Plant growth promoting bacteria as a tool to mitigate salt stress in crops: A review
Bacterias promotoras de crecimiento vegetal como una herramienta para mitigar el estrés salino en cultivos: una revisión
DOI:
https://doi.org/10.15446/agron.colomb.v43n1.117690Keywords:
PGP bacteria, inoculation, biofertilizers, salinity, halotolerant rhizobacteria, abiotic stress (en)BPCV, inoculación, biofertilizantes, salinidad, rizobacterias halotolerantes, estrés abiótico (es)
Downloads
Salinity is a factor that negatively affects the physiology of most plants, even placing food security at risk when it affects plants grown for food. This review provides an overview of the use of plant growth-promoting bacteria (PGPB) as a strategy for enhancing crop growth under salt stress, aiming to provide a sustainable solution for this environmental problem. Salinity causes morphophysiological and biochemical alterations in plants due to osmotic and ionic stress. Plants have different response mechanisms that allow them to survive and, in some cases, tolerate salinity. Various mitigation strategies have been evaluated, such as the use of plant hormones, fertilizers, nanofertilizers, silicon, antioxidants, tolerant genotypes, and inoculation with microorganisms, among others. Among the organisms used for inoculation, PGPB are of particular interest. PGPB, with the capacity to tolerate salinity conditions, can enhance germination, seedling vigor, root and shoot growth, and chlorophyll content in plants, in addition to other positive impacts. The mechanisms of action of PGPBs have been extensively studied and used to improve the quality of commercial crops and to produce bioinoculants. The study of these microorganisms is ongoing; more knowledge is needed on the mechanisms of action of the bacteria, the mechanisms of colonization, and the genes involved in the mechanisms of promotion and colonization. Additionally, it is necessary to expand knowledge of the most efficient ways to use these organisms in crops of commercial and environmental interest.
La salinidad es un factor que afecta negativamente la fisiología de la mayoría de las plantas, llegando incluso a poner en riesgo la seguridad alimentaria cuando afecta a las plantas cultivadas para producir alimentos. Esta revisión provee una descripción general del uso de las bacterias promotoras del crecimiento vegetal (BPCV) como una estrategia para mitigar el estrés salino en plantas, con una mirada para proveer una solución sustentable a este problema ambiental. La salinidad provoca alteraciones morfofisiológicas y bioquímicas en plantas debido al estrés osmótico e iónico. Las plantas tienen diferentes mecanismos de respuesta que les permiten sobrevivir y en algunos casos tolerar la salinidad. Se han evaluado diferentes estrategias de mitigación, como el uso de hormonas vegetales, fertilizantes, nanofertilizantes, silicio, antioxidantes, genotipos tolerantes e inoculación con microorganismos, entre otros. Entre los microorganismos utilizados para la inoculación, son de particular interés las BPCV. Las BPCV con capacidad de tolerar condiciones de salinidad pueden mejorar los procesos de germinación, el vigor de las plántulas, el crecimiento de raíces y brotes y el contenido de clorofila en las plantas, además de otros impactos positivos. Los mecanismos de acción de las BPCV han sido ampliamente estudiados y utilizados para mejorar la calidad de los cultivos comerciales y para la producción de bioinoculantes. El estudio de estos microorganismos está en curso. Se necesita más conocimiento sobre los mecanismos de acción de las bacterias, los mecanismos de colonización y los genes involucrados en los mecanismos de promoción y colonización. Además, es necesario ampliar el conocimiento sobre la forma más eficiente de utilizar estos organismos en cultivos de interés comercial y ambiental.
References
Abbas, G., Rehman, S., Siddiqui, M. H., Ali, H. M., Farooq, M. A., & Chen, Y. (2022). Potassium and humic acid synergistically increase salt tolerance and nutrient uptake in contrasting wheat genotypes through ionic homeostasis and activation of antioxidant enzymes. Plants, 11(3), Article 263. https://doi.org/10.3390/plants11030263 DOI: https://doi.org/10.3390/plants11030263
Acharya, B. R., Sandhu, D., Dueñas, C., Ferreira, J. F. S., & Grover, K. K. (2022). Deciphering molecular mechanisms involved in salinity tolerance in guar (Cyamopsis tetragonoloba L. Taub.) using transcriptome analyses. Plants, 11, Article 291. https://doi.org/10.3390/plants11030291 DOI: https://doi.org/10.3390/plants11030291
Acosta-Motos, J. R., Ortuño, M. F., Bernal-Vicente, A., Díaz-Vivancos, P., Sánchez-Blanco, M. J., & Hernández, J. A. (2017). Plant responses to salt stress: Adaptive mechanisms. Agronomy, 7(1), Article 18. https://doi.org/10.3390/agronomy7010018 DOI: https://doi.org/10.3390/agronomy7010018
Albareda, M., Rodríguez-Navarro, D. N., Camacho, M., & Temprano, F. J. (2008). Alternatives to peat as a carrier for rhizobia inoculants: Solid and liquid formulations. Soil Biology and Biochemistry, 40(11), 2771–2779. https://doi.org/10.1016/j.soilbio.2008.07.021 DOI: https://doi.org/10.1016/j.soilbio.2008.07.021
Ali, A. Y. A., Ibrahim, M. E. H., Zhou, G., Nimir, N. E. A., Jiao, X., Zhu, G., Elsiddig, A. M. I., Zhi, W., Chen, X., & Lu, H. (2019). Ameliorative effects of jasmonic acid and humic acid on antioxidant enzymes and salt tolerance of forage sorghum under salinity conditions. Agronomy Journal, 111(6), 3099–3108. https://doi.org/10.2134/agronj2019.05.0347 DOI: https://doi.org/10.2134/agronj2019.05.0347
Ali, B., Wang, X., Saleem, M. H., Sumaira, A., Hafeez, A., Afridi, M. S., Khan, S., Zaib-Un-Nisa, Ullah, I., Amaral Júnior, A. T., Alatawi, A., & Ali, S. (2022). PGPR-mediated salt tolerance in maize by modulating plant physiology, antioxidant defense, compatible solutes accumulation and biosurfactant-producing genes. Plants, 11(3), Article 345. https://doi.org/10.3390/plants11030345 DOI: https://doi.org/10.3390/plants11030345
Altaf, M. A., Shahid, R., Ren, M. X., Naz, S., Altaf, M. M., Qadir, A., Anwar, M., Shakoor, A., & Hayat, F. (2020). Exogenous melatonin enhances salt stress tolerance in tomato seedlings. Biologia Plantarum, 64, 604–615. https://doi.org/10.32615/bp.2020.090 DOI: https://doi.org/10.32615/bp.2020.090
Ansari, H. H., Siddiqui, A., Wajid, D., Tabassum, S., Umar, M., & Siddiqui, Z. S. (2022). Profiling of energy compartmentalization in photosystem II (PSII), light harvesting complexes and specific energy fluxes of primed maize cultivar (P1429) under salt stress environment. Plant Physiology and Biochemistry, 170, 296–306. https://doi.org/10.1016/j.plaphy.2021.12.015 DOI: https://doi.org/10.1016/j.plaphy.2021.12.015
Apel, K., & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55(1), 373–399. https://doi.org/10.1146/annurev.arplant.55.031903.141701 DOI: https://doi.org/10.1146/annurev.arplant.55.031903.141701
Arora, N. K., Khare, E., & Maheshwari, D. K. (2010). Plant growth promoting rhizobacteria: Constraints in bioformulation, commercialization, and future strategies. In D. K. Maheshwari (Ed.), Plant growth and health promoting bacteria (pp. 97–116). Springer. https://doi.org/10.1007/978-3-642-13612-2_5 DOI: https://doi.org/10.1007/978-3-642-13612-2_5
Ashraf, M., Shahzad, S. M., Imtiaz, M., & Rizwan, M. S. (2018). Salinity effects on nitrogen metabolism in plants – Focusing on the activities of nitrogen metabolizing enzymes: A review. Journal of Plant Nutrition, 41(8), 1065–1081. https://doi.org/10.1080/01904167.2018.1431670 DOI: https://doi.org/10.1080/01904167.2018.1431670
Assaf, M., Korkmaz, A., Karaman, Ş., & Kulak, M. (2022). Effect of plant growth regulators and salt stress on secondary metabolite composition in Lamiaceae species. South African Journal of Botany, 144, 480–493. https://doi.org/10.1016/j.sajb.2021.10.030 DOI: https://doi.org/10.1016/j.sajb.2021.10.030
Baez-Rogelio, A., Morales-García, Y. E., Quintero-Hernández, V., & Muñoz-Rojas, J. (2017). Next generation of microbial inoculants for agriculture and bioremediation. Microbial Biotechnology, 10(1), 19–21. https://doi.org/10.1111/1751-7915.12448 DOI: https://doi.org/10.1111/1751-7915.12448
Bahmani, K., Noori, S. A. S., Darbandi, A. I., & Akbari, A. (2015). Molecular mechanisms of plant salinity tolerance: A review. Australian Journal of Crop Science, 9(4), 321–336. https://doi.org/10.3316/informit.132428657147758
Bal, H. B., Nayak, L., Das, S., & Adhya, T. K. (2013). Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress. Plant and Soil, 366(1–2), 93–105. https://doi.org/10.1007/s11104-012-1402-5 DOI: https://doi.org/10.1007/s11104-012-1402-5
Barickman, T. C., Kopsell, D. A., & Sams, C. E. (2014). Abscisic acid increases carotenoid and chlorophyll concentrations in leaves and fruit of two tomato genotypes. Journal of the American Society for Horticultural Science, 139(3), 261–266. https://doi.org/10.21273/JASHS.139.3.261 DOI: https://doi.org/10.21273/JASHS.139.3.261
Bashan, Y., & de-Bashan, L. E. (2005). Bacteria/plant growthpromotion. In D. Hillel (Ed.), Encyclopedia of soils in the environment (pp. 103–115). Elsevier. https://www.researchgate.net/profile/Yoav-Bashan-2/publication/253953454_Bacteria_Plant_growth-promotion/links/0deec5345c04910e38000000/Bacteria-Plant-growth-promotion.pdf DOI: https://doi.org/10.1016/B0-12-348530-4/00513-0
Bashan, Y., de-Bashan, L. E., Prabhu, S. R., & Hernandez, J.-P. (2014). Advances in plant growth promoting bacterial inoculant technology: Formulations and practical perspectives (1998–2013). Plant and Soil, 378(1–2), 1–33. https://doi.org/10.1007/s11104-013-1956-x DOI: https://doi.org/10.1007/s11104-013-1956-x
Bashan, Y., Hernandez, J.-P., Leyva, L. A., & Bacilio, M. (2002). Alginate microbeads as inoculant carriers for plant growth-promoting bacteria. Biology and Fertility of Soils, 35(5), 359–368. https://doi.org/10.1007/s00374-002-0481-5 DOI: https://doi.org/10.1007/s00374-002-0481-5
Bashan, Y., & Holguín, G. (1998). Proposal for the division of plant growth-promoting rhizobacteria into two classifications: Biocontrol-PGPB (plant growth-promoting bacteria) and PGPB. Soil Biology and Biochemistry, 30(8–9), 1225–1228. https://doi.org/10.1016/S0038-0717(97)00187-9 DOI: https://doi.org/10.1016/S0038-0717(97)00187-9
Bashan, Y., Salazar, B. G., Moreno, M., López, B. R., & Linderman, R. G. (2012). Restoration of eroded soil in the Sonoran Desert with native leguminous trees using plant growth-promoting microorganisms and limited amounts of compost and water. Journal of Environmental Management, 102, 26–36. https://doi.org/10.1016/j.jenvman.2011.12.032 DOI: https://doi.org/10.1016/j.jenvman.2011.12.032
Bhise, K. K., & Dandge, P. B. (2019). Mitigation of salinity stress in plants using plant growth-promoting bacteria. Symbiosis, 79(3), 191–204. https://doi.org/10.1007/s13199-019-00638-y DOI: https://doi.org/10.1007/s13199-019-00638-y
Billah, M., Khan, M., Bano, A., Hassan, T. U., Munir, A., & Gurmani, A. R. (2019). Phosphorus and phosphate solubilizing bacteria: Keys for sustainable agriculture. Geomicrobiology Journal, 36(10), 904–916. https://doi.org/10.1080/01490451.2019.1654043 DOI: https://doi.org/10.1080/01490451.2019.1654043
Bose, J., Rodrigo-Moreno, A., & Shabala, S. (2014). ROS homeostasis in halophytes in the context of salinity stress tolerance. Journal of Experimental Botany, 65(5), 1241–1257. https://doi.org/10.1093/jxb/ert430 DOI: https://doi.org/10.1093/jxb/ert430
Brengi, S. H., Khedr, A. A. E. M., & Abouelsaad, I. A. (2022). Effect of melatonin or cobalt on growth, yield and physiological responses of cucumber (Cucumis sativus L.) plants under salt stress. Journal of the Saudi Society of Agricultural Sciences, 21(1), 51–60. https://doi.org/10.1016/j.jssas.2021.06.012 DOI: https://doi.org/10.1016/j.jssas.2021.06.012
Bruto, M., Prigent-Combaret, C., Müller, D., & Moënne-Loccoz, Y. (2014). Analysis of genes contributing to plant-beneficial functions in plant growth-promoting rhizobacteria and related Proteobacteria. Scientific Reports, 4(1), Article 6261. https://doi.org/10.1038/srep06261 DOI: https://doi.org/10.1038/srep06261
Bullaín Galardis, M. M., López Sánchez, R. C., Fall, F., Eichler-Löbermann, B., Pruneau, L., & Bâ, A. M. (2022). Growth and physiological responses of ectomycorrhizal Coccoloba uvifera L. seedlings to salt stress. Journal of Arid Environments, 196, Article 104650. https://doi.org/10.1016/j.jaridenv.2021.104650 DOI: https://doi.org/10.1016/j.jaridenv.2021.104650
Buntic, A., Stajkovic-Srbinovic, O., Knezevic, M., Kuzmanovic, D., Rasulic, N., & Delic, D. (2019). Development of liquid rhizobial inoculants and pre-inoculation of alfalfa seeds. Archives of Biological Sciences, 71(2), 379–387. https://doi.org/10.2298/ABS181008062B DOI: https://doi.org/10.2298/ABS181008062B
Çakmakçı, R., Mosber, G., Milton, A. H., Alatürk, F., & Ali, B. (2020). The effect of auxin and auxin producing bacteria on the growth, essential oil yield, and composition in medicinal and aromatic plants. Current Microbiology, 77(4), 564–577. https://doi.org/10.1007/s00284-020-01917-4 DOI: https://doi.org/10.1007/s00284-020-01917-4
Cassán, F., Coniglio, A., López, G., Molina, R., Nievas, S., de Carlan, C. L. N., Donadio, F., Torres, D., Rosas, S., Pedrosa, F. O., Souza, E., Zorita, M. D., de-Bashan, L. E., & Mora, V. (2020). Everything you must know about Azospirillum and its impact on agriculture and beyond. Biology and Fertility of Soils, 56(4), 461–479. https://doi.org/10.1007/s00374-020-01463-y DOI: https://doi.org/10.1007/s00374-020-01463-y
Castillejo-Morales, A., Jarma-Orozco, A., & Pompelli, M. F. (2021). Physiological and morphological features denote that salt stress in Stevia rebaudiana is based on nonstomatal instead of stomatal limitation. Revista Colombiana de Ciencias Hortícolas, 15(3), Article 12928. https://doi.org/10.17584/rcch.2021v15i3.12928 DOI: https://doi.org/10.17584/rcch.2021v15i3.12928
Chaves, M. M., Flexas, J., & Pinheiro, C. (2009). Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Annals of Botany, 103(4), 551–560. https://doi.org/10.1093/aob/mcn125 DOI: https://doi.org/10.1093/aob/mcn125
Chen, J., Bian, C., Fu, C., Zhang, Q., Qin, D., Hao, W., Guo, M., Huo, J., Li, J., & Gang, H. (2025). Overexpression of LcMYB90 transcription factor enhances drought and salt tolerance in blue honeysuckle (Lonicera caerulea L.) and tobacco (Nicotiana tabacum L.). International Journal of Molecular Sciences, 26(7), Article 3124. https://doi.org/10.3390/ijms26073124 DOI: https://doi.org/10.3390/ijms26073124
Choix, F. J., Bashan, Y., Mendoza, A., & de-Bashan, L. E. (2014). Enhanced activity of ADP-glucose pyrophosphorylase and formation of starch induced by Azospirillum brasilense in Chlorella vulgaris. Journal of Biotechnology, 177, 22–34. https://doi.org/10.1016/j.jbiotec.2014.02.014 DOI: https://doi.org/10.1016/j.jbiotec.2014.02.014
Covarrubias, S. A., de-Bashan, L. E., Moreno, M., & Bashan, Y. (2012). Alginate beads provide a beneficial physical barrier against native microorganisms in wastewater treated with immobilized bacteria and microalgae. Applied Microbiology and Biotechnology, 93(6), 2669–2680. https://doi.org/10.1007/s00253-011-3585-8 DOI: https://doi.org/10.1007/s00253-011-3585-8
Di Benedetto, N. A., Corbo, M. R., Campaniello, D., Cataldi, M. P., Bevilacqua, A., Sinigaglia, M., & Flagella, Z. (2017). The role of plant growth-promoting bacteria in improving nitrogen use efficiency for sustainable crop production: A focus on wheat. AIMS Microbiology, 3(3), 413–434. https://doi.org/10.3934/microbiol.2017.3.413 DOI: https://doi.org/10.3934/microbiol.2017.3.413
Dobbelaere, S., Vanderleyden, J., & Okon, Y. (2003). Plant growth-promoting effects of diazotrophs in the rhizosphere. Critical Reviews in Plant Sciences, 22(2), 107–149. https://doi.org/10.1080/713610853 DOI: https://doi.org/10.1080/713610853
El-Esawi, M. A., Elansary, H. O., El-Shanhorey, N. A., Abdel-Hamid, A. M. E., Ali, H. M., & Elshikh, M. S. (2017). Salicylic acid-regulated antioxidant mechanisms and gene expression enhance rosemary performance under saline conditions. Frontiers in Physiology, 8, Article 716. https://doi.org/10.3389/fphys.2017.00716 DOI: https://doi.org/10.3389/fphys.2017.00716
El-Serafy, R. S., El-Sheshtawy, A.-N. A., Atteya, A. K. G., Al-Hashimi, A., Abbasi, A. M., & Al-Ashkar, I. (2021). Seed priming with silicon as a potential to increase salt stress tolerance in Lathyrus odoratus. Plants, 10(10), Article 2140. https://doi.org/10.3390/plants10102140 DOI: https://doi.org/10.3390/plants10102140
Farias, T. P., Soares, B. L., D’Eça, C. S. B., & Moreira, F. M. S. (2022). Polymeric formulations of liquid inoculants with rhizobia exopolysaccharides increase the survival and symbiotic efficiency of elite Bradyrhizobium strains. Archives of Microbiology, 204(3), Article 177. https://doi.org/10.1007/s00203-022-02779-z DOI: https://doi.org/10.1007/s00203-022-02779-z
Farouk, S., & Al-Amri, S. M. (2019). Exogenous melatonin-mediated modulation of arsenic tolerance with improved accretion of secondary metabolite production, activating antioxidant capacity and improved chloroplast ultrastructure in rosemary herb. Ecotoxicology and Environmental Safety, 180, 333–347. https://doi.org/10.1016/j.ecoenv.2019.05.021 DOI: https://doi.org/10.1016/j.ecoenv.2019.05.021
Fasciglione, G., Casanovas, E. M., Quillehauquy, V., Yommi, A. K., Goñi, M. G., Roura, S. I., & Barassi, C. A. (2015). Azospirillum inoculation effects on growth, product quality and storage life of lettuce plants grown under salt stress. Scientia Horticulturae, 195, 154–162. https://doi.org/10.1016/j.scienta.2015.09.015 DOI: https://doi.org/10.1016/j.scienta.2015.09.015
Fazal, A., & Bano, A. (2016). Role of plant growth-promoting rhizobacteria (PGPR), biochar, and chemical fertilizer under salinity stress. Communications in Soil Science and Plant Analysis, 47(17), 1985–1993. https://doi.org/10.1080/00103624.2016.1216562 DOI: https://doi.org/10.1080/00103624.2016.1216562
Fu, H., & Yang, Y. (2023). How plants tolerate salt stress. Current Issues in Molecular Biology, 45(7), 5914–5934. https://doi.org/10.3390/cimb45070374 DOI: https://doi.org/10.3390/cimb45070374
Galinski, E. A., & Trüper, H. G. (1994). Microbial behaviour in salt-stressed ecosystems. FEMS Microbiology Reviews, 15(2–3), 95–108. https://doi.org/10.1111/j.1574-6976.1994.tb00128.x DOI: https://doi.org/10.1111/j.1574-6976.1994.tb00128.x
Ge, H., & Zhang, F. (2019). Growth-promoting ability of Rhodopseudomonas palustris G5 and its effect on induced resistance in cucumber against salt stress. Journal of Plant Growth Regulation, 38(1), 180–188. https://doi.org/10.1007/s00344-018-9825-8 DOI: https://doi.org/10.1007/s00344-018-9825-8
Glick, B. R. (2012). Plant growth-promoting bacteria: Mechanisms and applications. Scientifica, 2012, 1–15. https://pmc.ncbi.nlm.nih.gov/articles/PMC3820493/ DOI: https://doi.org/10.6064/2012/963401
Gupta, B., & Huang, B. (2014). Mechanism of salinity tolerance in plants: Physiological, biochemical, and molecular characterization. International Journal of Genomics, 2014, 1–18. https://doi.org/10.1155/2014/701596 DOI: https://doi.org/10.1155/2014/701596
Habib, S. H., Kausar, H., & Saud, H. M. (2016). Plant growth-promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging enzymes. BioMed Research International, 2016, 1–10. https://doi.org/10.1155/2016/6284547 DOI: https://doi.org/10.1155/2016/6284547
Han, H. S., & Lee, K. D. (2005). Plant growth promoting rhizobacteria effect on antioxidant status, photosynthesis, mineral uptake and growth of lettuce under soil salinity. Research Journal of Agriculture and Biological Sciences, 1(3), 210–215. https://www.aensiweb.net/AENSIWEB/rjabs/rjabs/210-215.pdf
Hasanuzzaman, M., Raihan, Md. R. H., Masud, A. A. C., Rahman, K., Nowroz, F., Rahman, M., Nahar, K., & Fujita, M. (2021). Regulation of reactive oxygen species and antioxidant defense in plants under salinity. International Journal of Molecular Sciences, 22(17), Article 9326. https://doi.org/10.3390/ijms22179326 DOI: https://doi.org/10.3390/ijms22179326
Hatami, E., Shokouhian, A. A., Ghanbari, A. R., & Naseri, L. A. (2018). Alleviating salt stress in almond rootstocks using humic acid. Scientia Horticulturae, 237, 296–302. https://doi.org/10.1016/j.scienta.2018.03.034 DOI: https://doi.org/10.1016/j.scienta.2018.03.034
Hindersah, R., Rahmadina, I., Harryanto, R., Suryatmana, P., & Arifin, M. (2021). Bacillus and Azotobacter counts in solid biofertilizer with different concentration of zeolite and liquid inoculant. IOP Conference Series: Earth and Environmental Science, 667(1), Article 012010. https://doi.org/10.1088/1755-1315/667/1/012010 DOI: https://doi.org/10.1088/1755-1315/667/1/012010
Hu, E., Liu, M., Zhou, R., Jiang, F., Sun, M., Wen, J., Zhu, Z., & Wu, Z. (2021). Relationship between melatonin and abscisic acid in response to salt stress of tomato. Scientia Horticulturae, 285, Article 110176. https://doi.org/10.1016/j.scienta.2021.110176 DOI: https://doi.org/10.1016/j.scienta.2021.110176
Ibrahimova, U., Kumari, P., Yadav, S., Rastogi, A., Antala, M., Suleymanova, Z., Zivcak, M., Tahjib-Ul-Arif, M., Hussain, S., Abdelhamid, M., Hajihashemi, S., Yang, X., & Brestic, M. (2021). Progress in understanding salt stress response in plants using biotechnological tools. Journal of Biotechnology, 329, 180–191. https://doi.org/10.1016/j.jbiotec.2021.02.007 DOI: https://doi.org/10.1016/j.jbiotec.2021.02.007
Iglesias, A. A. (2020). Genetic and physiological basis of cold tolerance in rice [Doctoral dissertation, Universidad de Guadalajara].
Ismail, A. M., Heuer, S., Thomson, M. J., & Wissuwa, M. (2007). Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Molecular Biology, 65(4), 547–570. https://doi.org/10.1007/s11103-007-9215-2 DOI: https://doi.org/10.1007/s11103-007-9215-2
Ismail, A. M., & Horie, T. (2017). Genomics, physiology, and molecular breeding approaches for improving salt tolerance. Annual Review of Plant Biology, 68(1), 405–434. https://doi.org/10.1146/annurev-arplant-042916-040936 DOI: https://doi.org/10.1146/annurev-arplant-042916-040936
Jack, C. N., Petipas, R. H., Cheeke, T. E., Rowland, J. L., & Friesen, M. L. (2021). Microbial inoculants: Silver bullet or microbial Jurassic Park? Trends in Microbiology, 29(4), 299–308. https://doi.org/10.1016/j.tim.2020.11.006 DOI: https://doi.org/10.1016/j.tim.2020.11.006
Jijón-Moreno, S., Marcos-Jiménez, C., Pedraza, R. O., Ramírez-Mata, A., de Salamone, I. G., Fernández-Scavino, A., Vásquez-Hernández, C. A., Soto-Urzúa, L., & Baca, B. E. (2015). The ipdC, hisC1 and hisC2 genes involved in indole-3-acetic production used as alternative phylogenetic markers in Azospirillum brasilense. Antonie van Leeuwenhoek, 107(6), 1501–1517. https://doi.org/10.1007/s10482-015-0444-0 DOI: https://doi.org/10.1007/s10482-015-0444-0
Kamal, A. H. M., Cho, K., Kim, D.-E., Uozumi, N., Chung, K.-Y., Lee, S. Y., Choi, J.-S., Cho, S.-W., Shin, C.-S., & Woo, S. H. (2012). Changes in physiology and protein abundance in salt-stressed wheat chloroplasts. Molecular Biology Reports, 39(9), 9059–9074. https://doi.org/10.1007/s11033-012-1777-7 DOI: https://doi.org/10.1007/s11033-012-1777-7
Khalil, R., Yusuf, M., Bassuony, F., Haroun, S., & Gamal, A. (2022). Alpha-tocopherol reinforces selenium efficiency to ameliorate salt stress in maize plants through carbon metabolism, enhanced photosynthetic pigments and ion uptake. South African Journal of Botany, 144, 1–9. https://doi.org/10.1016/j.sajb.2021.08.033 DOI: https://doi.org/10.1016/j.sajb.2021.08.033
Khan, P. S. S. V., & Basha, P. O. (2015). Salt stress and leguminous crops. In M. M. Azooz, & P. Ahmad (Eds.), Legumes under environmental stress (pp. 21–51). Wiley. https://doi.org/10.1002/9781118917091.ch2 DOI: https://doi.org/10.1002/9781118917091.ch2
Kushwaha, P., Kashyap, P. L., Bhardwaj, A. K., Kuppusamy, P., Srivastava, A. K., & Tiwari, R. K. (2020). Bacterial endophyte mediated plant tolerance to salinity: Growth responses and mechanisms of action. World Journal of Microbiology and Biotechnology, 36(2), Article 26. https://doi.org/10.1007/s11274-020-2804-9 DOI: https://doi.org/10.1007/s11274-020-2804-9
Landa-Faz, A., González-Orenga, S., Boscaiu, M., Rodríguez-Vázquez, R., & Vicente, O. (2021). Effect of the pesticide endosulfan and two different biostimulants on the stress responses of Phaseolus leptostachyus plants grown in a saline soil. Agronomy, 11(6), Article 1208. https://doi.org/10.3390/agronomy11061208 DOI: https://doi.org/10.3390/agronomy11061208
Laus, M. N., De Santis, M. A., Flagella, Z., & Soccio, M. (2021). Changes in antioxidant defence system in durum wheat under hyperosmotic stress: A concise overview. Plants, 11(1), Article 98. https://doi.org/10.3390/plants11010098 DOI: https://doi.org/10.3390/plants11010098
Leyva, L. A., Bashan, Y., Mendoza, A., & de-Bashan, L. E. (2014). Accumulation of fatty acids in Chlorella vulgaris under heterotrophic conditions in relation to activity of acetyl-CoA carboxylase, temperature, and co-immobilization with Azospirillum brasilense. Naturwissenschaften, 101(10), 819–830. https://doi.org/10.1007/s00114-014-1223-x DOI: https://doi.org/10.1007/s00114-014-1223-x
Li, X., Hou, Y., Li, M., Zhang, F., Yi, F., Kang, J., Yang, Q., & Long, R. (2022). Overexpression of an ABA-inducible homeodomainleucine zipper I gene MsHB7 confers salt stress sensitivity to alfalfa. Industrial Crops and Products, 177, Article 114463. https://doi.org/10.1016/j.indcrop.2021.114463 DOI: https://doi.org/10.1016/j.indcrop.2021.114463
Liu, M., Li, Y., Li, G., Dong, T., Liu, S., Liu, P., & Wang, Q. (2020). Overexpression of StCYS1 gene enhances tolerance to salt stress in the transgenic potato (Solanum tuberosum L.) plant. Journal of Integrative Agriculture, 19(9), 2239–2246. https://doi.org/10.1016/S2095-3119(20)63262-2 DOI: https://doi.org/10.1016/S2095-3119(20)63262-2
López, B. R., Tinoco-Ojanguren, C., Bacilio, M., Mendoza, A., & Bashan, Y. (2012). Endophytic bacteria of the rock-dwelling cactus Mammillaria fraileana affect plant growth and mobilization of elements from rocks. Environmental and Experimental Botany, 81, 26–36. https://doi.org/10.1016/j.envexpbot.2012.02.014 DOI: https://doi.org/10.1016/j.envexpbot.2012.02.014
López-Lozano, N. E., Carcaño-Montiel, M. G., & Bashan, Y. (2016). Using native trees and cacti to improve soil potential nitrogen fixation during long-term restoration of arid lands. Plant and Soil, 403(1–2), 317–329. https://doi.org/10.1007/s11104-016-2807-3 DOI: https://doi.org/10.1007/s11104-016-2807-3
Mbarki, S., Sytar, O., Cerda, A., Zivcak, M., Rastogi, A., He, X., Zoghlami, A., Abdelly, C., & Brestic, M. (2018). Strategies to mitigate the salt stress effects on photosynthetic apparatus and productivity of crop plants. In V. Kumar, S. Wani, P. Suprasanna, & L. S. Tran (Eds.), Salinity responses and tolerance in plants (Vol. 1, pp. 85–136). Springer International Publishing. https://doi.org/10.1007/978-3-319-75671-4_4 DOI: https://doi.org/10.1007/978-3-319-75671-4_4
Mohamed, A. K. S. H., Qayyum, M. F., Abdel-Hadi, A. M., Rehman, R. A., Ali, S., & Rizwan, M. (2017). Interactive effect of salinity and silver nanoparticles on photosynthetic and biochemical parameters of wheat. Archives of Agronomy and Soil Science, 63(12), 1736–1747. https://doi.org/10.1080/03650340.2017.1300256 DOI: https://doi.org/10.1080/03650340.2017.1300256
Moreno, M., de-Bashan, L. E., Hernandez, J.-P., López, B. R., & Bashan, Y. (2017). Success of long-term restoration of degraded arid land using native trees planted 11 years earlier. Plant and Soil, 421(1–2), 83–92. https://doi.org/10.1007/s11104-017-3438-z DOI: https://doi.org/10.1007/s11104-017-3438-z
Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59(1), 651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911 DOI: https://doi.org/10.1146/annurev.arplant.59.032607.092911
Negrão, S., Schmöckel, S. M., & Tester, M. (2017). Evaluating physiological responses of plants to salinity stress. Annals of Botany, 119(1), 1–11. https://doi.org/10.1093/aob/mcw191 DOI: https://doi.org/10.1093/aob/mcw191
Nett, R. S., Montanares, M., Marcassa, A., Lu, X., Nagel, R., Charles, T. C., Hedden, P., Rojas, M. C., & Peters, R. J. (2017). Elucidation of gibberellin biosynthesis in bacteria reveals convergent evolution. Nature Chemical Biology, 13(1), 69–74. https://doi.org/10.1038/nchembio.2232 DOI: https://doi.org/10.1038/nchembio.2232
Nigam, B., Dubey, R. S., & Rathore, D. (2022). Protective role of exogenously supplied salicylic acid and PGPB (Stenotrophomonas sp.) on spinach and soybean cultivars grown under salt stress. Scientia Horticulturae, 293, Article 110654. https://doi.org/10.1016/j.scienta.2021.110654 DOI: https://doi.org/10.1016/j.scienta.2021.110654
Numan, M., Bashir, S., Khan, Y., Mumtaz, R., Shinwari, Z. K., Khan, A. L., Khan, A., & Al-Harrasi, A.(2018). Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: A review. Microbiological Research, 209, 21–32. https://doi.org/10.1016/j.micres.2018.02.003 DOI: https://doi.org/10.1016/j.micres.2018.02.003
Palacios, O. A., Bashan, Y., & de-Bashan, L. E. (2014). Proven and potential involvement of vitamins in interactions of plants with plant growth-promoting bacteria – An overview. Biology and Fertility of Soils, 50(3), 415–432. https://doi.org/10.1007/s00374-013-0894-3 DOI: https://doi.org/10.1007/s00374-013-0894-3
Pan, T., Liu, M., Kreslavski, V. D., Zharmukhamedov, S. K., Nie, C., Yu, M., Kuznetsov, V. V., Allakhverdiev, S. I., & Shabala, S. (2021). Non-stomatal limitation of photosynthesis by soil salinity. Critical Reviews in Environmental Science and Technology, x|51(8), 791–825. https://doi.org/10.1080/10643389.2020.1735231 DOI: https://doi.org/10.1080/10643389.2020.1735231
Pankievicz, V. C. S., Amaral, F. P., Ané, J.-M., & Stacey, G. (2021). Diazotrophic bacteria and their mechanisms to interact and benefit cereals. Molecular Plant-Microbe Interactions, 34(5), 491–498. https://doi.org/10.1094/MPMI-11-20-0316-FI DOI: https://doi.org/10.1094/MPMI-11-20-0316-FI
Parihar, P., Singh, S., Singh, R., Singh, V. P., & Prasad, S. M. (2015). Effect of salinity stress on plants and its tolerance strategies: A review. Environmental Science and Pollution Research, 22(6), 4056–4075. https://doi.org/10.1007/s11356-014-3739-1 DOI: https://doi.org/10.1007/s11356-014-3739-1
Pasternak, T., Groot, E. P., Kazantsev, F. V., Teale, W., Omelyanchuk, N., Kovrizhnykh, V., Palme, K., & Mironova, V. V. (2019). Salicylic acid affects root meristem patterning via auxin distribution in a concentration-dependent manner. Plant Physiology, 180(3), 1725–1739. https://doi.org/10.1104/pp.19.00130 DOI: https://doi.org/10.1104/pp.19.00130
Preininger, C., Sauer, U., Bejarano, A., & Berninger, T. (2018). Concepts and applications of foliar spray for microbial inoculants. Applied Microbiology and Biotechnology, 102(17), 7265–7282. https://doi.org/10.1007/s00253-018-9173-4 DOI: https://doi.org/10.1007/s00253-018-9173-4
Qadir, M., Quillérou, E., Nangia, V., Murtaza, G., Singh, M., Thomas, R. J., Drechsel, P., & Noble, A. D. (2014). Economics of saltinduced land degradation and restoration. Natural Resources Forum, 38(4), 282–295. https://doi.org/10.1111/1477-8947.12054 DOI: https://doi.org/10.1111/1477-8947.12054
Rajendran, G., Sing, F., Desai, A. J., & Archana, G. (2008). Enhanced growth and nodulation of pigeon pea by co-inoculation of Bacillus strains with Rhizobium spp. Bioresource Technology, 99(11), 4544–4550. https://doi.org/10.1016/j.biortech.2007.06.057 DOI: https://doi.org/10.1016/j.biortech.2007.06.057
Ramadoss, D., Lakkineni, V. K., Bose, P., Ali, S., & Annapurna, K. (2013). Mitigation of salt stress in wheat seedlings by halotolerant bacteria isolated from saline habitats. SpringerPlus, 2(1), Article 6. https://doi.org/10.1186/2193-1801-2-6 DOI: https://doi.org/10.1186/2193-1801-2-6
Romero, F. M., Marina, M., & Pieckenstain, F. L. (2014). The communities of tomato (Solanum lycopersicum L.) leaf endophytic bacteria, analyzed by 16S-ribosomal RNA gene pyrosequencing. FEMS Microbiology Letters, 351(2), 187–194. https://doi.org/10.1111/1574-6968.12377 DOI: https://doi.org/10.1111/1574-6968.12377
Safdar, H., Amin, A., Shafiq, Y., Ali, A., Yasin, R., Shoukat, A., Ui Hussan, M., & Sarwar, M. I. (2019). A review: Impact of salinity on plant growth. Nature and Science, 17(1), 34–40. https://doi.org/10.7537/marsnsj170119.06
Salazar-Garcia, G., Balaguera-Lopez, H. E., & Hernandez, J. P. (2022). Effect of plant growth promoting bacteria Azospirillum brasilense on the physiology of radish (Raphanus sativus L.) under waterlogging stress. Agronomy, 12(3), Article 726. https://doi.org/10.3390/agronomy12030726 DOI: https://doi.org/10.3390/agronomy12030726
Santos, M. S., Nogueira, M. A., & Hungria, M. (2019). Microbial inoculants: Reviewing the past, discussing the present and previewing an outstanding future for the use of beneficial bacteria in agriculture. AMB Express, 9(1), Article 32. https://doi.org/10.1186/s13568-019-0932-0 DOI: https://doi.org/10.1186/s13568-019-0932-0
Saravanakumar, D., & Samiyappan, R. (2007). ACC deaminase from Pseudomonas f luorescens mediated saline resistance in groundnut (Arachis hypogaea) plants. Journal of Applied Microbiology, 102(5), 1283–1292. https://doi.org/10.1111/j.1365-2672.2006.03179.x DOI: https://doi.org/10.1111/j.1365-2672.2006.03179.x
Sarkar, A., Ghosh, P. K., Pramanik, K., Mitra, S., Soren, T., Pandey, S., Mondal, M. H., & Maiti, T. K. (2018). A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress. Research in Microbiology, 169(1), 20–32. https://doi.org/10.1016/j.resmic.2017.08.005 DOI: https://doi.org/10.1016/j.resmic.2017.08.005
Shultana, R., Zuan, A. T. K., Naher, U. A., Islam, A. K. M. M., Rana, M. M., Rashid, M. H., Irin, I. J., Islam, S. S., Rim, A. A., & Hasan, A. K. (2022). The PGPR mechanisms of salt stress adaptation and plant growth promotion. Agronomy, 12(10), Article 2266. https://doi.org/10.3390/agronomy12102266 DOI: https://doi.org/10.3390/agronomy12102266
Shultana, R., Zuan, A. T. K., Yusop, M. R., Saud, H. M., & El-Shehawi, A. M. (2021). Bacillus tequilensis strain ‘UPMRB9’ improves biochemical attributes and nutrient accumulation in different rice varieties under salinity stress. PLoS ONE, 16(7), Article e0260869. https://doi.org/10.1371/journal.pone.0260869 DOI: https://doi.org/10.1371/journal.pone.0260869
Souza, R., Ambrosini, A., & Passaglia, L. M. P. (2015). Plant growth-promoting bacteria as inoculants in agricultural soils. Genetics and Molecular Biology, 38(4), 401–419. https://doi.org/10.1590/S1415-475738420150053 DOI: https://doi.org/10.1590/S1415-475738420150053
Sun, L., Sun, S., Liu, T., Lei, X., Liu, R., Zhang, J., Dai, S., Li, J., & Ding, Y. (2025). Association analysis of the genomic and functional characteristics of halotolerant Glutamicibacter endophyticus J2-5-19 from the rhizosphere of Suaeda salsa. Microorganisms, 13(1), Article 208. https://doi.org/10.3390/microorganisms13010208 DOI: https://doi.org/10.3390/microorganisms13010208
Tanveer, M., & Shabala, S. (2018). Targeting redox regulatory mechanisms for salinity stress tolerance in crops. In D. J. Huang & S. Shabala (Eds.), Salinity responses and tolerance in plants (Vol. 1, pp. 213–234). Springer. https://doi.org/10.1007/978-3-319-75671-4_8 DOI: https://doi.org/10.1007/978-3-319-75671-4_8
Teixeira, J., & Pereira, S. (2007). High salinity and drought act on an organ-dependent manner on potato glutamine synthetase expression and accumulation. Environmental and Experimental Botany, 60(1), 121–126. https://doi.org/10.1016/j.envexpbot.2006.09.003 DOI: https://doi.org/10.1016/j.envexpbot.2006.09.003
Trejo, A., de-Bashan, L. E., Hartmann, A., Hernandez, J.-P., Rothballer, M., Schmid, M., & Bashan, Y. (2012). Recycling waste debris of immobilized microalgae and plant growthpromoting bacteria from wastewater treatment as a resource to improve fertility of eroded desert soil. Environmental and Experimental Botany, 75, 65–73. https://doi.org/10.1016/j.envexpbot.2011.08.007 DOI: https://doi.org/10.1016/j.envexpbot.2011.08.007
Türkan, I., & Demiral, T. (2009). Recent developments in understanding salinity tolerance. Environmental and Experimental Botany, 67(1), 2–9. https://doi.org/10.1016/j.envexpbot.2009.05.008 DOI: https://doi.org/10.1016/j.envexpbot.2009.05.008
Upadhyay, S. K., Singh, J. S., & Singh, D. P. (2011). Exopolysaccharide- producing plant growth-promoting rhizobacteria under salinity condition. Pedosphere, 21(2), 214–222. https://doi.org/10.1016/S1002-0160(11)60120-3 DOI: https://doi.org/10.1016/S1002-0160(11)60120-3
van Zelm, E., Zhang, Y., & Testerink, C. (2020). Salt tolerance mechanisms of plants. Annual Review of Plant Biology, 71(1), 403–433. https://doi.org/10.1146/annurev-arplant-050718-100005 DOI: https://doi.org/10.1146/annurev-arplant-050718-100005
Vieira, R. F., Ferracini, V. L., Silveira, A. P. D., & Pazianotto, R. A. A. (2021). Improvement of growth of common bean in phosphorus-deficient soils by phosphate-solubilizing and phytohormone- producing bacteria. Agronomía Colombiana, 39(3), 372–380. https://doi.org/10.15446/agron.colomb.v39n3.95461 DOI: https://doi.org/10.15446/agron.colomb.v39n3.95461
Vinocur, B., & Altman, A. (2005). Recent advances in engineering plant tolerance to abiotic stress: Achievements and limitations. Current Opinion in Biotechnology, 16(2), 123–132. https://doi.org/10.1016/j.copbio.2005.02.001 DOI: https://doi.org/10.1016/j.copbio.2005.02.001
Wisniewski-Dyé, F., Lozano, L., Acosta-Cruz, E., Borland, S., Drogue, B., Prigent-Combaret, C., Rouy, Z., Barbe, V., Herrera, A. M., González, V., & Mavingui, P. (2012). Genome sequence of Azospirillum brasilense CBG497 and comparative analyses of Azospirillum core and accessory genomes provide insight into niche adaptation. Genes, 3(4), 576–602. https://doi.org/10.3390/genes3040576 DOI: https://doi.org/10.3390/genes3040576
Wungrampha, S., Joshi, R., Singla-Pareek, S. L., & Pareek, A. (2018). Photosynthesis and salinity: Are these mutually exclusive? Photosynthetica, 56, 366–381. https://doi.org/10.1007/s11099-017-0763-7 DOI: https://doi.org/10.1007/s11099-017-0763-7
Yadav, A. K., & Chandra, K. (2014). Mass production and quality control of microbial inoculants. Proceedings of the Indian National Science Academy, 80(2), 483–489. https://doi.org/10.16943/ptinsa/2014/v80i2/5 DOI: https://doi.org/10.16943/ptinsa/2014/v80i2/5
Yang, J., Kloepper, J. W., & Ryu, C.-M. (2009). Rhizosphere bacteria help plants tolerate abiotic stress. Trends in Plant Science, 14(1), 1–4. https://doi.org/10.1016/j.tplants.2008.10.004 DOI: https://doi.org/10.1016/j.tplants.2008.10.004
Zhang, N., Zhao, B., Zhang, H., Weeda, S., Yang, C., Yang, Z., Ren, S., & Guo, Y. (2013). Melatonin promotes water-stress tolerance, lateral root formation, and seed germination in cucumber (Cucumis sativus L.). Journal of Pineal Research, 54(1), 15–23. https://doi.org/10.1111/j.1600-079X.2012.01015.x DOI: https://doi.org/10.1111/j.1600-079X.2012.01015.x
Zhang, Y., Li, D., Zhou, R., Wang, X., Dossa, K., Wang, L., Zhang, Y., Yu, J., Gong, H., Zhang, X., & You, J. (2019). Transcriptome and metabolome analyses of two contrasting sesame genotypes reveal the crucial biological pathways involved in rapid adaptive response to salt stress. BMC Plant Biology, 19(1), Article 66. https://doi.org/10.1186/s12870-019-1665-6 DOI: https://doi.org/10.1186/s12870-019-1665-6
Zhu, J.-K. (2001). Plant salt tolerance. Trends in Plant Science, 6(2), 66–71. https://doi.org/10.1016/S1360-1385(00)01838-0 DOI: https://doi.org/10.1016/S1360-1385(00)01838-0
Zulfiqar, F., & Ashraf, M. (2021). Nanoparticles potentially mediate salt stress tolerance in plants. Plant Physiology and Biochemistry, 160, 257–268. https://doi.org/10.1016/j.plaphy.2021.01.028 DOI: https://doi.org/10.1016/j.plaphy.2021.01.028
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2025 Agronomía Colombiana

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)

Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.







