Native mycorrhization of onion in response to the application of bioinoculants, inorganic fertilization, and water deficit
Micorrización nativa de la cebolla en respuesta a la aplicación de bioinoculantes, fertilización inorgánica y déficit hídrico
DOI:
https://doi.org/10.15446/agron.colomb.v42n3.117329Keywords:
Allium cepa, mycorrhizae, plant-microorganism interactions, plant growth promoting microorganisms- PGPM, water stress. (en)Allium cepa, micorrizas, interacción planta-microorganismo, microorganismos promotores del crecimiento vegetal-MPCV, estrés hídrico (es)
Downloads
Arbuscular mycorrhizal fungi are important components of the soil microbiota which interact with other beneficial microorganisms in the rhizosphere. The synergistic effect of this naturally occurring association between the soil and introduced microorganisms to improve growth and to cope with biotic and abiotic stresses plays a key role in crop productivity. In this research, the native mycorrhizal colonization of onion (Allium cepa L.) was evaluated in the presence of a plant growth promoting microbial consortium (MC), under inorganic fertilization and water deficit regimes, in a semiarid region of the Venezuelan Andes. The main objectives were to determine the colonization potential of arbuscular mycorrhizae and to quantify the presence of mycorrhizal spores in soil under field conditions. An onion crop was established with normal irrigation (NIr) (100% ETc) and water deficit (WD) (67% ETc), with different fertilization treatments (MC with 0%, 50%, and 100% NPK). Native mycorrhizal colonization was determined by counting vesicles and arbuscules in the roots of onion plants in all treatments, and mycorrhizal spores in the soil of the experimental plot were quantified before and after the trial in the rhizospheric soil for each treatment. The treatments showed no significant differences in native mycorrhizal colonization, but the soil spore count was higher in the MC 100% NPK NIr treatment. Additionally, the mechanization of the plot significantly reduced the presence of mycorrhizae in the soil, suggesting that greater implementation of non-conventional practices could improve preservation of biodiversity and increase soil health through agricultural management.
Los hongos micorrízicos arbusculares son componentes importantes de la microbiota del suelo e interactúan con otros microorganismos benéficos en la rizósfera. El efecto sinérgico de esta asociación que se produce de forma natural en el suelo y los microorganismos introducidos para mejorar el crecimiento, combatir el estrés biótico y abiótico desempeña un papel clave en la productividad de los cultivos. En esta investigación se evaluó la colonización micorrízica nativa de la cebolla (Allium cepa L.) en presencia de un consorcio microbiano (CM) promotor del crecimiento vegetal, bajo un régimen de fertilización inorgánica y déficit hídrico, en una zona de cultivo semiárida en los Andes venezolanos. Los objetivos principales fueron determinar la colonización de micorrizas arbusculares y cuantificar la presencia de esporas micorrízicas en el suelo en condiciones de campo. Se estableció un cultivo de cebolla con riego normal (IrN) (100% ETc) y déficit hídrico (DH) (67% ETc) y diferentes tratamientos de fertilización NPK con y sin el consorcio microbiano CM (CM con 0%, 50% y 100% NPK). Se determinó la colonización de las micorrizas nativas mediante el conteo de vesículas y arbúsculos en las raíces de las plantas de cebolla en todos los tratamientos, y se cuantificaron las esporas micorrízicas en el suelo de la parcela experimental antes de establecer el ensayo, y luego del ensayo en el suelo rizosférico para cada tratamiento. Los resultados no mostraron diferencias significativas entre los tratamientos en cuanto a la colonización micorrízica nativa, pero el conteo de esporas en suelo resultó mayor en el tratamiento 100% NPK CM IrN. Se determinó que la mecanización de la parcela redujo significativamente la presencia de micorrizas en el suelo, sugiriendo que una mayor implementación de prácticas no convencionales preserva la biodiversidad e incrementa la salud de los suelos con manejo agrícola.
References
Álvarez, L., & Reyes, I. (2018). Potencial restaurador de Setaria sp. en un suelo degradado por explotación minera carbonífera. Revista Científica UNET, 30(2), 502–511. http://investigacion.unet.edu.ve/wp-content/uploads/2018/12/REVISTA-302-2018.pdf
Arandia, W., Gutiérrez, E., & Ortuño, N. (2020). Evaluación de micorrizas, roca fosfórica y azufre en polvo en el cultivo de cebolla (Allium cepa). Revista de Agricultura, (62), 12–22. https://cifumss.agro.bo/rev-agric/pdf/rev62/rev62-2.pdf
Blanco, E. L. (2021). Efecto de las rizobacterias promotoras del crecimiento vegetal sobre la calidad del suelo y algunos aspectos ecofisiológicos de Allium cepa L. en condiciones de déficit hídrico [Doctoral dissertation, Universidad de Los Andes, Mérida]. http://bdigital2.ula.ve:8080/xmlui/handle/654321/12790
Blanco, E. L., & Castro, Y. (2021). Antagonismo de rizobacterias sobre hongos fitopatógenos, y su actividad microbiana con potencial biofertilizante, bioestimulante y biocontrolador. Revista Colombiana de Biotecnología, 23(1), 6–16. https://doi.org/10.15446/rev.colomb.biote.v23n1.84808
Blanco, E. L., Rada, F., Castro, Y., & Paolini, J. (2021). Selección de un consorcio microbiano promotor del crecimiento de plántulas de cebolla en condiciones de umbráculo. Revista de la Facultad de Agronomía de la Universidad del Zulia, 38(2), 301–321. https://doi.org/10.47280//RevFacAgron(LUZ).v38.n2.05
Blanco, E. L., Rada, F., & Paolini, J. (2023). The role of a microbial consortium on gas exchange and water relations in Allium cepa L. under water and nutritional deficit conditions. Archives of Microbiology, 205, Article 105. https://doi.org/10.1007/s00203-023-03449-4
Blanco, E. L., Rada, F., Paolini, J., & Guerrero, J. A. (2021). Effects of induced water deficit and biofertilization on growth dynamics and bulb yield of onion (Allium cepa L.) in a neotropical semiarid environment. Canadian Journal of Soil Science, 101(3), 494–506. https://doi.org/10.1139/cjss-2021-0011
Bolandnazar, S., Aliasgarzad, N., Neishabury, M. R., & Chaparzadeh, N. (2007). Mycorrhizal colonization improves onion (Allium cepa L.) yield and water use efficiency under water déficit condition. Scientia Horticulturae, 114(1), 11−15. https://doi.org/10.1016/j.scienta.2007.05.012
Bowles, T. M., Jackson, L. E., Loeher, M., & Cavagnaro, T. R. (2017). Ecological intensification and arbuscular mycorrhizas: A meta‐analysis of tillage and cover crop effects. Journal of Applied Ecology, 54(6), 1785−1793. https://doi.org/10.1111/1365-2664.12815
Brauer, V. S., Rezende, C. P., Pessoni, A. M., De Paula, R. G., Rangappa, K. S., Nayaka, S. C., Gupta, V. K., & Almeida, F. (2019). Antifungal agents in agriculture: Friends and foes of public health. Biomolecules, 9(10), Article 521. https://doi.org/10.3390/biom9100521
Campanelli, A., Ruta, C., De Mastro, G., & Morone-Fortunato, I. (2013). The role of arbuscular mycorrhizal fungi in alleviating salt stress in Medicago sativa L. var. icon. Symbiosis, 59, 65−76. https://doi.org/10.1007/s13199-012-0191-1
Chamkhi, I., El Omari, N., Balahbib, A., El Menyiy, N., Benali, T., & Ghoulam, C. (2022). Is −− the rhizosphere a source of applicable multi-beneficial microorganisms for plant enhancement? Saudi Journal of Biological Sciences, 29(2), 1246−1259. https://doi.org/10.1016/j.sjbs.2021.09.032
Cuenca, G. (2015). Las micorrizas arbusculares: aspectos teóricos y aplicados. Los Teques, Venezuela: IVIC - Instituto Venezolano de Investigaciones Científicas. https://isbn.cloud/9789802611560/las-micorrizas-arbusculares-aspectos-teoricos-y-aplicados/
Dheeman, S., & Maheshwari, D. K. (2022). Ecology of nitrogen-fixing bacteria for sustainable development of non-legume crops. In D. K. Maheshwari, R. Dobhal, & S. Dheeman (Eds.), Nitrogen fixing bacteria: Sustainable growth of non-legumes (pp. 301−315). Springer. https://doi.org/10.1007/978-981-19-4906-7_13
Ehinmitan, E., Losenge, T., Mamati, E., Ngumi, V., Juma, P., & Siamalube, B. (2024). BioSolutions for green agriculture: Unveiling the diverse roles of plant growth-promoting rhizobacteria. International Journal of Microbiology. 2024(1), Article 6181491. https://doi.org/10.1155/2024/6181491
Eroğlu, Ç. G., Cabral, C., Ravnskov, S., Bak Topbjerg, H., & Wollenweber, B. (2020). Arbuscular mycorrhiza influences carbon‐use efficiency and grain yield of wheat grown under pre‐ and post‐anthesis salinity stress. Plant Biology, 22(5), 863−871. https://doi.org/10.1111/plb.13123
Gupta, M. M. (2020). Arbuscular mycorrhizal fungi: The potential soil health indicators. In B. Giri, & A. Varma (Eds.), Soil health (pp. 183−195). Springer. https://doi.org/10.1007/978-3-030-44364-1_11
Hammer, O., Harper, D. A. T., & Ryan, P. D. (2001). PAST: Paleontological statistics software. Package for education and data analysis. Paleontologia Electronica, 4(1), 1–9. https://palaeoelectronica.org/2001_1/past/past.pdf
Hashem, A., Abd_Allah, E. F., Alqarawi, A. A., Al-Huqail, A. A., Wirth, S., & Egamberdieva, D. (2016). The interaction between arbuscular mycorrhizal fungi and endophytic bacteria enhances plant growth of Acacia gerrardii under salt stress. Frontiers in Microbiology, 7, Article 1089. https://doi.org/10.3389/fmicb.2016.01089
Huey, C. J., Gopinath, S. C. B., Uda, M. N. A., Zulhaimi, H. I., Jaafar, M. N., Kasim, F. H., & Yaakub, A. R. W. (2020). Mycorrhiza: A natural resource assists plant growth under varied soil conditions. 3 Biotech, 10(5), Article 204. https://doi.org/10.1007/s13205-020-02188-3
Jacott, C. N., Murray, J., & Ridout, C. J. (2017). Trade-offs in arbuscular mycorrhizal symbiosis: Disease resistance, growth responses and perspectives for crop breeding. Agronomy, 7(4), Article 75. https://doi.org/10.3390/agronomy7040075
Liu, C., Ravnskov, S., Liu, F., Rubæk, G. H., & Andersen, M. N. (2018). Arbuscular mycorrhizal fungi alleviate abiotic stresses in potato plants caused by low phosphorus and deficit irrigation/partial root-zone drying. The Journal of Agricultural Science, 156(1), 46−58. https://doi.org/10.1017/S0021859618000023
Mcgonigle, T., Evans, D., & Miller, M. (1990). Effect of degree of soil disturbance on mycorrhizal colonization and phosphorus absorption by maize in growth chamber and field experiments. New Phytologist, 116(4), 629−636. https://doi.org/10.1111/j.1469-8137.1990.tb00548.x
Muhsen, T. A. A., Hameid, A. S., & Al-Attabi, M. S. Y. (2019). The enhancement of drought tolerance for plant onion (Allium cepa L.) inoculated by arbuscular mycorrhizal fungi. Plant Archives, 19(2), 847–853. https://www.plantarchives.org/SPL%20ISSUE%20SUPP%202,2019/153%20(847-853).pdf
Nasslahsen, B., Prin, Y., Ferhout, H., Smouni, A., & Duponnois, R. (2022). Mycorrhizae helper bacteria for managing the mycorrhizal soil infectivity. Frontiers in Soil Science, 2, Article 979246. https://doi.org/10.3389/fsoil.2022.979246
Phillips, J. M., & Hayman, D. S. (1970). Improved procedures for clearing and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55(1), 158–161. https://doi.org/10.1016/S0007-1536(70)80110-3
Sánchez de Prager, M. (1999). Endomicorrizas en agroecosistemas colombianos. Universidad Nacional de Colombia, Palmira. http://www.scielo.org.co/scielo.php?script=sci_nlinks&ref=000133&pid=S0120-9965200800030001100028&lng=en
Schalamuk, S., Velázquez, S., Chidichimo, H., & Cabello, M. (2004). Effect of no-till and conventional tillage on mycorrhizal colonization in spring wheat. Boletín de la Sociedad Argentina de Botánica, 39(1-2), 13–20. https://botanicaargentina.org.ar/wp-content/uploads/2018/05/13-20.pdf
Shome, S., Barman, A., & Solaiman, Z. M. (2022). Rhizobium and phosphate solubilizing bacteria inf luence the soil nutrient availability, growth, yield, and quality of soybean. Agriculture, 12(8), Article 1136. https://doi.org/10.3390/agriculture12081136
Sieverding, E. (1991). Vesicular-arbuscular mycorrhiza management in tropical agrosystem. Technical Cooperation, Federal Republic of Germany GTZ. Eschborn, Germany.
Singh, V. K., Amrita Kumari, Chaudhary, V. K., & Shree, S. (2017). Role of biofertilizer and chemical fertilizer for sustainable onion (Allium cepa L.) production. International Journal of Current Microbiology and Applied Sciences, 6(9), 2034–2040. https://doi.org/10.20546/ijcmas.2017.609.250
Soussani, F. E., Boutasknit, A., Ben-Laouane, R., Benkirane, R., Baslam, M., & Meddich, A. (2023). Arbuscular mycorrhizal fungi and compost-based biostimulants enhance fitness, physiological responses, yield, and quality traits of droughtstressed tomato plants. Plants, 12(9), Article 1856. https://doi.org/10.3390/plants12091856
Spagnoletti, F. N., Fernandez di Pardo, A., Tobar Gómez, N. E., & Chiocchio, V. M. (2013). Las micorrizas arbusculares y Rhizobium: una simbiosis dual de interés. Revista Argentina de Microbiología, 45(2), 131−132. https://doi.org/10.1016/S0325-7541(13)70012-9
Statgraphics Centurion XVI. (2009). StatPoint Technologies, Inc., version 16.
Sun, Z., Song, J., Xin, X., Xie, X., & Zhao, B. (2018). Arbuscular mycorrhizal fungal 14-3-3 proteins are involved in arbuscule formation and responses to abiotic stresses during AM symbiosis. Frontiers in Microbiology, 5, Article 91. https://doi.org/10.3389/fmicb.2018.00091
USDA – United States Department of Agriculture. (2020). Distribution maps of dominant soil orders. Natural Resources Conservation Service. http://soils.usda.gov/technical/classification/orders
Wahab, A., Muhammad, M., Munir, A., Abdi, G., Zaman, W., Ayaz, A., Khizar, C., & Reddy, S. P. P. (2023). Role of arbuscular mycorrhizal fungi in regulating growth, enhancing productivity, and potentially influencing ecosystems under abiotic and biotic stresses. Plants, 12(17), Article 3102. https://doi.org/10.3390/plants12173102
Wolińska, A., Górniak, D., Zielenkiewicz, U., Goryluk-Salmonowicz, A., Kuźniar, A., Stępniewska, Z., & Błaszczyk, M. (2017). Microbial biodiversity in arable soils is affected by agricultural practices. International Agrophysics, 31(2), 259−271. https://doi.org/10.1515/intag-2016-0040
Zangaro, W., Rostirola, L. V., Souza, P. B., Alves, R. A., Lescano, L. E. A. M., Rondina, A. B. L., Nogueira, M. A., & Carrenho, R. (2012). Root colonization and spore abundance of arbuscular mycorrhizal fungi in distinct successional stages from an Atlantic rainforest biome in southern Brazil. Mycorrhiza, 23, 221−233. https://doi.org/10.1007/s00572-012-0464-9
Zhang, S., Li, Q., Lü, Y., Sun, X., Jia, S., Zhang, X., & Liang, W. (2015). Conservation tillage positively influences the microflora and microfauna in the black soil of Northeast China. Soil and Tillage Research, 149, 46−52. https://doi.org/10.1016/j.still.2015.01.001
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2024 Agronomía Colombiana

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)

Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.