Published

2025-08-31

Evaluation of an automatic drainage recirculation system in rose crop in terms of S, Na+, and Cl-

Evaluación de un sistema de recirculación automática de drenajes en el cultivo de rosa, en términos de S, Na+ y Cl-

DOI:

https://doi.org/10.15446/agron.colomb.v43n2.117787

Keywords:

intensive horticulture, cut flowers, organic substrates (en)
horticultura intensiva, flores de corte, sustratos orgánicos (es)

Downloads

Authors

  • William Javier Cuervo-Bejarano Universidad Nacional Abierta y a Distancia - Escuela de Ciencias Agrícolas, Pecuarias y del Medio Ambiente - Cundinamarca, Colombia https://orcid.org/0000-0003-4097-8890
  • Yenny Alexandra García-Castro Corporación Universitaria Minuto de Dios (Uniminuto) - Programa de Ingeniería Agroecológica - Centro Universitario Zipaquirá - Cundinamarca, Colombia https://orcid.org/0000-0001-9473-9161
  • Víctor Julio Flórez-Roncancio Universidad Nacional de Colombia - Bogotá - Facultad de Ciencias Agrarias - Departamento de Agronomía https://orcid.org/0000-0002-3081-2400

In Colombia, mixtures of substrates such as burned rice husk (BRH) and coconut fiber (CF) are used for the cultivation of cut flowers. Fertigation is applied to ensure 30% drainage, which can contaminate water and soil. In a drainage recycling system, there is a tendency for ions that are poorly absorbed by plants, such as sodium and chloride, to accumulate, which can create an ionic imbalance in the solution or salinize the substrate. An automatic drainage recycling system was built in rose cv. ‘Charlotte’ established in mixtures 100BRH, 65BRH:35CF, and 35BRH:65CF with 0%, 50%, and 100% drainage recycling. The contents of S, Na+, and Cl- were evaluated in drainages, substrates, and leaf tissue at 0, 5, and 8 weeks after pruning (WAP). The SO42- and Na+ ions presented a similar behavior over time, with contents significantly higher in the substrates with higher CF contents at 0 WAP and the opposite at 8 WAP. In addition, the higher the BRH content and the recycling percentage, the higher the SO42- in the drains. There was no significant difference in the S contents in substrates and plant tissue. Drainage recycling (50% and 100%) significantly increased Na+ contents in the substrate. The Cl- concentrations were significantly different at 8 WAP, being higher in treatments with recycling (50% and 100%), regardless of the type of substrate mixture.

En Colombia se utilizan mezclas de sustratos como la cascarilla de arroz quemada (CAQ) y la fibra de coco (FC) para el cultivo de flores de corte. Se aplican volúmenes de fertirriego que aseguran drenajes de cerca del 30% que pueden contaminar aguas y suelos. En un sistema de reciclaje de drenajes, hay tendencia a la acumulación de iones que son poco absorbidos por las plantas como el sodio y el cloruro, los cuales pueden crear un desbalance iónico en la solución o salinizar el sustrato. Se construyó un sistema automático para el reciclaje de drenajes en un cultivo de rosa cv. ‘Charlotte’ establecido en los sustratos 100CAQ, 65CAQ:35FC y 35CAQ:65FC con 0, 50 y 100% de reciclaje de drenaje y se evaluaron los contenidos de S, Na+ y Cl- en drenaje, sustrato y tejido a las 0, 5 y 8 semanas después de poda (SDP). Los iones SO42- y Na+ presentaron un comportamiento similar en el tiempo, con contenidos significativamente mayores en los sustratos con mayor porcentaje de FC en la 0 SDP y lo contrario en la 8 SDP. Además, a mayores porcentajes de CAQ y de reciclaje mayor contenido de SO42- en la solución drenada; entre tanto, no se constató diferencia significativa en los contenidos de S en sustrato y tejido. El reciclaje del drenaje (50 y 100%) incrementó significativamente el contenido de Na+ en el sustrato. Las concentraciones de Cl- fueron significativamente diferentes en la 8 SDP, con mayores concentraciones en los tratamientos con reciclaje (50 y 100%), independiente del tipo de mezcla de sustratos.

References

Abad, M., Noguera, P., Puchades, R., Maquieira, A., & Noguera, V. (2002). Physico-chemical and chemical properties of some coconut coir dusts for use as a peat substitute for containerised ornamental plants. Bioresource Technology, 82(3), 241–245. https://doi.org/10.1016/S0960-8524(01)00189-4

Ågren, G. I., & Weih, M. (2020). Corrigendum: Multi-dimensional plant element stoichiometry –looking beyond carbon, nitrogen, and phosphorus. Frontiers in Plant Science, 11, Article 915. https://doi.org/10.3389/fpls.2020.00915

Alaoui, I., El Ghadraoui, O., Serbouti, S., Ahmed, H., Mansouri, I., El Kamari, F., Taroq, A., Ousaaid, D., Squalli, W., & Farah, A. (2022). The mechanisms of absorption and nutrients transport in plants: A review. Tropical Journal of Natural Product Research, 6(1), 8–14. https://scispace.com/papers/the-mechanisms-of-absorption-and-nutrients-transport-in-2x628x8q

Atta-Aly, M. A., Saltveit, M. E., & El-Beltagy, A. S. (1998). Saline growing conditions induce ripening of the non-ripening mutants nor and rin tomato fruits but not of Nr fruit. Postharvest Biology and Technology, 13(3), 225–234. https://doi.org/10.1016/S0925-5214(98)00010-6

Blumwald, E., Aharon, G. S., & Apse, M. P. (2000). Sodium transport in plant cells. Biochimica et Biophysica Acta (BBA) – Biomembranes, 1465(1–2), 140–151. https://doi.org/10.1016/S0005-2736(00)00135-8

Bugbee, B. (2004). Nutrient management in recirculating hydroponic culture. Acta Horticulturae, 648, 99–112. https://doi.org/10.17660/ActaHortic.2004.648.12

Cabrera, R. I. (2003). Nitrogen balance for two container-grown woody ornamental plants. Scientia Horticulturae, 97(3–4), 297–308. https://doi.org/10.1016/S0304-4238(02)00151-6

Cabrera, R. I., & Perdomo, P. (2003). Reassessing the salinity tolerance of greenhouse roses under soilless production conditions. HortScience, 38(4), 533–536. https://doi.org/10.21273/hortsci.38.4.533

Cabrera, R. I., Solís-Pérez, A. R., & Cuervo-Bejarano, W. J. (2017). Tolerancia y manejo de salinidad, pH y alcalinidad en cultivos de flores. In V. J. Flórez (Ed.), Consideraciones sobre producción, manejo y poscosecha de flores de corte con énfasis en rosa y clavel (pp. 63–73). Editorial Universidad Nacional de Colombia. https://academia.ceniflores.org/CentroDocumental/consideraciones-sobre-produccion-manejo-y-poscosecha-de-flores-de-corte-con-enfasis-en-rosa-y-clavel/

Cabrera, R. I., Solís-Pérez, A. R., & Sloan, J. J. (2009). Greenhouse rose yield and ion accumulation responses to salt stress as modulated by rootstock selection. HortScience, 44(7), 2000–2008. https://doi.org/10.21273/hortsci.44.7.2000

Cakmak, I., Brown, P., Colmenero-Flores, J., Husted, S., Kutman, B. Y., Nikolic, M., Rengel, Z., Schmidt, S., & Zhao, F.-J. (2023). Micronutrients. In Z. Rengel, I. Cakmak, & P. J. White (Eds.), Marschner’s mineral nutrition of plants (4th ed., pp. 283–385). Academic Press. https://doi.org/10.1016/B978-0-12-819773-8.00017-4

Carmassi, G., Romani, M., Diara, C., Massa, D., Maggini, R., Incrocci, L., & Pardossi, A. (2013). Response to sodium chloride salinity and excess boron in greenhouse tomato grown in semi-closed substrate culture in a Mediterranean climate. Journal of Plant Nutrition, 36(7), 1025–1042. https://doi.org/10.1080/01904167.2013.766209

Chapagain, B. P., Wiesman, Z., Zaccai, M., Imas, P., & Magen, H. (2003). Potassium chloride enhances fruit appearance and improves quality of fertigated greenhouse tomato as compared to potassium nitrate. Journal of Plant Nutrition, 26(3), 243−658. https://doi.org/10.1081/PLN-120017671

Claassen, N., & Barber, S. A. (1974). A method for characterizing the relation between nutrient concentration and flux into roots of intact plants. Plant Physiology, 54(4), 564–568. https://doi.org/10.1104/pp.54.4.564

Colmenero-Flores, J. M., Franco-Navarro, J. D., Cubero-Font, P., Peinado-Torrubia, P., & Rosales, M. A. (2019). Chloride as a beneficial macronutrient in higher plants: new roles and regulation. International Journal of Molecular Sciences, 20(19), Article 4686. https://doi.org/10.3390/ijms20194686

Coskun, D., & White, P. J. (2023). Ion-uptake mechanisms of individual cells and roots: short distance transport. In Z. Rengel, I. Cakmak, & P. J. White (Eds.), Marschner’s mineral nutrition of plants (4th ed., pp. 11–71). Academic Press. https://doi.org/10.1016/B978-0-12-819773-8.00018-6

Cuervo, W. J., Flórez, V. J., & González, C. A. (2012). Aspectos a tener en cuenta para optimizar un sistema de cultivo en sustrato con reciclaje de drenajes. Agronomía Colombiana, 30(3), 379–387. https://revistas.unal.edu.co/index.php/agrocol/article/view/29029

Cuervo, W. J., Flórez, V. J., & González, C. A. (2011). Generalidades de la automatización y control para el reciclaje de drenajes en cultivos bajo cubierta. In V. J. Florez (Ed.), Sustratos, manejo del clima, automatización y control en sistemas de cultivo sin suelo (pp. 247–275). Editorial Universidad Nacional de Colombia. https://academia.ceniflores.org/CentroDocumental/sustratos-manejo-del-clima-automatizacion-y-control-en-sistemas-de-cultivo-sin-suelo/

Cuervo-Bejarano, W. J., Flórez-Roncancio, V. J., & Melo-Martínez, S. E. (2024). Evaluation of electrical conductivity and pH in a nutrient solution with recirculating system in rose crop. Agronomía Colombiana, 42(2), Article e115607. https://doi.org/10.15446/agron.colomb.v42n2.115607

Domingues, D. S., Takahashi, H. W., Camara, C. A. P., & Nixdorf, S. L. (2012). Automated system developed to control pH and concentration of nutrient solution evaluated in hydroponic lettuce production. Computers and Electronics in Agriculture, 84, 53–61. https://doi.org/10.1016/j.compag.2012.02.006

Dotaniya, M. L., & Meena, V. D. (2015). Rhizosphere effect on nutrient availability in soil and its uptake by plants: A review. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 85, 1–12. https://doi.org/10.1007/s40011-013-0297-0

Farnham, D. S., Hasek, R. F., & Paul, J. L. (1985). Water quality: Its effects on ornamental plants. Cooperative Extension University of California. Division of Agriculture and Natural Resources. Leaflet 2995. https://ucanr.edu/sites/cetest/files/55088.pdf

Fujimoto, S. Y., Ohta, M., Usui, A., Shinshi, H., & Ohme-Takagi, M. (2000). Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell, 12(3), 393–404. https://doi.org/10.1105/tpc.12.3.393

Griffiths, M., & York, L. M. (2020). Targeting root ion uptake kinetics to increase plant productivity and nutrient use efficiency. Plant Physiology, 182(4), 1854–1868. https://doi.org/10.1104/PP.19.01496

Guzmán González, D. A. (1996). Zonas de vida o formaciones vegetales. Área jurisdiccional CAR. Corporación Autónoma Regional. https://sie.car.gov.co/server/api/core/bitstreams/4d8734ed-15b4-4992-955b-f696d6a4417c/content

Handreck, K., & Black, N. (2010). Growing media for ornamental plants and turf (4th ed.). University of New South Wales Press. https://archive.org/details/growingmediaforo0000hand

Hettiarachchi, E., Perera, R., Chandani Perera, A. D. L., & Kottegoda, N. (2016). Activated coconut coir for removal of sodium and magnesium ions from saline water. Desalination and Water Treatment, 57(47), 22341–22352. https://doi.org/10.1080/19443994.2015.1129649

Kämpf, A. N., Fior, C. S., & Leonhardt, C. (2009). Lowering pH value with elemental sulfur in the substrate for ex vitro acclimatization. Acta Horticulturae, 812, 415–420. https://doi.org/10.17660/ActaHortic.2009.812.58

Kertesz, M. A., & Mirleau, P. (2004). The role of soil microbes in plant sulphur nutrition. Journal of Experimental Botany, 55(404), 1939–1945. https://doi.org/10.1093/jxb/erh176

Lee, M. K., & Van Iersel, M. W. (2008). Sodium chloride effects on growth, morphology, and physiology of chrysanthemum (Chrysanthemum x morifolium). HortScience, 43(6), 1888–1891. https://doi.org/10.21273/hortsci.43.6.1888

Lorenzo, H., Cid, M. C., Siverio, J. M., & Ruano, M. C. (2000). Effects of sodium on mineral nutrition in rose plants. Annals of Applied Biology, 137(1), 65–72. https://doi.org/10.1111/j.1744-7348.2000.tb00058.x

Lucheta, A. R., & Lambais, M. R. (2012). Sulfur in agriculture. Revista Brasileira de Ciência do Solo, 36(5), 1369–1379. https://doi.org/10.1590/s0100-06832012000500001

Massa, D., Mattson, N. S., & Lieth, H. J. (2009). Effects of saline root environment (NaCl) on nitrate and potassium uptake kinetics for rose plants: A Michaelis-Menten modelling approach. Plant and Soil, 318, 101–115. https://doi.org/10.1007/s11104-008-9821-z

Mendiburu, F. (2023). R package version 1.3-7 Statistical procedures for agricultural research (Version 1.3-1). https://CRAN.Rproject.org/package=agricolae

Metwally, A. M., Radi, A. A., El-Shazoly, R. M., & Hamada, A. M. (2018). The role of calcium, silicon and salicylic acid treatment in protection of canola plants against boron toxicity stress. Journal of Plant Research, 131(6), 1015–1028. https://doi.org/10.1007/s10265-018-1008-y

Niu, G., & Rodriguez, D. S. (2008). Responses of growth and ion uptake of four rose rootstocks to chloride- or sulfate-dominated salinity. Journal of the American Society for Horticultural Science, 133(5), 663–669. https://doi.org/10.21273/jashs.133.5.663

Olympios, C. M. (1999). Overview of soilless culture: advantages, constraints, and perspectives. In R. Choukr-Allah (Ed.), Protected cultivation in the Mediterranean region (pp. 307–324).

Riley, M. M. (1987). Micronutrients: Boron toxicity in barley. Journal of Plant Nutrition, 10(9–16), 2109–2115. https://doi.org/10.1080/01904168709363761

Rodríguez, M., & Flórez, V. (2012). Changes in EC, pH and in the concentrations of nitrate, ammonium, sodium and chlorine in the drainage solution of a crop of roses on substrates with drainage recycling. Agronomía Colombiana, 30(2), 266–273. https://revistas.unal.edu.co/index.php/agrocol/article/view/15773

Roig, A., Cayuela, M. L., & Sánchez-Monedero, M. A. (2004). The use of elemental sulphur as organic alternative to control pH during composting of olive mill wastes. Chemosphere, 57(9), 1099–1105. https://doi.org/10.1016/j.chemosphere.2004.08.024

Roy, S. J., Negrão, S., & Tester, M. (2014). Salt resistant crop plants. Current Opinion in Biotechnology, 26, 115–124. https://doi.org/10.1016/j.copbio.2013.12.004

Sambo, P., Nicoletto, C., Giro, A., Pii, Y., Valentinuzzi, F., Mimmo, T., Lugli, P., Orzes, G., Mazzetto, F., Astolfi, S., Terzano, R., & Cesco, S. (2019). Hydroponic solutions for soilless production systems: issues and opportunities in a smart agriculture perspective. Frontiers in Plant Science, 10(923), 1–17. https://doi.org/10.3389/fpls.2019.00923

Savvas, D. (2003). Nutritional management of vegetables and ornamental plants in hydroponics. In R. Dris, R. Niskanen, & S. M. Jain (Eds.), Crop management and postharvest handling of horticultural products fruits and vegetables (Vol. 1, pp. 37–87). Science Publishers.

Savvas, D., & Adamidis, K. (1999). Automated management of nutrient solutions based on target electrical conductivity, pH, and nutrient concentration ratios. Journal of Plant Nutrition, 22(9), 1415–1432. https://doi.org/10.1080/01904169909365723

Schippers, P. A. (1980). Composition changes in the nutrient solution during the growth of plants in recirculating nutrient culture. Acta Horticulturae, 98, 103–118. https://doi.org/10.17660/actahortic.1980.98.9

Solís-Pérez, A. R., & Cabrera, R. I. (2007). Evaluating counter-ion effects on greenhouse roses subjected to moderately-high salinity. Acta Horticulturae, 751, 375–380. https://doi.org/10.17660/ActaHortic.2007.751.47

Sonneveld, C. (2000). Effects of salinity on substrate grown vegetables and ornamentals in greenhouse horticulture [Doctoral dissertation, Wageningen University]. https://doi.org/10.18174/121235

Sonneveld, C., Baas, R., Nijssen, H. M. C., & De Hoog, J. (1999). Salt tolerance of flower crops grown in soilless culture. Journal of Plant Nutrition, 22(6), 1033–1048. https://doi.org/10.1080/01904169909365692

Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (2015). Plant physiology and development (6th. ed.). Sinauer Associates, Inc. Publishers.

Tourna, M., Maclean, P., Condron, L., O’Callaghan, M., & Wakelin, S. A. (2014). Links between sulphur oxidation and sulphur-oxidising bacteria abundance and diversity in soil microcosms based on soxB functional gene analysis. FEMS Microbiology Ecology, 88(3), 538–549. https://doi.org/10.1111/1574-6941.12323

Trejo-Téllez, L. I., & Gómez-Merino F. C. (2012) Nutrient solutions for hydroponic systems. In T. Asao (Ed.), Hydroponics - A standard methodology for plant biological researches (pp. 1-22). InTech. https://doi.org/10.5772/2215

Vélez Carvajal, N. A. (2012). Comportamiento de macronutrientes en un sistema de cultivo sin suelo para clavel estándar cv. Delphi con recirculación de drenajes en la Sabana de Bogotá [Master thesis, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/11550

Wen, Z., Tyerman, S. D., Dechorgnat, J., Ovchinnikova, E., Dhugga, K. S., & Kaiser, B. N. (2017). Maize NPF6 proteins are homologs of Arabidopsis CHL1 that are selective for both nitrate and chloride. The Plant Cell, 29(10), 2581–2596. https://doi.org/10.1105/tpc.16.00724

Wickham, H. (2016). Ggplot2: Elegant graphics for data analysis (2nd ed.). Springer. https://link.springer.com/book/10.1007/978-3-319-24277-4

Zhang, X., Franzisky, B. L., Eigner, L., Geilfus, C. M., & Zörb, C. (2021). Antagonism of chloride and nitrate inhibits nitrate reductase activity in chloride-stressed maize. Plant Growth Regulation, 93(3), 279–289. https://doi.org/10.1007/s10725-020-00685-2

How to Cite

APA

Cuervo-Bejarano, W. J., García-Castro, Y. A. & Flórez-Roncancio, V. J. (2025). Evaluation of an automatic drainage recirculation system in rose crop in terms of S, Na+, and Cl-. Agronomía Colombiana, 43(2), e117787. https://doi.org/10.15446/agron.colomb.v43n2.117787

ACM

[1]
Cuervo-Bejarano, W.J., García-Castro, Y.A. and Flórez-Roncancio, V.J. 2025. Evaluation of an automatic drainage recirculation system in rose crop in terms of S, Na+, and Cl-. Agronomía Colombiana. 43, 2 (May 2025), e117787. DOI:https://doi.org/10.15446/agron.colomb.v43n2.117787.

ACS

(1)
Cuervo-Bejarano, W. J.; García-Castro, Y. A.; Flórez-Roncancio, V. J. Evaluation of an automatic drainage recirculation system in rose crop in terms of S, Na+, and Cl-. Agron. Colomb. 2025, 43, e117787.

ABNT

CUERVO-BEJARANO, W. J.; GARCÍA-CASTRO, Y. A.; FLÓREZ-RONCANCIO, V. J. Evaluation of an automatic drainage recirculation system in rose crop in terms of S, Na+, and Cl-. Agronomía Colombiana, [S. l.], v. 43, n. 2, p. e117787, 2025. DOI: 10.15446/agron.colomb.v43n2.117787. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/117787. Acesso em: 18 nov. 2025.

Chicago

Cuervo-Bejarano, William Javier, Yenny Alexandra García-Castro, and Víctor Julio Flórez-Roncancio. 2025. “Evaluation of an automatic drainage recirculation system in rose crop in terms of S, Na+, and Cl-”. Agronomía Colombiana 43 (2):e117787. https://doi.org/10.15446/agron.colomb.v43n2.117787.

Harvard

Cuervo-Bejarano, W. J., García-Castro, Y. A. and Flórez-Roncancio, V. J. (2025) “Evaluation of an automatic drainage recirculation system in rose crop in terms of S, Na+, and Cl-”, Agronomía Colombiana, 43(2), p. e117787. doi: 10.15446/agron.colomb.v43n2.117787.

IEEE

[1]
W. J. Cuervo-Bejarano, Y. A. García-Castro, and V. J. Flórez-Roncancio, “Evaluation of an automatic drainage recirculation system in rose crop in terms of S, Na+, and Cl-”, Agron. Colomb., vol. 43, no. 2, p. e117787, May 2025.

MLA

Cuervo-Bejarano, W. J., Y. A. García-Castro, and V. J. Flórez-Roncancio. “Evaluation of an automatic drainage recirculation system in rose crop in terms of S, Na+, and Cl-”. Agronomía Colombiana, vol. 43, no. 2, May 2025, p. e117787, doi:10.15446/agron.colomb.v43n2.117787.

Turabian

Cuervo-Bejarano, William Javier, Yenny Alexandra García-Castro, and Víctor Julio Flórez-Roncancio. “Evaluation of an automatic drainage recirculation system in rose crop in terms of S, Na+, and Cl-”. Agronomía Colombiana 43, no. 2 (May 1, 2025): e117787. Accessed November 18, 2025. https://revistas.unal.edu.co/index.php/agrocol/article/view/117787.

Vancouver

1.
Cuervo-Bejarano WJ, García-Castro YA, Flórez-Roncancio VJ. Evaluation of an automatic drainage recirculation system in rose crop in terms of S, Na+, and Cl-. Agron. Colomb. [Internet]. 2025 May 1 [cited 2025 Nov. 18];43(2):e117787. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/117787

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

63

Downloads

Download data is not yet available.