+:Urea ratio in nutrient solution on mineral nutrient concentration and vase life of rose (Rosa hybrid L.) cut flower in soilless culture. Journal of Greenhouse Crop Science and Technology, 5(3), 133–146. https://jspi.iut.ac.ir/article-1-792-en.html&sw=Hosseini+Farahi
Konnerup, D., & Brix, H. (2010). Nitrogen nutrition of Canna indica: Effects of ammonium versus nitrate on growth, biomass allocation, photosynthesis, nitrate reductase activity and N uptake rates. Aquatic Botany, 92(2), 142−148. https://doi.org/10.1016/j.aquabot.2009.11.004
Kozlowski, T. T. (1985). Tree growth in response to environmental stresses. Arboricultural Journal, 11, 97–111. https://doi.org/10.48044/jauf.1985.023
Kronzucker, H. J., Glass, A. D. M., & Siddiqi, M. Y. (1999). Inhibition of nitrate uptake by ammonium in barley: Analysis of component fluxes. Plant Physiology, 120(1), 283–292. https://doi.org/10.1104/pp.120.1.283
Liu, G., Du, Q., & Li, J. (2017). Interactive effects of nitrate-ammonium ratios and temperatures on growth, photosynthesis, and nitrogen metabolism of tomato seedlings. Scientia Horticulturae, 214, 41–50. https://doi.org/10.1016/j.scienta.2016.09.006
Mancosu, N., Snyder, R. L., Kyriakakis, G., & Spano, D. (2015). Water scarcity and future challenges for food production. Water, 7, 975−992. https://doi.org/10.3390/w7030975
Marques, G., Aleixo, D., & Pitarma, R. (2019). Enhanced hydroponic agriculture environmental monitoring: An Internet of Things approach. In J. M. F. Rodrigues, P. J. S. Cardoso, J. Monteiro, R. Lam, V. V. Krzhizhanovskaya, M. H. Lees, J. J. Dongarra, & P. M. A. Sloot (Eds.), Computational science – ICCS 2019 (pp. 658–669). Springer International Publishing. https://doi.org/10.1007/978-3-030-22744-9_51
Marschner, P. (2012). Mineral nutrition of higher plants. Academic Press.
Na, L., Li, Z., Xiangxiang, M., & Ara, N., Jinghua, Y., & Mingfang, Z. (2014). Effect of nitrate/ammonium ratios on growth, root morphology and nutrient elements uptake of watermelon (Citrullus lanatus) seedlings. Journal of Plant Nutrition, 37(11), 1859–1872. http://dx.doi.org/10.1080/01904167.2014.911321
Nelson, D. W. (1983). Determination of ammonium in KCl extracts of soils by the salicylate method. Communications in Soil Science and Plant Analysis, 14(11), 1051−1062. https://doi.org/10.1080/00103628309367431
Pradhan, B., & Deo, B. (2019). Soilless farming − The next generation green revolution. Current Science, 116, 728–732. https://doi.org/10.18520/cs%2Fv116%2Fi5%2F728-732
Prinsi, B., Negrini, N., Morgutti, S., & Espen, L. (2020). Nitrogen starvation and nitrate or ammonium availability differently affect phenolic composition in green and purple basil. Agronomy, 10(4), Article 498. https://doi.org/10.3390/agronomy10040498
Roosta, H. R. (2014). Effect of ammonium: Nitrate ratios in the response of strawberry to alkalinity in hydroponics. Journal of Plant Nutrition, 37(10), 1676–1689. https://doi.org/10.1080/01904167.2014.888749
Tabatabaei, S . J., Yusefi, M., & Hajiloo, J. (2008). Effects of shading and NO3:NH4 ratio on the yield, quality and N metabolism in strawberry. Scientia Horticulturae, 116(3), 264−272. https://doi.org/10.1016/j.scienta.2007.12.008
Tschoep, H., Gibon, Y., Carillo, P., Armengaud, P., Szecowka, M., Nunes-Nesi, A., Fernie, A. R., Koehl, K., & Stitt, M. (2009). Adjustment of growth and central metabolism to a mild but sustained nitrogen-limitation in Arabidopsis. Plant, Cell & Environment, 32(3), 300–318. https://doi.org/10.1111/j.1365-3040.2008.01921.x
Varlagas, H., Savvas, D., Mouzakis, G., Liotsos, C., Karapanos, I., & Sigrimis, N. (2010). Modelling uptake of Na+ and Cl- by tomato in closed-cycle cultivation systems as influenced by irrigation water salinity. Agricultural Water Management, 97(9), 1242−1250. https://doi.org/10.1016/j.agwat.2010.03.004
Zhu, Z. B., Yu, M., Chen, Y., Guo, Q., Zhang, L., Shi, H., & Liu, L. (2014). Effects of ammonium to nitrate ratio on growth, nitrogen metabolism, photosynthetic and bioactive phytochemical production of Prunella vulgaris. Pharmaceutical Biology, 52(12), 1518–1525. https://doi.org/10.3109/13880209.2014.902081
Zhang, J., Lv, J., Dawuda, M. M., Xie, J., Yu, J., Li, J., Zhang, X., Tang, C., Wang, C., & Gan, Y. (2019). Appropriate ammonium-nitrate ratio improves nutrient accumulation and fruit quality in pepper (Capsicum annuum L.). Agronomy, 9(11), Article 683. https://doi.org/10.3390/agronomy9110683
Zhonghua, T., Yanju, L., Xiaorui, G., & Yuangang, Z. (2011). The combined efects of salinity and nitrogen forms on Catharanthus roseus: The role of internal ammonium and free amino acids during salt stress. Journal of Plant Nutrition and Soil Science,174(1), 135−144. https://doi.org/10.1002/jpln.200900354
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2024 Agronomía Colombiana

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)

Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.