Morphological characterization of tropical maize (Zea mays L.) inbred lines
Caracterización morfológica de líneas endocriadas de maíz (Zea mays L.) de origen tropical
DOI:
https://doi.org/10.15446/agron.colomb.v43n1.117140Keywords:
plant physiology, plant growth, plant morphology (en)fisiología vegetal, crecimiento vegetal, morfología vegetal (es)
Downloads
Morphological traits expressed by plants result from genotype, the environment where they grow, and the interaction between genotype and environment. These traits are expressed according to the plant’s physiological responses to various environmental stimuli. A comparative evaluation was conducted on the main morphological traits of 20 inbred lines from Semillas Valle S.A. hybrid maize breeding program in Colombia. Correlations were found between some traits using a principal component analysis (PCA), where the two main components were plotted in a two-dimensional scatter diagram, and the results were corroborated using Pearson’s correlation coefficient. Significant relationships were observed between male flowering time (DTT) and female flowering time (DTS), between plant height (PH) and ear height (EH), and between plant height (PH) and the internode number (IN). No relationships were found between ear height (EH) and number of rows (NR), or between ear weight (EW) and leaf length (LL) or seed index (SI).
Los rasgos morfológicos expresados por las plantas son la respuesta a su genotipo, el ambiente donde se desarrollan y la interacción del genotipo y el ambiente. Dichos rasgos se expresan de acuerdo con las respuestas fisiológicas de las plantas a los distintos estímulos ambientales. Se realizó una evaluación comparativa de los principales rasgos morfológicos de 20 líneas endocriadas pertenecientes al programa de mejoramiento de maíz híbrido de Semillas Valle S.A. en Colombia. Se encontraron correlaciones entre algunos de los rasgos evaluados a partir de un análisis de componentes principales (ACP), cuyos dos principales componentes fueron graficados en un diagrama de dispersión de dos dimensiones, y sus resultados corroborados a partir de un coeficiente de correlación de Pearson. Se observaron relaciones significativas entre tiempos de floración masculina (DFM) y femenina (DFF), entre altura de la planta (AP) y altura de la mazorca (AM), y entre la altura de la planta (AP) y el número de entrenudos (NE). No se encontraron relaciones entre la altura de la mazorca (AM) y el número de hileras (NHM) ni entre el peso de mazorca (PM) y la longitud de hojas (LH) o el índice de semilla (IS).
References
Ali, Q., Ali, A., Ahsan, M., Ali, S., Khan, N. H., Muhammad, S., Abbas, H. G., Nasir, I. A., & Husnain, T. (2014). Line × tester analysis for morpho-physiological traits of Zea mays L. seedlings. Advancements in Life Sciences, 1(4), 242–253.
Al-Kaisi, M., Brun, L. J., & Enz, J. W. (1989). Transpiration and evapotranspiration from maize as related to leaf area index. Agricultural and Forest Meteorology, 48(1–2), 111–116. https://doi.org/10.1016/0168-1923(89)90010-5 DOI: https://doi.org/10.1016/0168-1923(89)90010-5
Bennouna, B., Lahrouni, A., Bethenod, O., Fournier, C., Andrieu, B., & Khabba, S. (2004). Development of maize internode under drought stress. Journal of Agronomy, 3(2), 94–102. https://doi.org/10.3923/ja.2004.94.102 DOI: https://doi.org/10.3923/ja.2004.94.102
Bos, H. J., Tijani-Eniola, H., & Struik, P. C. (2000). Morphological analysis of leaf growth of maize: Responses to temperature and light intensity. NJAS: Wageningen Journal of Life Sciences, 48(2), 181–198. https://doi.org/10.1016/S1573-5214(00)80013-5 DOI: https://doi.org/10.1016/S1573-5214(00)80013-5
Carpici, E. B., & Celik, N. (2010). Determining possible relationships between yield and yield related components in forage maize (Zea mays L.) using correlation and path analyses. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38(3), 280–285. https://www.notulaebotanicae.ro/index.php/nbha/article/view/5431
El-Abady, M. I. (2015). Influence of maize seed size/shape planted at different depths and temperatures on seed emergence and seedling vigor. Research Journal of Seed Science, 8(1), 1–11. https://scialert.net/abstract/?doi=rjss.2015.1.11 DOI: https://doi.org/10.3923/rjss.2015.1.11
Govaerts, B., Vega, D., Chavez, X., Narro, L., San Vicente, F. M., Palacios, N., Pérez, M., González, G., Ortega, P., Carvajal, A., Arcos, A. L., Bolaños, J., Romero, N., Bolaños, J., Vanegas, Y. F., Echeverria, R., Jarvis, A., Jiménez, D., Ramirez-Villegas, J., ..., & Tapasco, J. (2019). Maíz para Colombia: Visión 2030. https://fenalce.co/wp-content/uploads/2021/10/Maiz-para-Colombia.pdf
Guzmán, M., Díaz, D., Ramis, C., Figueroa-Ruiz, R., & Jiménez, R. (2017). Estimación de la aptitud combinatoria y heterosis en híbridos no convencionales de maíz con alto contenido de proteína. Bioagro, 29(3), 175–184. https://ve.scielo.org/scielo.php?pid=S1316-33612017000300003&script=sci_arttext
International Board for Plant Genetic Resources (IBPGR), & International Maize and Wheat Improvement Center (CIMMYT). (1991). Descriptors for maize. International Maize and Wheat Improvement Center; International Board for Plant Genetic Resources. https://cropgenebank.sgrp.cgiar.org/images/file/learning_space/descriptors_maize.pdf
Izzam, A., Rehman, H., Amir, S., Ali, S. M., Manzoor, M., & Hussain, Q. (2017). Genetic variability and correlation studies for morphological and yield traits in maize (Zea mays L.). Pure and Applied Biology, 6(4), 1234–1243. https://doi.org/10.19045/bspab.2017.600131 DOI: https://doi.org/10.19045/bspab.2017.600131
Jiufeng, G., Guoqin, S., Jinpeng, Z., & Guoying, W. (2008). Genetic analysis and QTL mapping of maize yield and associated agronomic traits under semi-arid land condition. African Journal of Biotechnology, 7(12), 1829–1838. https://doi.org/10.5897/AJB2008.000-5031 DOI: https://doi.org/10.5897/AJB2008.000-5031
Kandel, M., Ghimire, S. K., Ojha, B. R., & Shrestha, J. (2018). Correlation and path coefficient analysis for grain yield and its attributing traits of maize inbred lines (Zea mays L.) under heat stress condition. International Journal of Agriculture, Environment and Food Sciences, 2(4), 124–130. https://doi.org/10.31015/jaefs.18021 DOI: https://doi.org/10.31015/jaefs.18021
Ku, L. X., Zhang, J., Guo, S. L., Liu, H. Y., Zhao, R. F., & Chen, Y. H. (2012). Integrated multiple population analysis of leaf architecture traits in maize (Zea mays L.). Journal of Experimental Botany, 63(1), 261–274. https://doi.org/10.1093/jxb/err277 DOI: https://doi.org/10.1093/jxb/err277
Lambert, R. J., & Johnson, R. R. (1978). Leaf angle, tassel morphology, and the performance of maize hybrids. Crop Science, 18(3), 499–502. https://doi.org/10.2135/cropsci1978.0011183X001800030037x DOI: https://doi.org/10.2135/cropsci1978.0011183X001800030037x
Li, C., Li, Y., Shi, Y., Song, Y., Zhang, D., Buckler, E. S., Zhang, Z., Wang, T., & Li, Y. (2015). Genetic control of the leaf angle and leaf orientation value as revealed by ultra-high density maps in three connected maize populations. PLoS ONE, 10(3), Article e0121624. https://doi.org/10.1371/journal.pone.0121624 DOI: https://doi.org/10.1371/journal.pone.0121624
Masood, M., Ahsan, M., Sadaqat, H. A., & Awan, F. (2020). Screening of maize (Zea mays L.) inbred lines under water deficit conditions. Biological and Clinical Sciences Research Journal, 2020(1), Article 7. https://doi.org/10.54112/bcsrj.v2020i1.7 DOI: https://doi.org/10.54112/bcsrj.v2020i1.7
Milander, J. J. (2015). Maize yield and components as influenced by environment and agronomic management [Master thesis, University of Nebraska–Lincoln]. https://digitalcommons.unl.edu/agronhortdiss/86
Nielsen, R. L. (2004). Grain fill stages in corn. Corny News Network, Purdue University. https://www.agry.purdue.edu/ext/corn/news/articles.04/grainfill-0705.pdf
Novacek, M. J., Mason, S. C., Galusha, T. D., & Yaseen, M. (2013). Twin rows minimally impact irrigated maize yield, morphology, and lodging. Agronomy Journal, 105(1), 268–276. https://doi.org/10.2134/agronj2012.0301 DOI: https://doi.org/10.2134/agronj2012.0301
Ottaviano, E., & Camussi, A. (1981). Phenotypic and genetic relationships between yield components in maize. Euphytica, 30(3), 601–609. https://doi.org/10.1007/BF00038787 DOI: https://doi.org/10.1007/BF00038787
Peng, B., Li, Y., Wang, Y., Liu, C., Liu, Z., Tan, W., Zhang, Y., Wang, D., Shi, Y., Sun, B., Song, Y., Wang, T., & Li, Y. (2011). QTL analysis for yield components and kernel-related traits in maize across multi-environments. Theoretical and Applied Genetics, 122(7), 1305–1320. https://doi.org/10.1007/s00122-011-1532-9 DOI: https://doi.org/10.1007/s00122-011-1532-9
Pinnisch, R., Mowers, R., Trumpy, H., Walejko, R., & Bush, D. (2012). Evaluation of maize (Zea mays L.) inbred lines for yield component traits and kernel morphology. Maydica, 57(1), 1–5. https://core.ac.uk/download/pdf/230660846.pdf
R Core Team. (2023). R: A language and environment for statistical computing (Version 4.3.0) [Computer software]. R Foundation for Statistical Computing. https://www.r-project.org/
Ritchie, S. W., Hanway, J. J., & Benson, G. O. (1986). How a corn plant develops (Special Report No. 48). Iowa State University of Science and Technology. https://publications.iowa.gov/18027/1/How%20a%20corn%20plant%20develops001.pdf
Robertson, M. J. (1994). Relationships between internode elongation, plant height and leaf appearance in maize. Field Crops Research, 38(3), 135–145. https://doi.org/10.1016/0378-4290(94)90085-X DOI: https://doi.org/10.1016/0378-4290(94)90085-X
RStudio Team. (2023). RStudio: Integrated development environment for R (Version 2024.09.0) [Computer software]. PositRStudio, PBC. https://posit.co/download/rstudio-desktop/
Seka, D., Bonny, B. S., Adjoumani, K., Alla Eby, Y. G. H., Yoboué, A. N., Sia, R. S., & Adepo-Gourene, B. A. (2019). Inheritance of maize (Zea mays L.) leaf traits. International Journal of Genetics and Molecular Biology, 11(2), 41–49. https://doi.org/10.5897/IJGMB2019.0184 DOI: https://doi.org/10.5897/IJGMB2019.0184
Smith, C. W., Beltrán, J., & Runge, E. C. A. (Eds.). (2004). Corn: Origin, history, technology, and production. John Wiley & Sons. https://www.wiley.com/en-us/Corn%3A+Origin%2C+History%2C+Technology%2C+and+Production-p-9780471411840
Srinivas, T., Bhashyam, M. K., Chand, N., Bhattacharya, S., Murthy, S. S., & Narasimha, H. V. (1991). Relationship of cob characters with grain morphology in maize (Zea mays, Poaceae). Economic Botany, 45(4), 503–510. https://www.jstor.org/stable/4255393 DOI: https://doi.org/10.1007/BF02930714
Stevens, S. J., Stevens, E. J., Lee, K. W., Flowerday, A. D., & Gardner, C. O. (1986). Organogenesis of the staminate and pistillate inflorescences of pop and dent corns: Relationship to leaf stages. Crop Science, 26(4), 712–718. https://doi.org/10.2135/cropsci1986.0011183X002600040016x DOI: https://doi.org/10.2135/cropsci1986.0011183X002600040016x
Vidal-Martínez, V. A., Clegg, M. D., Johnson, B. E., Osuna-García, J. A., & Coutiño-Estrada, B. (2004). Phenotypic plasticity and pollen production components in maize. Agrociencia, 38(3), 273–284. https://www.redalyc.org/pdf/302/30238302.pdf
Wickham, H. (2016). Ggplot2: Elegant graphics for data analysis (2nd ed.). Springer International Publishing. https://cran.r-project.org/web/packages/ggplot2/index.html
Xue, J., Gao, S., Fan, Y., Li, L., Ming, B., Wang, K., Xie, R., Hou, P., & Li, S. (2020). Traits of plant morphology, stalk mechanical strength, and biomass accumulation in the selection of lodging- resistant maize cultivars. European Journal of Agronomy, 117, Article 126073. https://doi.org/10.1016/j.eja.2020.126073 DOI: https://doi.org/10.1016/j.eja.2020.126073
Zhang, H., Lu, Y., Ma, Y., Fu, J., & Wang, G. (2021). Genetic and molecular control of grain yield in maize. Molecular Breeding, 41(3), Article 18. https://doi.org/10.1007/s11032-021-01214-3 DOI: https://doi.org/10.1007/s11032-021-01214-3
Zilic, S., Milasinovic, M., Terzic, D., Barac, M., & Ignjatovic-Micic, D. (2011). Grain characteristics and composition of maize specialty hybrids. Spanish Journal of Agricultural Research, 9(1), 230–241. https://doi.org/10.5424/sjar/20110901-053-10 DOI: https://doi.org/10.5424/sjar/20110901-053-10
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2025 Agronomía Colombiana

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)

Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.







