Published

2025-04-30

Biological control of Sclerotium rolfsii Sacc. in Stevia rebaudiana using native isolates of Trichoderma spp. from Paraguay

Control biológico de Sclerotium rolfsii Sacc. en Stevia rebaudiana usando aislamientos nativos de Trichoderma spp. de Paraguay

DOI:

https://doi.org/10.15446/agron.colomb.v43n1.117744

Keywords:

sweeteners, stevia, biocontrol, mycology (en)
edulcorantes, estevia, biocontrol, micología (es)

Downloads

Authors

Stevia, Stevia rebaudiana [(Bertoni) Bertoni], is cultivated in Paraguay as a natural, non-nutritive sweetener, but yields are reduced because of wilting and plant death caused by the fungal pathogen Sclerotium rolfsii. This study aimed to evaluate the native fungi Trichoderma spp. isolates, individually and in mixtures, for controlling S. rolfsii. As a first step, ten Trichoderma isolates from agricultural soils of Paraguay were screened in vitro using dual culture tests against S. rolfsii to identify the most effective isolates. This preliminary phase allowed screening to select the most promising candidates before conducting in planta experiments under more realistic conditions. A greenhouse experiment with seven treatments and four replicates was carried out to assess their efficacy in controlling S. rolfsii in stevia. Treatments included commercial Trichoderma viride, three native isolates (3KH and TCAS, T. asperellum; MS28, T. erinaceum), a mixture of these isolates, a fungicide (azoxystrobin + cyproconazole), and a control. Stevia plants of the variety “Katupyry” were preventively treated with Trichoderma (1×10⁷ spores ml-1) twice before S. rolfsii inoculation. Fungicide and Trichoderma treatments were applied to the plant base and substrate after inoculation, followed by two weekly applications. Disease incidence and the area under the disease progress curve (AUDPC) were evaluated. The AUDPC for TCAS (7.67) was significantly lower than that in the control (13.27), the mixture (13.77), and the commercial T. viride (15.58), but not significantly different from the 3KH (9.15) or MS28 (10.47). Fungicide-treated plants had the lowest AUDPC (1.25). These results suggest that the Trichoderma isolate TCAS effectively manages S. rolfsii under greenhouse conditions and has potential for use in both organic and conventional stevia production.

Estevia, Stevia rebaudiana [(Bertoni) Bertoni], se cultiva en Paraguay como edulcorante natural no nutritivo, pero los rendimientos se ven afectados por el marchitamiento y la muerte de plantas causados por el hongo patógeno Sclerotium rolfsii. Este estudio tuvo como objetivo evaluar aislados nativos del hongo Trichoderma spp., individualmente y en mezcla, para el manejo de S. rolfsii. Como primer paso, se evaluaron in vitro diez aislamientos de Trichoderma provenientes de suelos agrícolas de Paraguay mediante pruebas de cultivo dual contra S. rolfsii para identificar los aislamientos más efectivos. Esta fase preliminar permitió filtrar y seleccionar los candidatos más prometedores antes de realizar experimentos in planta en condiciones más realistas. Un experimento en invernadero con siete tratamientos y cuatro repeticiones evaluó su eficacia. Los tratamientos incluyeron Trichoderma viride comercial, tres aislados nativos (3KH y TCAS, T. asperellum; MS28, T. erinaceum), una mezcla de estos aislados, un fungicida (azoxystrobin + cyproconazole) y un control. Las plantas de estevia de la variedad “Katupyry” fueron tratadas preventivamente con Trichoderma (1x10⁷ esporas ml-1) dos veces antes de la inoculación con S. rolfsii. Los tratamientos con fungicida y Trichoderma se aplicaron al sustrato y en la base de las plantas después de la inoculación, seguidos de dos aplicaciones semanales. Se evaluó la incidencia de la enfermedad y el área bajo la curva de progreso de la enfermedad (AUDPC). El AUDPC para TCAS (7,67) fue significativamente menor que en el control (13,27), en la mezcla de Trichoderma (13,77) y en el T. viride comercial (15,58), pero no difirió significativamente del 3KH (9,15) o MS28 (10,47). Las plantas tratadas con fungicida tuvieron el AUDPC más bajo (1,25). Los resultados sugieren que el aislado TCAS de Trichoderma maneja eficazmente a S. rolfsii en condiciones de invernadero y tiene potencial para su uso en la producción orgánica y convencional de estevia.

References

Benítez, T., Rincón, A. M., Limón, M. C., & Codón, A. C. (2004). Biocontrol mechanisms of Trichoderma strains. International Microbiology, 7(4), 249–260. https://scielo.isciii.es/scielo.php?script=sci_arttext&pid=S1139-67092004000400003

Bogado-Villalba, L., Nakayama Nakashima, H., Britos, R., Masaru Iehisa, J. C., & Flores Giubi, M. E. (2021). Genotypic characterization and steviol glycoside quantification in a population of Stevia rebaudiana Bertoni from Paraguay. Journal of Crop Science and Biotechnology, 24(2), 145–152. https://doi.org/10.1007/s12892-020-00066-1 DOI: https://doi.org/10.1007/s12892-020-00066-1

Britos, R., & Jongdae, P. (Eds.) (2016). Ka’a he’e. Stevia rebaudiana (Bertoni) Bertoni. La dulce planta de Paraguay para el mundo. Alternativa para la diversificación de la finca. IPTA-KOPIA. https://www.researchgate.net/publication/312899595_Ka’a_he’e_Stevia_rebaudiana_Bertoni_Bertoni_La_dulce_planta_de_Paraguay_para_el_mundo_alternativa_para_la_diversificacion_de_la_finca

Bull, C. T., Weller, D. M., & Thomashow, L. S. (1991). Relationship between root colonization and suppression of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens strain 2-79. Phytopathology, 81, 954–959. https://doi.org/10.1094/Phyto-81-954 DOI: https://doi.org/10.1094/Phyto-81-954

Cai, F., & Druzhinina, I. S. (2021). In honor of John Bissett: Authoritative guidelines on molecular identification of Trichoderma. Fungal Diversity, 107(1), 1–69. https://doi.org/10.1007/s13225-020-00464-4 DOI: https://doi.org/10.1007/s13225-020-00464-4

Correa, S., Mello, S., Ávila, Z. R., Minaré Braúna, L., Pádua, R. R., & Gomes, D. (2007). Cepas de Trichoderma spp. para el control biológico de Sclerotium rolfsii Sacc. Fitosanidad, 11(1), 3–9. https://www.redalyc.org/articulo.oa?id=209116144001

Di Rienzo, J. A., Balzarini, M. G., Robledo, C. W., Casanoves, F., Gonzalez, L. A., & Tablada, E. M. (2008). InfoStat Manual del usuario. Editorial Brujas. https://repositorio.catie.ac.cr/bitstream/handle/11554/10346/Manual_INFOSTAT_2008.pdf

Ellatif, S. A., Gharieb, M. M., El-Moghazy, S. M., El-Yazied, M. N. A., & Bakry, A. M. (2019). New approach to control Sclerotium rolfsii induced sugar beet root rots disease by Trichoderma with improved sucrose contents. Journal of Pure and Applied Microbiology, 13(3), 1595–1604. https://doi.org/10.22207/jpam.13.3.32 DOI: https://doi.org/10.22207/JPAM.13.3.32

Fernández, M. R. (1993). Manual para laboratorio de Fitopatología. EMBRAPA-CNPT. https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/815639/1/CNPTDOCUMENTOS6MANUALPARALABORATORIODEFITOPATOLOGIALV200801273.pdf

Franco Ortellado, B. M., & Orrego Fuente, A. L. (2013). Compatibilidad in vitro de aislados nativos de Trichoderma spp. con fungicidas para el tratamiento de semillas. Investigacion Agraria, 15(1), 15–22. https://www.agr.una.py/revista/index.php/ria/article/view/2

Galante, Y. M., De Conti, A., & Monteverdi, R. (1998). Application of Trichoderma enzymes in the textile industry. In G. E. Harman, & C. P. Kubicek (Eds.), Trichoderma and Gliocladium. Enzymes, biological control and commercial applications (vol. 2, pp. 311–326). CRC Press. https://doi.org/10.1201/9781482267945 DOI: https://doi.org/10.1201/9781482267945

Hoitink, H. A, J,, & Boehm, M. J. (1999). Biocontrol within the context of soil microbial communities: A substrate-dependent phenomenon. Annual Review of Phytopathology, 37, 427–446. https://doi.org/10.1146/annurev.phyto.37.1.427 DOI: https://doi.org/10.1146/annurev.phyto.37.1.427

Holmes, K. A., Shroers, H.-J., Thomas, S. E., Evans, H. C., & Samuels, G. J. (2004). Taxonomy and biocontrol potential of a new species of Trichoderma from the Amazon basin of South America. Mycological Progress, 3, 199–210. https://doi.org/10.1007/s11557-006-0090-z DOI: https://doi.org/10.1007/s11557-006-0090-z

Hoyos-Carvajal, L., Chaparro, P., Abramsky, M., Chet, I., & Orduz, S. (2008). Evaluación de aislamientos de Trichoderma spp. contra Rhizoctonia solani y Sclerotium rolfsii bajo condiciones in vitro y de invernadero. Agronomía Colombiana, 26(3), 451–458. https://revistas.unal.edu.co/index.php/agrocol/article/view/11477

Ismail, T., Ponya, Z., Mushtaq, A., & Masood, A. (2020). Stevia a bio sweetener scope in the European Union as a commercial product. American-Eurasian Journal of Sustainable Agriculture, 14(2), 23−26. https://link.gale.com/apps/doc/A634872337/AONE?u=anon~7990b66b&sid=googleScholar&xid=e99046ed

Koehler, A., & Shew, H. D. (2017). Enhanced overwintering survival of stevia by QoI fungicides used for management of Sclerotium rolfsii. Plant Disease, 101(8), 1417–1421. https://doi.org/10.1094/PDIS-02-17-0277-RE DOI: https://doi.org/10.1094/PDIS-02-17-0277-RE

Koehler, A., & Shew, H. (2014). First report of stem and root rot of stevia caused by Sclerotium rolfsii in North Carolina. Plant Disease, 98(7), 1005−1005. https://doi.org/10.1094/PDIS-12-13-1238-PDN DOI: https://doi.org/10.1094/PDIS-12-13-1238-PDN

Lourenço Jr, V., Vieira, B. S., Lopes, E. A., & Villalta, O. N. (2018). Etiology, epidemiology, and management of white rot on onion and garlic: Current knowledge and future directions for Brazil. Científica, 46(3), 241−256. https://doi.org/10.15361/1984-5529.2018v46n3p241-256 DOI: https://doi.org/10.15361/1984-5529.2018v46n3p241-256

Louzada, G. A. S., Barbosa, H. N., Carvalho, D. D. C., Martins, I., Lobo Junior, M., & Mello, S. C. M. (2016). Relações entre testes com metabólitos e seleção de isolados de Trichoderma spp. antagônicos a Sclerotinia sclerotiorum. Revista Brasileira de Biociências, 14(1), 9–14. https://seer.ufrgs.br/index.php/rbrasbioci/article/view/114700/61996

Mazzola, M. (2004). Assessment and management of soil microbial community structure for disease suppression. Annual Review of Phytopathology, 42(1), 35–59. https://doi.org/10.1146/annurev.phyto.42.040803.140408 DOI: https://doi.org/10.1146/annurev.phyto.42.040803.140408

Mukherjee, A. K., Sampath Kumar, A., Kranthi, S., & Mukherjee, P. K. (2014). Biocontrol potential of three novel Trichoderma strains: Isolation, evaluation and formulation. 3 Biotech, 4(3), 275–281. https://doi.org/10.1007/s13205-013-0150-4 DOI: https://doi.org/10.1007/s13205-013-0150-4

Ortuño, N., Miranda, C., & Mayra, C. (2013). Selección de cepas de Trichoderma spp. generadoras de metabolitos secundarios de interés para su uso como promotor de crecimiento en plantas cultivadas. Journal of the Selva Andina Biosphere, 1(1), 16–32. https://dialnet.unirioja.es/servlet/articulo?codigo=4864433 DOI: https://doi.org/10.36610/j.jsab.2013.010100016

Panth, M., Hassler, S. C., & Baysal-Gurel, F. (2020). Methods for management of soilborne diseases in crop production. Agriculture, 10(1), Article 16. https://doi.org/10.3390/agriculture10010016 DOI: https://doi.org/10.3390/agriculture10010016

Ram, R. M., Rajput, R. S., & Vaishnav, A. (2020). Management of Sclerotium rolfsii induced diseases in crops by Trichoderma species. In S. K. Sharma, U. B. Singh, P. K. Sahu, H. V. Singh, & P. K. Sharma (Eds.), Rhizosphere microbes. Microorganisms for sustainability (Vol. 23, pp. 593−617). Springer. https://doi.org/10.1007/978-981-15-9154-9_25 DOI: https://doi.org/10.1007/978-981-15-9154-9_25

Rawat, R., & Tewari, L. (2010). Transmission electron microscopic study of the cytological changes in Sclerotium rolfsii parasitized by a biocontrol fungus Trichoderma sp. Mycology, 1(4), 237–241. https://doi.org/10.1080/21501203.2010.536172 DOI: https://doi.org/10.1080/21501203.2010.536172

Rivera-Méndez, W., Obregón, M., Morán-Diez, M. E., Hermosa, R., & Monte, E. (2020). Trichoderma asperellum biocontrol activity and induction of systemic defenses against Sclerotium cepivorum in onion plants under tropical climate conditions. Biological Control, 141, Article 104145. https://doi.org/10.1016/j.biocontrol.2019.104145 DOI: https://doi.org/10.1016/j.biocontrol.2019.104145

Rodriguez-Paez, L. A., Jaraba-Navas, J. D., Pineda-Rodriguez, Y. Y., Begambre-Hernandez, M., Pompelli, M. F., Jimenez-Ramirez, A. M., Gil-Rocha, A., Jarma-Orozco, A., Combatt-Caballero, E., Aviña-Padilla, K., Jamal, A., Oloriz-Ortega, M. I., & Veitía Rodríguez, N. (2023). Natural biocontrol of bAthelia rolfsii isolate INVEPAR-05 in Stevia rebaudiana Bertoni: Exploring the biocontrol potential of native Trichoderma spp. strains. Preprints.org. https://doi.org/10.20944/preprints202308.1062.v1 DOI: https://doi.org/10.20944/preprints202308.1062.v1

Samuels, G. J. (2006). Trichoderma: Systematics, the sexual state, and ecology. Phytopathology, 96(2), 195–206. https://doi.org/10.1094/PHYTO-96-0195 DOI: https://doi.org/10.1094/PHYTO-96-0195

Sanabria Velázquez, A. D. (2020). Evaluación de aislados de Trichoderma spp. nativos del Paraguay para el control de Colletotrichum spp. causante de la antracnosis en frutilla. Investigacion Agraria, 22(1), 53–62. https://doi.org/10.18004/investig.agrar.2020.junio.53-62 DOI: https://doi.org/10.18004/investig.agrar.2020.junio.53-62

Sanabria-Velazquez, A. D., Enciso-Maldonado, G. A., Maidana-Ojeda, M., Diaz-Najera, J. F., Ayvar-Serna, S., Thiessen, L. D., & Shew, H. D. (2023). Integrated pathogen management in stevia using anaerobic soil disinfestation combined with different fungicide programs in USA, Mexico, and Paraguay. Agronomy, 13(5), Article 1358. https://doi.org/10.3390/agronomy13051358 DOI: https://doi.org/10.3390/agronomy13051358

Sanabria-Velázquez, A. D., Florentín Pavía, M. M., Insaurralde Ayala, L., Flores-Giubi, M. E., Romero-Rodríguez, M. C., Sotelo, P. H., & Barúa, J. E. (2023). Characterization of Trichoderma species from agricultural soils of Paraguay. Agronomía Colombiana, 41(3), Article e111299. https://doi.org/10.15446/agron.colomb.v41n3.111299 DOI: https://doi.org/10.15446/agron.colomb.v41n3.111299

Sanabria Velázquez, A. D., & Grabowski Ocampos, C. J. (2016). Control biológico de Rosellinia sp. causante de la muerte súbita en macadamia (Macadamia integrifolia) con aislados de Trichoderma spp. Investigacion Agraria, 18(2), 77–86. https://www.agr.una.py/revista/index.php/ria/article/view/306 DOI: https://doi.org/10.18004/investig.agrar.2016.diciembre.77-86

Sanabria-Velazquez, A. D., Testen, A. L., Enciso, G. A., Soilan, L. C., & Miller, S. A. (2019). Effects of anaerobic soil disinfestation on Sclerotinia sclerotiorum in Paraguay. Plant Health Progress, 20(1), 50–60. https://doi.org/10.1094/PHP-12-18-0082-RS DOI: https://doi.org/10.1094/PHP-12-18-0082-RS

Upadhyay, J. P., & Mukhopadhyay, A. N. (1986). Biological control of Sclerotium rolfsii by Trichoderma harzianum in sugarbeet. Tropical Pest Management, 32(3), 215–220. https://doi.org/10.1080/09670878609371066 DOI: https://doi.org/10.1080/09670878609371066

Vinodkumar, S., Indumathi, T., & Nakkeeran, S. (2017). Trichoderma asperellum (NVTA2) as a potential antagonist for the management of stem rot in carnation under protected cultivation. Biological Control, 113, 58–64. https://doi.org/10.1016/j.biocontrol.2017.07.001 DOI: https://doi.org/10.1016/j.biocontrol.2017.07.001

How to Cite

APA

Sanabria-Velázquez, A. D., Bittar-Vega, H. K., Montiel, G., Cantero, F., Britos, R., Ortiz, C. & Sarubbi-Orué, H. J. (2025). Biological control of Sclerotium rolfsii Sacc. in Stevia rebaudiana using native isolates of Trichoderma spp. from Paraguay. Agronomía Colombiana, 43(1), e117744. https://doi.org/10.15446/agron.colomb.v43n1.117744

ACM

[1]
Sanabria-Velázquez, A.D., Bittar-Vega, H.K., Montiel, G., Cantero, F., Britos, R., Ortiz, C. and Sarubbi-Orué, H.J. 2025. Biological control of Sclerotium rolfsii Sacc. in Stevia rebaudiana using native isolates of Trichoderma spp. from Paraguay. Agronomía Colombiana. 43, 1 (Jan. 2025), e117744. DOI:https://doi.org/10.15446/agron.colomb.v43n1.117744.

ACS

(1)
Sanabria-Velázquez, A. D.; Bittar-Vega, H. K.; Montiel, G.; Cantero, F.; Britos, R.; Ortiz, C.; Sarubbi-Orué, H. J. Biological control of Sclerotium rolfsii Sacc. in Stevia rebaudiana using native isolates of Trichoderma spp. from Paraguay. Agron. Colomb. 2025, 43, e117744.

ABNT

SANABRIA-VELÁZQUEZ, A. D.; BITTAR-VEGA, H. K.; MONTIEL, G.; CANTERO, F.; BRITOS, R.; ORTIZ, C.; SARUBBI-ORUÉ, H. J. Biological control of Sclerotium rolfsii Sacc. in Stevia rebaudiana using native isolates of Trichoderma spp. from Paraguay. Agronomía Colombiana, [S. l.], v. 43, n. 1, p. e117744, 2025. DOI: 10.15446/agron.colomb.v43n1.117744. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/117744. Acesso em: 13 nov. 2025.

Chicago

Sanabria-Velázquez, Andrés D., Hassan K. Bittar-Vega, Gloria Montiel, Federico Cantero, Rosanna Britos, Cynthia Ortiz, and Humberto J. Sarubbi-Orué. 2025. “Biological control of Sclerotium rolfsii Sacc. in Stevia rebaudiana using native isolates of Trichoderma spp. from Paraguay”. Agronomía Colombiana 43 (1):e117744. https://doi.org/10.15446/agron.colomb.v43n1.117744.

Harvard

Sanabria-Velázquez, A. D., Bittar-Vega, H. K., Montiel, G., Cantero, F., Britos, R., Ortiz, C. and Sarubbi-Orué, H. J. (2025) “Biological control of Sclerotium rolfsii Sacc. in Stevia rebaudiana using native isolates of Trichoderma spp. from Paraguay”, Agronomía Colombiana, 43(1), p. e117744. doi: 10.15446/agron.colomb.v43n1.117744.

IEEE

[1]
A. D. Sanabria-Velázquez, “Biological control of Sclerotium rolfsii Sacc. in Stevia rebaudiana using native isolates of Trichoderma spp. from Paraguay”, Agron. Colomb., vol. 43, no. 1, p. e117744, Jan. 2025.

MLA

Sanabria-Velázquez, A. D., H. K. Bittar-Vega, G. Montiel, F. Cantero, R. Britos, C. Ortiz, and H. J. Sarubbi-Orué. “Biological control of Sclerotium rolfsii Sacc. in Stevia rebaudiana using native isolates of Trichoderma spp. from Paraguay”. Agronomía Colombiana, vol. 43, no. 1, Jan. 2025, p. e117744, doi:10.15446/agron.colomb.v43n1.117744.

Turabian

Sanabria-Velázquez, Andrés D., Hassan K. Bittar-Vega, Gloria Montiel, Federico Cantero, Rosanna Britos, Cynthia Ortiz, and Humberto J. Sarubbi-Orué. “Biological control of Sclerotium rolfsii Sacc. in Stevia rebaudiana using native isolates of Trichoderma spp. from Paraguay”. Agronomía Colombiana 43, no. 1 (January 1, 2025): e117744. Accessed November 13, 2025. https://revistas.unal.edu.co/index.php/agrocol/article/view/117744.

Vancouver

1.
Sanabria-Velázquez AD, Bittar-Vega HK, Montiel G, Cantero F, Britos R, Ortiz C, Sarubbi-Orué HJ. Biological control of Sclerotium rolfsii Sacc. in Stevia rebaudiana using native isolates of Trichoderma spp. from Paraguay. Agron. Colomb. [Internet]. 2025 Jan. 1 [cited 2025 Nov. 13];43(1):e117744. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/117744

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

202

Downloads

Download data is not yet available.