Evaluation of an automatic drainage recirculation system in rose crop in terms of S, Na+, and Cl-
Evaluación de un sistema de recirculación automática de drenajes en el cultivo de rosa, en términos de S, Na+ y Cl-
DOI:
https://doi.org/10.15446/agron.colomb.v43n2.117787Keywords:
intensive horticulture, cut flowers, organic substrates (en)horticultura intensiva, flores de corte, sustratos orgánicos (es)
Downloads
In Colombia, mixtures of substrates such as burned rice husk (BRH) and coconut fiber (CF) are used for the cultivation of cut flowers. Fertigation is applied to ensure 30% drainage, which can contaminate water and soil. In a drainage recycling system, there is a tendency for ions that are poorly absorbed by plants, such as sodium and chloride, to accumulate, which can create an ionic imbalance in the solution or salinize the substrate. An automatic drainage recycling system was built in rose cv. ‘Charlotte’ established in mixtures 100BRH, 65BRH:35CF, and 35BRH:65CF with 0%, 50%, and 100% drainage recycling. The contents of S, Na+, and Cl- were evaluated in drainages, substrates, and leaf tissue at 0, 5, and 8 weeks after pruning (WAP). The SO42- and Na+ ions presented a similar behavior over time, with contents significantly higher in the substrates with higher CF contents at 0 WAP and the opposite at 8 WAP. In addition, the higher the BRH content and the recycling percentage, the higher the SO42- in the drains. There was no significant difference in the S contents in substrates and plant tissue. Drainage recycling (50% and 100%) significantly increased Na+ contents in the substrate. The Cl- concentrations were significantly different at 8 WAP, being higher in treatments with recycling (50% and 100%), regardless of the type of substrate mixture.
En Colombia se utilizan mezclas de sustratos como la cascarilla de arroz quemada (CAQ) y la fibra de coco (FC) para el cultivo de flores de corte. Se aplican volúmenes de fertirriego que aseguran drenajes de cerca del 30% que pueden contaminar aguas y suelos. En un sistema de reciclaje de drenajes, hay tendencia a la acumulación de iones que son poco absorbidos por las plantas como el sodio y el cloruro, los cuales pueden crear un desbalance iónico en la solución o salinizar el sustrato. Se construyó un sistema automático para el reciclaje de drenajes en un cultivo de rosa cv. ‘Charlotte’ establecido en los sustratos 100CAQ, 65CAQ:35FC y 35CAQ:65FC con 0, 50 y 100% de reciclaje de drenaje y se evaluaron los contenidos de S, Na+ y Cl- en drenaje, sustrato y tejido a las 0, 5 y 8 semanas después de poda (SDP). Los iones SO42- y Na+ presentaron un comportamiento similar en el tiempo, con contenidos significativamente mayores en los sustratos con mayor porcentaje de FC en la 0 SDP y lo contrario en la 8 SDP. Además, a mayores porcentajes de CAQ y de reciclaje mayor contenido de SO42- en la solución drenada; entre tanto, no se constató diferencia significativa en los contenidos de S en sustrato y tejido. El reciclaje del drenaje (50 y 100%) incrementó significativamente el contenido de Na+ en el sustrato. Las concentraciones de Cl- fueron significativamente diferentes en la 8 SDP, con mayores concentraciones en los tratamientos con reciclaje (50 y 100%), independiente del tipo de mezcla de sustratos.
References
Abad, M., Noguera, P., Puchades, R., Maquieira, A., & Noguera, V. (2002). Physico-chemical and chemical properties of some coconut coir dusts for use as a peat substitute for containerised ornamental plants. Bioresource Technology, 82(3), 241–245. https://doi.org/10.1016/S0960-8524(01)00189-4
Ågren, G. I., & Weih, M. (2020). Corrigendum: Multi-dimensional plant element stoichiometry –looking beyond carbon, nitrogen, and phosphorus. Frontiers in Plant Science, 11, Article 915. https://doi.org/10.3389/fpls.2020.00915
Alaoui, I., El Ghadraoui, O., Serbouti, S., Ahmed, H., Mansouri, I., El Kamari, F., Taroq, A., Ousaaid, D., Squalli, W., & Farah, A. (2022). The mechanisms of absorption and nutrients transport in plants: A review. Tropical Journal of Natural Product Research, 6(1), 8–14. https://scispace.com/papers/the-mechanisms-of-absorption-and-nutrients-transport-in-2x628x8q
Atta-Aly, M. A., Saltveit, M. E., & El-Beltagy, A. S. (1998). Saline growing conditions induce ripening of the non-ripening mutants nor and rin tomato fruits but not of Nr fruit. Postharvest Biology and Technology, 13(3), 225–234. https://doi.org/10.1016/S0925-5214(98)00010-6
Blumwald, E., Aharon, G. S., & Apse, M. P. (2000). Sodium transport in plant cells. Biochimica et Biophysica Acta (BBA) – Biomembranes, 1465(1–2), 140–151. https://doi.org/10.1016/S0005-2736(00)00135-8
Bugbee, B. (2004). Nutrient management in recirculating hydroponic culture. Acta Horticulturae, 648, 99–112. https://doi.org/10.17660/ActaHortic.2004.648.12
Cabrera, R. I. (2003). Nitrogen balance for two container-grown woody ornamental plants. Scientia Horticulturae, 97(3–4), 297–308. https://doi.org/10.1016/S0304-4238(02)00151-6
Cabrera, R. I., & Perdomo, P. (2003). Reassessing the salinity tolerance of greenhouse roses under soilless production conditions. HortScience, 38(4), 533–536. https://doi.org/10.21273/hortsci.38.4.533
Cabrera, R. I., Solís-Pérez, A. R., & Cuervo-Bejarano, W. J. (2017). Tolerancia y manejo de salinidad, pH y alcalinidad en cultivos de flores. In V. J. Flórez (Ed.), Consideraciones sobre producción, manejo y poscosecha de flores de corte con énfasis en rosa y clavel (pp. 63–73). Editorial Universidad Nacional de Colombia. https://academia.ceniflores.org/CentroDocumental/consideraciones-sobre-produccion-manejo-y-poscosecha-de-flores-de-corte-con-enfasis-en-rosa-y-clavel/
Cabrera, R. I., Solís-Pérez, A. R., & Sloan, J. J. (2009). Greenhouse rose yield and ion accumulation responses to salt stress as modulated by rootstock selection. HortScience, 44(7), 2000–2008. https://doi.org/10.21273/hortsci.44.7.2000
Cakmak, I., Brown, P., Colmenero-Flores, J., Husted, S., Kutman, B. Y., Nikolic, M., Rengel, Z., Schmidt, S., & Zhao, F.-J. (2023). Micronutrients. In Z. Rengel, I. Cakmak, & P. J. White (Eds.), Marschner’s mineral nutrition of plants (4th ed., pp. 283–385). Academic Press. https://doi.org/10.1016/B978-0-12-819773-8.00017-4
Carmassi, G., Romani, M., Diara, C., Massa, D., Maggini, R., Incrocci, L., & Pardossi, A. (2013). Response to sodium chloride salinity and excess boron in greenhouse tomato grown in semi-closed substrate culture in a Mediterranean climate. Journal of Plant Nutrition, 36(7), 1025–1042. https://doi.org/10.1080/01904167.2013.766209
Chapagain, B. P., Wiesman, Z., Zaccai, M., Imas, P., & Magen, H. (2003). Potassium chloride enhances fruit appearance and improves quality of fertigated greenhouse tomato as compared to potassium nitrate. Journal of Plant Nutrition, 26(3), 243−658. https://doi.org/10.1081/PLN-120017671
Claassen, N., & Barber, S. A. (1974). A method for characterizing the relation between nutrient concentration and flux into roots of intact plants. Plant Physiology, 54(4), 564–568. https://doi.org/10.1104/pp.54.4.564
Colmenero-Flores, J. M., Franco-Navarro, J. D., Cubero-Font, P., Peinado-Torrubia, P., & Rosales, M. A. (2019). Chloride as a beneficial macronutrient in higher plants: new roles and regulation. International Journal of Molecular Sciences, 20(19), Article 4686. https://doi.org/10.3390/ijms20194686
Coskun, D., & White, P. J. (2023). Ion-uptake mechanisms of individual cells and roots: short distance transport. In Z. Rengel, I. Cakmak, & P. J. White (Eds.), Marschner’s mineral nutrition of plants (4th ed., pp. 11–71). Academic Press. https://doi.org/10.1016/B978-0-12-819773-8.00018-6
Cuervo, W. J., Flórez, V. J., & González, C. A. (2012). Aspectos a tener en cuenta para optimizar un sistema de cultivo en sustrato con reciclaje de drenajes. Agronomía Colombiana, 30(3), 379–387. https://revistas.unal.edu.co/index.php/agrocol/article/view/29029
Cuervo, W. J., Flórez, V. J., & González, C. A. (2011). Generalidades de la automatización y control para el reciclaje de drenajes en cultivos bajo cubierta. In V. J. Florez (Ed.), Sustratos, manejo del clima, automatización y control en sistemas de cultivo sin suelo (pp. 247–275). Editorial Universidad Nacional de Colombia. https://academia.ceniflores.org/CentroDocumental/sustratos-manejo-del-clima-automatizacion-y-control-en-sistemas-de-cultivo-sin-suelo/
Cuervo-Bejarano, W. J., Flórez-Roncancio, V. J., & Melo-Martínez, S. E. (2024). Evaluation of electrical conductivity and pH in a nutrient solution with recirculating system in rose crop. Agronomía Colombiana, 42(2), Article e115607. https://doi.org/10.15446/agron.colomb.v42n2.115607
Domingues, D. S., Takahashi, H. W., Camara, C. A. P., & Nixdorf, S. L. (2012). Automated system developed to control pH and concentration of nutrient solution evaluated in hydroponic lettuce production. Computers and Electronics in Agriculture, 84, 53–61. https://doi.org/10.1016/j.compag.2012.02.006
Dotaniya, M. L., & Meena, V. D. (2015). Rhizosphere effect on nutrient availability in soil and its uptake by plants: A review. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 85, 1–12. https://doi.org/10.1007/s40011-013-0297-0
Farnham, D. S., Hasek, R. F., & Paul, J. L. (1985). Water quality: Its effects on ornamental plants. Cooperative Extension University of California. Division of Agriculture and Natural Resources. Leaflet 2995. https://ucanr.edu/sites/cetest/files/55088.pdf
Fujimoto, S. Y., Ohta, M., Usui, A., Shinshi, H., & Ohme-Takagi, M. (2000). Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell, 12(3), 393–404. https://doi.org/10.1105/tpc.12.3.393
Griffiths, M., & York, L. M. (2020). Targeting root ion uptake kinetics to increase plant productivity and nutrient use efficiency. Plant Physiology, 182(4), 1854–1868. https://doi.org/10.1104/PP.19.01496
Guzmán González, D. A. (1996). Zonas de vida o formaciones vegetales. Área jurisdiccional CAR. Corporación Autónoma Regional. https://sie.car.gov.co/server/api/core/bitstreams/4d8734ed-15b4-4992-955b-f696d6a4417c/content
Handreck, K., & Black, N. (2010). Growing media for ornamental plants and turf (4th ed.). University of New South Wales Press. https://archive.org/details/growingmediaforo0000hand
Hettiarachchi, E., Perera, R., Chandani Perera, A. D. L., & Kottegoda, N. (2016). Activated coconut coir for removal of sodium and magnesium ions from saline water. Desalination and Water Treatment, 57(47), 22341–22352. https://doi.org/10.1080/19443994.2015.1129649
Kämpf, A. N., Fior, C. S., & Leonhardt, C. (2009). Lowering pH value with elemental sulfur in the substrate for ex vitro acclimatization. Acta Horticulturae, 812, 415–420. https://doi.org/10.17660/ActaHortic.2009.812.58
Kertesz, M. A., & Mirleau, P. (2004). The role of soil microbes in plant sulphur nutrition. Journal of Experimental Botany, 55(404), 1939–1945. https://doi.org/10.1093/jxb/erh176
Lee, M. K., & Van Iersel, M. W. (2008). Sodium chloride effects on growth, morphology, and physiology of chrysanthemum (Chrysanthemum x morifolium). HortScience, 43(6), 1888–1891. https://doi.org/10.21273/hortsci.43.6.1888
Lorenzo, H., Cid, M. C., Siverio, J. M., & Ruano, M. C. (2000). Effects of sodium on mineral nutrition in rose plants. Annals of Applied Biology, 137(1), 65–72. https://doi.org/10.1111/j.1744-7348.2000.tb00058.x
Lucheta, A. R., & Lambais, M. R. (2012). Sulfur in agriculture. Revista Brasileira de Ciência do Solo, 36(5), 1369–1379. https://doi.org/10.1590/s0100-06832012000500001
Massa, D., Mattson, N. S., & Lieth, H. J. (2009). Effects of saline root environment (NaCl) on nitrate and potassium uptake kinetics for rose plants: A Michaelis-Menten modelling approach. Plant and Soil, 318, 101–115. https://doi.org/10.1007/s11104-008-9821-z
Mendiburu, F. (2023). R package version 1.3-7 Statistical procedures for agricultural research (Version 1.3-1). https://CRAN.Rproject.org/package=agricolae
Metwally, A. M., Radi, A. A., El-Shazoly, R. M., & Hamada, A. M. (2018). The role of calcium, silicon and salicylic acid treatment in protection of canola plants against boron toxicity stress. Journal of Plant Research, 131(6), 1015–1028. https://doi.org/10.1007/s10265-018-1008-y
Niu, G., & Rodriguez, D. S. (2008). Responses of growth and ion uptake of four rose rootstocks to chloride- or sulfate-dominated salinity. Journal of the American Society for Horticultural Science, 133(5), 663–669. https://doi.org/10.21273/jashs.133.5.663
Olympios, C. M. (1999). Overview of soilless culture: advantages, constraints, and perspectives. In R. Choukr-Allah (Ed.), Protected cultivation in the Mediterranean region (pp. 307–324).
Riley, M. M. (1987). Micronutrients: Boron toxicity in barley. Journal of Plant Nutrition, 10(9–16), 2109–2115. https://doi.org/10.1080/01904168709363761
Rodríguez, M., & Flórez, V. (2012). Changes in EC, pH and in the concentrations of nitrate, ammonium, sodium and chlorine in the drainage solution of a crop of roses on substrates with drainage recycling. Agronomía Colombiana, 30(2), 266–273. https://revistas.unal.edu.co/index.php/agrocol/article/view/15773
Roig, A., Cayuela, M. L., & Sánchez-Monedero, M. A. (2004). The use of elemental sulphur as organic alternative to control pH during composting of olive mill wastes. Chemosphere, 57(9), 1099–1105. https://doi.org/10.1016/j.chemosphere.2004.08.024
Roy, S. J., Negrão, S., & Tester, M. (2014). Salt resistant crop plants. Current Opinion in Biotechnology, 26, 115–124. https://doi.org/10.1016/j.copbio.2013.12.004
Sambo, P., Nicoletto, C., Giro, A., Pii, Y., Valentinuzzi, F., Mimmo, T., Lugli, P., Orzes, G., Mazzetto, F., Astolfi, S., Terzano, R., & Cesco, S. (2019). Hydroponic solutions for soilless production systems: issues and opportunities in a smart agriculture perspective. Frontiers in Plant Science, 10(923), 1–17. https://doi.org/10.3389/fpls.2019.00923
Savvas, D. (2003). Nutritional management of vegetables and ornamental plants in hydroponics. In R. Dris, R. Niskanen, & S. M. Jain (Eds.), Crop management and postharvest handling of horticultural products fruits and vegetables (Vol. 1, pp. 37–87). Science Publishers.
Savvas, D., & Adamidis, K. (1999). Automated management of nutrient solutions based on target electrical conductivity, pH, and nutrient concentration ratios. Journal of Plant Nutrition, 22(9), 1415–1432. https://doi.org/10.1080/01904169909365723
Schippers, P. A. (1980). Composition changes in the nutrient solution during the growth of plants in recirculating nutrient culture. Acta Horticulturae, 98, 103–118. https://doi.org/10.17660/actahortic.1980.98.9
Solís-Pérez, A. R., & Cabrera, R. I. (2007). Evaluating counter-ion effects on greenhouse roses subjected to moderately-high salinity. Acta Horticulturae, 751, 375–380. https://doi.org/10.17660/ActaHortic.2007.751.47
Sonneveld, C. (2000). Effects of salinity on substrate grown vegetables and ornamentals in greenhouse horticulture [Doctoral dissertation, Wageningen University]. https://doi.org/10.18174/121235
Sonneveld, C., Baas, R., Nijssen, H. M. C., & De Hoog, J. (1999). Salt tolerance of flower crops grown in soilless culture. Journal of Plant Nutrition, 22(6), 1033–1048. https://doi.org/10.1080/01904169909365692
Taiz, L., Zeiger, E., Møller, I. M., & Murphy, A. (2015). Plant physiology and development (6th. ed.). Sinauer Associates, Inc. Publishers.
Tourna, M., Maclean, P., Condron, L., O’Callaghan, M., & Wakelin, S. A. (2014). Links between sulphur oxidation and sulphur-oxidising bacteria abundance and diversity in soil microcosms based on soxB functional gene analysis. FEMS Microbiology Ecology, 88(3), 538–549. https://doi.org/10.1111/1574-6941.12323
Trejo-Téllez, L. I., & Gómez-Merino F. C. (2012) Nutrient solutions for hydroponic systems. In T. Asao (Ed.), Hydroponics - A standard methodology for plant biological researches (pp. 1-22). InTech. https://doi.org/10.5772/2215
Vélez Carvajal, N. A. (2012). Comportamiento de macronutrientes en un sistema de cultivo sin suelo para clavel estándar cv. Delphi con recirculación de drenajes en la Sabana de Bogotá [Master thesis, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/11550
Wen, Z., Tyerman, S. D., Dechorgnat, J., Ovchinnikova, E., Dhugga, K. S., & Kaiser, B. N. (2017). Maize NPF6 proteins are homologs of Arabidopsis CHL1 that are selective for both nitrate and chloride. The Plant Cell, 29(10), 2581–2596. https://doi.org/10.1105/tpc.16.00724
Wickham, H. (2016). Ggplot2: Elegant graphics for data analysis (2nd ed.). Springer. https://link.springer.com/book/10.1007/978-3-319-24277-4
Zhang, X., Franzisky, B. L., Eigner, L., Geilfus, C. M., & Zörb, C. (2021). Antagonism of chloride and nitrate inhibits nitrate reductase activity in chloride-stressed maize. Plant Growth Regulation, 93(3), 279–289. https://doi.org/10.1007/s10725-020-00685-2
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2025 Agronomía Colombiana

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)

Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.







