Methodology to identify spatial patterns in coffee (Coffea arabica L.) production
Metodología para identificar patrones espaciales en la producción de café (Coffea arabica L.)
DOI:
https://doi.org/10.15446/agron.colomb.v42n3.117455Keywords:
mountain coffee production, clustering, Moran's index, spatial dependency, territorial planification (en)producción de café de montaña, agrupamiento, índice de Moran, dependencia espacial, planificación territorial (es)
Downloads
Coffee farming, a lifeline for numerous families in the mountainous regions of Latin America, faces challenges due to climate change and production variability, which complicate the use of forecast models at the territorial level. In response to these challenges, territorial inference has gained relevance, especially with the advancement of Geographic Information Systems (GIS), which provide useful tools for territorial analysis. Although spatial models are increasingly applied in GIS, coffee farming, like many agricultural subsectors, is hindered by a lack of information and spatial methodologies. This work proposes a methodology to identify spatial patterns of homogeneous production areas. Data from 140 farms, representing 3,900 members of the coffee grower cooperative of Andes, dispersed over 200,000 ha, were analyzed between 2019 and 2021. The variables used to measure productivity included the number of fruits per tree, the average fruit weight, planting density, and the conversion rate of cherry coffee to dry parchment coffee. A simple linear regression model was employed, and spatial dependency analyses were performed using the global and local Moran’s Index to identify clusters of territorial subdivisions. The data were processed in R language, and the GeoDa™ program was used to obtain the spatial weight matrix. Territorial units with similar characteristics for high quality mountain coffee production were identified through spatial dependency indicators. The methodology can contribute to estimating coffee production in large territories, improving the reliability of information and allowing for more informed decision-making to optimize coffee farming in mountainous areas.
La caficultura, una fuente de sustento para numerosas familias en las regiones montañosas de América Latina, enfrenta desafíos debido al cambio climático y la variabilidad de la producción, lo que complica el uso de modelos de pronóstico a nivel territorial. A pesar de estos desafíos, la inferencia territorial ha ganado relevancia, especialmente con el avance de los Sistemas de Información Geográfica (SIG), que ofrecen
herramientas útiles para el análisis territorial. Aunque los modelos espaciales se aplican cada vez más en SIG, la caficultura, al igual que muchos subsectores agrícolas, se ve limitada por la falta de información y metodologías espaciales. Este trabajo propone una metodología para identificar patrones espaciales de áreas de productividad homogénea. Se analizaron datos de 140 fincas, representando a 3900 miembros de la cooperativa de caficultores de Andes, distribuidos en 200.000 ha, entre 2019 y 2021. Las variables utilizadas para medir la productividad incluyeron el número de frutos por árbol, el peso promedio de los frutos, la densidad de plantación y la tasa de conversión de café “cereza” a café pergamino seco. Se empleó un modelo de regresión lineal simple y se realizaron análisis de dependencia espacial utilizando el Índice de Moran global y local para identificar agrupamientos de subdivisiones territoriales. Los datos se procesaron en el lenguaje R, y se utilizó el programa
GeoDa™ para obtener la matriz de pesos espaciales. Mediante indicadores de dependencia espacial, se identificaron unidades territoriales con características similares para la producción de café en zonas montañosas. La metodología puede contribuir a estimar la producción de café en grandes territorios, mejorando la confiabilidad de la información y permitiendo una toma de decisiones más informada para optimizar la caficultura en áreas montañosas.
References
Abreu Júnior, C. A. M., Martins, G. D., Xavier, L. C. M., Vieira, B. S., Gallis, R. B. A., Fraga Junior, E. F., Martins, R. S., Paes, A. P. B., Mendonça, R. C. P., & Lima, J. V. N. (2022). Estimating coffee plant yield based on multispectral images and machine learning models. Agronomy, 12(12), Article 3195. https://doi.org/10.3390/AGRONOMY12123195
Adane, A., & Bewket, W. (2021). Effects of quality coffee production on smallholders’ adaptation to climate change in Yirgacheffe, Southern Ethiopia. International Journal of Climate Change Strategies and Management, 13(4–5), 511–528. https://doi.org/10.1108/IJCCSM-01-2021-0002
Anselin, L. (1995). Local Indicators of Spatial Association – LISA. Geographical Analysis, 27(2), 93–115. https://doi.org/10.1111/J.1538-4632.1995.TB00338.X
Aparecido, L. E. O., Rolim, G. S., Lamparelli, R. A. C., Souza, P. S., & Santos, E. R. (2017). Agrometeorological models for forecasting coffee yield. Agronomy Journal, 109(1), 249–258. https://doi.org/10.2134/agronj2016.03.0166
Bazame, H. C., Molin, J. P., Althoff, D., & Martello, M. (2021). Detection, classification, and mapping of coffee fruits during harvest with computer vision. Computers and Electronics in Agriculture, 183, Article 106066. https://doi.org/10.1016/J.COMPAG.2021.106066
Beksisa, L., Alamerew, S., Ayano, A., & Daba, G. (2018). Genotype environment interaction and yield stability of Arabica coffee (Coffea arabica L.) genotypes. African Journal of Agricultural Research, 13(4), 210–219. https://doi.org/10.5897/ajar2017.12788
Benos, L., Tagarakis, A. C., Dolias, G., Berruto, R., Kateris, D., & Bochtis, D. (2021). Machine learning in agriculture: A comprehensive updated review. Sensors, 21(11), Article 3758. https://doi.org/10.3390/S21113758
Bivand, R. S., Pebesma, E., & Gómez-Rubio, V. (2013). Applied spatial data analysis with R (2nd ed.). Springer. https://doi.org/10.1007/978-1-4614-7618-4
Chasco Yrigoyen, C. (2006). Análisis estadístico de datos geográficos en geomarketing: el programa GeoDa. Distribución y Consumo, 16(86), 34–47. https://dialnet.unirioja.es/servlet/articulo?codigo=1970463
Chen, Y., Lee, W. S., Gan, H., Peres, N., Fraisse, C., Zhang, Y., & He, Y. (2019). Strawberry yield prediction based on a Deep neural network using high-resolution aerial orthoimages. Remote Sensing, 11(13), Article 1584. https://doi.org/10.3390/rs11131584
Cheng, H., Damerow, L., Sun, Y., & Blanke, M. (2017). Early yield prediction using image analysis of apple fruit and tree canopy features with neural networks. Journal of Imaging, 3(1), Article6. https://doi.org/10.3390/jimaging3010006
Chlingaryan, A., Sukkarieh, S., & Whelan, B. (2018). Machine learning approaches for crop yield prediction and nitrogen status estimation in precisión agriculture: A review. Computers and Electronics in Agriculture, 151, 61–69. https://doi.org/10.1016/J.COMPAG.2018.05.012
Choperena Bedoya, E., & Couleau, A. (2021). El incumplimiento en la entrega de los contratos de futuros de café. Informe Especial No. 45. EAFIT. https://www.eafit.edu.co/escuelas/economiayfinanzas/noticias-eventos/Documents/PDF_InformeEspecial_Diciembre_20211213.pdf
CountThings. (2021). CountThings. Dynamic Ventures, Inc. https://www.countthings.com
De Corso Sicilia, G. B., Pinilla Rivera, M., & Gallego Navarro, J. (2017). Métodos gráficos del análisis exploratorio de datos espaciales. Cuadernos Latinoamericanos de Administración, 13(25), 92–104. https://www.redalyc.org/pdf/4096/409655122009.pdf
Eugenio, F. C., Grohs, M., Venancio, L. P., Schuh, M., Bottega, E. L., Ruoso, R., Schons, C., Mallmann, C. L., Badin, T. L., & Fernandes, P. (2020). Estimation of soybean yield from machine learning techniques and multispectral RPAS imagery. Remote Sensing Applications: Society and Environment, 20, Article 100397. https://doi.org/10.1016/j.rsase.2020.100397
GeoDa Foundation. (2020). GeoDa. An introduction to spatial data science. https://geodacenter.github.io/
Gil Serna, J. G. (2012). Estimación de un pronóstico de exportaciones de café suave colombiano: redes neuronales artificiales y ARDL [Master thesis, Universidad EAFIT]. https://repository.eafit.edu.co/bitstream/handle/10784/11485/JuanGabriel_GilSerna_2016.pdf?sequence=2
Khaki, S., & Wang, L. (2019). Crop yield prediction using deep neural networks. Frontiers in Plant Science, 10, Article 621. https://doi.org/10.3389/fpls.2019.00621
Kouadio, L., Deo, R. C., Byrareddy, V., Adamowski, J. F., Mushtaq, S., & Phuong Nguyen, V. (2018). Artificial intelligence approach for the prediction of Robusta coffee yield using soil fertility properties. Computers and Electronics in Agriculture, 155, 324–338. https://doi.org/10.1016/J.COMPAG.2018.10.014
Martello, M., Molin, J. P., Wei, M. C. F., Canal Filho, R., & Nicoletti, J. V. M. (2022). Coffee-yield estimation using high-resolution time-series satellite images and machine learning. AgriEngineering, 4(4), 888–902. https://doi.org/10.3390/AGRIENGINEERING4040057
Mendoza, R, Fernández, E., & Kuhnekath, K. (2013). ¿Institución patrón-dependiente o indeterminación social? Genealogía crítica del sistema de habilitación en el café. Ensayos sobre Economía Cafetera, 26(29), 145–161.
Montgomery, D. C., Peck, E. A., & Vining, G. G. (2021). Introduction to linear regression analysis (6th ed.). John Wiley & Sons, Inc. https://www.wiley.com/en-us/Introduction+to+Linear+Regression+Analysis%2C+6th+Edition-p-9781119578727
Montoya Restrepo, E. C., Arcila Pulgarín, J., Jaramillo Robledo, A., Riaño Herrera, N. M., & Quiroga Zea, F. (2009). Modelo para simular la producción potencial del cultivo del café en Colombia. Boletín Técnico Cenicafé, (33), 5–52. https://biblioteca.cenicafe.org/handle/10778/588
Moraes-Oliveira, A. F., Aparecido, L. E. O., & Figueira, S. R. F. (2017). Economic and climatic models for estimating coffee supply. Pesquisa Agropecuaria Brasileira, 52(12), 1158–1166. https://doi.org/10.1590/S0100-204X2017001200004
Moran, P. A. P. (1950). Notes on continuous stochastic phenomena. Biometrika, 37(1/2), 17−23. https://doi.org/10.2307/2332142
Qiao, M., He, X., Cheng, X., Li, P., Luo, H., Zhang, L., & Tian, Z. (2021). Crop yield prediction from multi-spectral, multitemporal remotely sensed imagery using recurrent 3D convolutional neural networks. International Journal of Applied Earth Observation and Geoinformation, 102, Article 102436. https://doi.org/10.1016/J.JAG.2021.102436
R Core Team (2020). The R project for statistical computing. https://www.r-project.org
Ramírez Builes, V. H. (2014). La fenología del café una herramienta para apoyar la toma de decisiones. Avances Técnicos Cenicafé, (114), 1–8. https://biblioteca.cenicafe.org/handle/10778/489
Ramos, P. J., Prieto, F. A., Montoya, E. C., & Oliveros, C. E. (2017). Automatic fruit count on coffee branches using computer vision. Computers and Electronics in Agriculture, 137, 9−22. https://doi.org/10.1016/j.compag.2017.03.010
Rendón-Sáenz, J. R., Arcila-Pulgarín, J., & Montoya-Restrepo, E. C. (2008). Estimación de la producción de café con base en los registros de floración. Cenicafé, 59(3), 238–259. https://www.cenicafe.org/es/publications/arc059%2803%29238-259.pdf
Tanaka, S., Kawamura, K., Maki, M., Muramoto, Y., Yoshida, K., Akiyama, T., Cheng, T., Yang, Z., Inoue, Y., Zhu, Y., Cao, W., & Thenkabail, P. S. (2015). Spectral index for quantifying leaf area index of winter wheat by field hyperspectral measurements: A case study in Gifu prefecture, Central Japan. Remote Sensing, 7(5), 5329–5346. https://doi.org/10.3390/RS70505329
Tsai, D. M., & Chen, W. L. (2017). Coffee plantation area recognition in satellite images using Fourier transform. Computers and Electronics in Agriculture, 135, 115–127. https://doi.org/10.1016/j.compag.2016.12.020
Wang, Z., Walsh, K. B., & Verma, B. (2017). On-tree mango fruit size estimation using RGB-D images. Sensors, 17(12), Article 2738. https://doi.org/10.3390/s17122738
Zhang, L., Zhang, Z., Luo, Y., Cao, J., & Tao, F. (2019). Combining optical, fluorescence, thermal satellite, and environmental data to predict county-level maize yield in China using machine learning approaches. Remote Sensing, 12(1), Article 21. https://doi.org/10.3390/RS12010021
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2024 Agronomía Colombiana

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)

Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.