Accumulation and distribution of calcium, magnesium, and sulfur in potato (Solanum tuberosum Group Andigenum) cultivars Diacol Capiro and Pastusa Suprema
Acumulación y distribución de calcio, magnesio y azufre en cultivares de papa (Solanum tuberosum grupo Andigenum) Diacol Capiro y Pastusa Suprema
DOI:
https://doi.org/10.15446/agron.colomb.v43n1.117826Keywords:
absorption curves, translocation efficiency, nutrition use efficiency, recovery efficiency (en)curvas de absorción, eficiencia de traslocación, uso eficiente de nutrientes, eficiencia de recuperación (es)
Downloads
The potato crop has a high response to nutrient application; however, knowledge about requirements and management of calcium (Ca), magnesium (Mg), and sulfur (S) is scarce. It is important to study the accumulation, as well as translocation and use efficiencies, of these nutrients, considering the influence of genotype and environment variables. The objective of this research was to establish the nutrient curves for accumulation, as well as for translocation, use, and recovery efficiencies, of Ca, Mg and S for two potato cultivars of the Andigenum Group in two production cycles (2013-2016) and two localities (Chocontá and Facatativá) with contrasting edaphoclimatic conditions. Diacol Capiro and Pastusa Suprema cultivars were evaluated under two fertilization regimes (0 and 100% of the recommended dose for all essential nutrients). Data on fresh and dry weight, and Ca, Mg, and S content were recorded at five sampling moments, from main stem formation to tuber maturation. The highest accumulation of Ca, Mg, and S was obtained in Facatativá, however the highest translocation, use and recovery efficiencies of nutrients were obtained in Chocontá. Capiro showed higher sink strength, with a higher translocation efficiency compared to Suprema. Nutrient accumulation in tubers (kg ha-1) followed the order of Ca (147) > Mg (66) > S (52), while translocation efficiencies at harvest wereS (44%) > Mg (32%) > Ca (6%). Cultivars had different patterns of accumulation, translocation, and Ca, Mg, and S use, which also varied with locality. Capiro was better adapted to high fertility soil conditions and Suprema had better performance in low fertility soils.
El cultivo de papa presenta una alta respuesta al manejo de la nutrición; sin embargo, el conocimiento sobre los requerimientos y manejo del calcio (Ca), magnesio (Mg) y azufre (S) es escaso. Es necesario profundizar en los procesos de acumulación, traslocación y uso eficiente de estos nutrientes teniendo en
cuenta la influencia de variables como genotipo y ambiente. El objetivo de la presente investigación fue establecer las curvas de absorción, eficiencia de traslocación, uso eficiente y eficiencia de recuperación de Ca, Mg y S en dos cultivares de papa del Grupo Andigenum en dos ciclos (2013-2016) y dos localidades (Chocontá y Facatativá) con condiciones edafoclimáticas contrastantes. Se evaluaron los cultivares Diacol Capiro y Pastusa Suprema bajo dos regímenes de fertilización (0 y 100% de la dosis recomendada para todos los nutrientes esenciales). Se registró información de peso fresco, seco y contenido de Ca, Mg y S en cinco puntos de muestreo, desde la formación de tallos hasta la maduración de los tubérculos. La mayor acumulación de Ca-Mg-S se dio en Facatativá; sin embargo, la mayor eficiencia de traslocación, uso eficiente y recuperación de nutrientes se obtuvo en Chocontá. Capiro mostró una mayor fuerza vertedero al presentar una mejor eficiencia de traslocación respecto a Suprema. La acumulación de nutrientes (kg ha-1) siguió el orden de Ca (147) > Mg (66) > S (52), mientras la eficiencia de traslocación en cosecha fue de S (44%)> Mg (32%) > Ca (6%). Los cultivares evaluados presentaron procesos diferentes de acumulación, translocación y uso eficiente de Ca-Mg-S, los cuales también variaron con la localidad. Capiro tuvo mejor adaptación a las condiciones de suelo de alta fertilidad, mientras Suprema mostró mejor desempeño en condiciones de baja fertilidad.
References
Abdallah, F. B., Olivier, M., Goffart, J. P., & Minet, O. (2016). Establishing the nitrogen dilution curve for potato cultivar Bintje in Belgium. Potato Research, 59(3), 241–258. https://doi.org/10.1007/s11540-016-9331-y DOI: https://doi.org/10.1007/s11540-016-9331-y
Bassirirad, H. (2000). Kinetics of nutrient uptake by roots: Responses to global change. New Phytologist, 147(1), 155–169. https://doi.org/10.1046/j.1469-8137.2000.00682.x DOI: https://doi.org/10.1046/j.1469-8137.2000.00682.x
Bender, R. R., Haegele, J. W., & Below, F. E. (2015). Nutrient uptake, partitioning, and remobilization in modern soybean varieties. Agronomy Journal, 107(2), 563–573. https://doi.org/10.2134/agronj14.0435 DOI: https://doi.org/10.2134/agronj14.0435
Cabalceta, G., Saldias, M., & Alvarado, A. (2005). Absorción de nutrimentos en el cultivar de papa MNF-80. Agronomía Costarricense, 29(3), 107–123. https://www.redalyc.org/articulo.oa?id=43626961014 DOI: https://doi.org/10.15517/rac.v29i3.6785
Campos, H., & Ortiz, O. (Eds.). (2020). The potato crop: Its agricultural, nutritional and social contribution to humankind. Springer. https://doi.org/10.1007/978-3-030-28683-5 DOI: https://doi.org/10.1007/978-3-030-28683-5
Castellanos Ruiz, K., Gómez Sánchez, M. I., & Rodríguez Molano, L. E. (2022). Critical dilution curves for calcium, magnesium, and sulfur in potato (Solanum tuberosum L. Group Andigenum) cultivars Diacol Capiro and Pastusa Suprema. Agronomía Colombiana, 40(2), 198–211. https://doi.org/10.15446/agron.colomb.v40n2.98896 DOI: https://doi.org/10.15446/agron.colomb.v40n2.98896
Castro, H., & Gómez, M. (2013). Fertilidad y fertilizantes. In H. Burbano, & F. Silva (Eds.), Ciencia del suelo: principios básicos (2nd ed., pp. 231–304). Sociedad Colombiana de la Ciencia del Suelo. https://catalogo.unillanos.edu.co/cgi-bin/koha/opacdetail.pl?biblionumber=43478&utm_source=chatgpt.com
Dahal, K., Li, X. Q., Tai, H., Creelman, A., & Bizimungu, B. (2019). Improving potato stress tolerance and tuber yield under a climate change scenario – A current overview. Frontiers in Plant Science, 10, Article 563. https://doi.org/10.3389/fpls.2019.00563 DOI: https://doi.org/10.3389/fpls.2019.00563
Duarte, L. O., Clemente, J. M., Caixeta, I. A. B., Senoski, M. P., & Aquino, L. A. (2019). Dry matter and nutrient accumulation curve in cabbage crop. Revista Caatinga, 32(3), 679–689. https://doi.org/10.1590/1983-21252019v32n312rc DOI: https://doi.org/10.1590/1983-21252019v32n312rc
Ferreira, M. A. M., Andrade Junior, V. C., Oliveira, A. J. M., Ferreira, E. A., Brito, O. G., & Silva, L. R.(2019). Physiological characterization of plant growth in sweet potato. Horticultura Brasileira, 37(1), 112–118. https://doi.org/10.1590/s0102-053620190118 DOI: https://doi.org/10.1590/s0102-053620190118
Gaj, R., Chudzińska, E., Borowski-Beszta, J., & Spychalski, W. (2020). Effect of potassium and micronutrient foliar fertilisation on the content and accumulation of macroelements, yield and quality parameters of potato tubers. Journal of Elementology, 25(3), 1213–1231. https://doi.org/10.5601/jelem.2020.25.1.1990
Gómez, M. I., Magnitskiy, S., & Rodríguez, L. E. (2018). Potential yield and efficiency of N and K uptake in tubers of cvs. Capiro and Suprema (Solanum tuberosum Group Andigenum). Agronomía Colombiana, 36(2), 126–134. https://doi.org/10.15446/agron.colomb.v36n2.72766 DOI: https://doi.org/10.15446/agron.colomb.v36n2.72766
Gómez, M. I., Magnitskiy, S., & Rodríguez, L. E. (2019). Nitrogen, phosphorus and potassium accumulation and partitioning by the potato group Andigenum in Colombia. Nutrient Cycling in Agroecosystems, 113, 349–363. https://doi.org/10.1007/s10705-019-09986-z DOI: https://doi.org/10.1007/s10705-019-09986-z
Hamdi, W., Helali, L., Beji, R., Zhani, K., Ouertatani, S., & Gharbi, A. (2015). Effect of levels calcium nitrate addition on potatoes fertilizer. International Research Journal of Engineering and Technology, 2(3), 2006–2013. https://www.irjet.net/archives/V2/i3/Irjet-v2i3323.pdf
Hameed, A., Zaidi, S. S. A., Shakir, S., & Mansoor, S. (2018). Applications of new breeding technologies for potato improvement. Frontiers in Plant Science, 9, Article 925. https://doi.org/10.3389/fpls.2018.00925 DOI: https://doi.org/10.3389/fpls.2018.00925
Handayani, T., Gilani, S. A., & Watanabe, K. N. (2019). Climatic changes and potatoes: How can we cope with the abiotic stresses? Breeding Science, 69(4), 545–563. https://doi.org/10.1270/jsbbs.19070 DOI: https://doi.org/10.1270/jsbbs.19070
IGAC. (2006). Métodos analíticos del laboratorio de suelos (3th ed.). Instituto Geográfico Agustín Codazzi.
Koch, M., Naumann, M., Pawelzik, E., Gransee, A., & Thiel, H. (2020). The importance of nutrient management for potato production. Part I: Plant nutrition and yield. Potato Research, 63, 97–119. https://doi.org/10.1007/s11540-019-09431-2 DOI: https://doi.org/10.1007/s11540-019-09431-2
Lemaire, G., Sinclair, T., Sadras, V., & Bélanger, G. (2019). Allometric approach to crop nutrition and implications for crop diagnosis and phenotyping: A review. Agronomy for Sustainable Development, 39(2), Article 27. https://doi.org/10.1007/s13593-019-0570-6 DOI: https://doi.org/10.1007/s13593-019-0570-6
Naumann, M., Koch, M., Thiel, H., Gransee, A., & Pawelzik, E. (2020). The importance of nutrient management for potato production. Part II: Plant nutrition and tuber quality. Potato Research, 63, 121–137. https://doi.org/10.1007/s11540-019-09430-3 DOI: https://doi.org/10.1007/s11540-019-09430-3
Palta, J. P. (2010). Improving potato tuber quality and production by targeted calcium nutrition: The discovery of tuber roots leading to a new concept in potato nutrition. Potato Research, 53(4), 267–275. https://doi.org/10.1007/s11540-010-9163-0 DOI: https://doi.org/10.1007/s11540-010-9163-0
Poljak, M., Lazarević, B., Horvat, T., & Karažija, T. (2011, February 14–18). Influence of nitrogen fertilization and plant density on yield and nitrogen use efficiency of the potato (Solanum tuberosum L.). 46th Croatian and 6th International Symposium on Agriculture, Opatija, Croatia. https://www.yumpu.com/en/document/view/7344531/46th-croatian-6th-internationalsymposium-on-agriculture-
Ramaekers, L., Remans, R., Rao, I. M., Blair, M. W., & Vanderleyden, J. (2010). Strategies for improving phosphorus acquisition efficiency of crop plants. Field Crops Research, 117(2–3), 169–176. https://doi.org/10.1016/j.fcr.2010.03.001 DOI: https://doi.org/10.1016/j.fcr.2010.03.001
Ritz, C., Baty, F., Streibig, J., & Gerhard, D. (2015). Dose-response analysis using R. PLoS ONE, 10(12), Article e0145021. https://doi.org/10.1371/journal.pone.0146021 DOI: https://doi.org/10.1371/journal.pone.0146021
SAS Institute. (2017). Base SAS procedures guide: Statistical procedures. SAS Institute. https://documentation.sas.com/doc/en/pgmsascdc/v_046/procstat/titlepage.htm
Senbayram, M., Gransee, A., Wahle, V., & Thiel, H. (2015). Role of magnesium fertilisers in agriculture: Plant–soil continuum. Crop and Pasture Science, 66(12), 1219–1229. https://doi.org/10.1071/CP15104 DOI: https://doi.org/10.1071/CP15104
Silva, C. D., Soares, M. E. P., Ferreira, M. H., Cavalcante, A. C. P., Andrade, G. A. V., & Aquino, L. A. (2020). Dry matter and macronutrient extraction curves of potato varieties in the Alto Paranaíba region, Brazil. Revista Brasileira de Engenharia Agrícola e Ambiental, 24(3), 176–186. https://doi.org/10.1590/1807-1929/agriambi.v24n3p176-186 DOI: https://doi.org/10.1590/1807-1929/agriambi.v24n3p176-186
Soratto, R. P., Job, A. L. G., Fernandes, A. M., Assunção, N. S., & Fernandes, F. M. (2020). Biomass accumulation and nutritional requirements of potato as affected by potassium supply. Journal of Soil Science and Plant Nutrition, 20, 1051–1066. https://doi.org/10.1007/s42729-020-00192-3 DOI: https://doi.org/10.1007/s42729-020-00192-3
Soriano Soto, M. D. (2020). Efectos de la materia orgánica sobre el suelo [Undegraduate thesis, Universitat Politècnica de València]. RiuNet. https://riunet.upv.es/handle/10251/142182
Stewart, W. M. (2007). Consideraciones en el uso eficiente de los nutrientes. Informaciones Agronómicas, 67, 1–7. https://www.profertil.com.ar/wp-content/uploads/2020/08/consideraciones-en-el-uso-eficiente-del-nutriente.pdf
Tamagno, S., Balboa, G. R., Assefa, Y., Kovács, P., Casteel, S. N., Salvagiotti, F., García, F. O., Stewart, W. M., & Ciampitti, I. A. (2017). Nutrient partitioning and stoichiometry in soybean: A synthesis-analysis. Field Crops Research, 200, 18–27. https://doi.org/10.1016/j.fcr.2016.09.019 DOI: https://doi.org/10.1016/j.fcr.2016.09.019
Valbuena, R. I., Roveda, G., Bolaños, A., Zapata, J. L., Medina, C. I., Almanza Merchán, P. J., & Porras Rodríguez, P. D. (2009). Escalas fenológicas de las variedades de papa Parda Pastusa, Diacol Capiro y criolla “Yema de huevo” en las zonas productoras de Cundinamarca, Boyacá, Nariño y Antioquia. Agrosavia. http://hdl.handle.net/20.500.12324/12893
Villamil, H. J., Castro, H., Valvuena, I., Cabezas, M., & Porras, P. (2005). Memorias I Taller Nacional sobre suelos, fisiología y nutrición vegetal en el cultivo de la papa. Bogotá, feb. 9-10 de 2005. Cevipapa. https://es.scribd.com/doc/24302911/I-Taller-Nacional-sobre-suelosfisiologia-y-nutricion-vegetal-en-el-cultivo-de-la-papa
Wendimu Seifu, Y., & Deneke, S. (2017). Effect of calcium chloride and calcium nitrate on potato (Solanum tuberosum L.) growth and yield. Journal of Horticulture, 4(3), Article 1000207. https://doi.org/10.4172/2376-0354.1000207 DOI: https://doi.org/10.4172/2376-0354.1000207
White, P. J., & Broadley, M. R. (2003). Calcium in plants. Annals of Botany, 92(4), 487–511. https://doi.org/10.1093/aob/mcg164 DOI: https://doi.org/10.1093/aob/mcg164
Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. Springer. https://doi.org/10.1007/978-3-319-24277-4 DOI: https://doi.org/10.1007/978-3-319-24277-4
Wszelaczyńska, E., Pobereżny, J., Lamparski, R., Kozera, W., & Knapowski, T. (2020). Effect of potato tuber biofortification with magnesium and the storage time on the content of nutrients. Journal of Elementology, 25(2), 687–700. https://doi.org/10.5601/jelem.2019.24.4.1880 DOI: https://doi.org/10.5601/jelem.2019.24.4.1880
Yin, X., Goudriaan, J., Lantinga, E. A., Vos, J., & Spiertz, H. J. (2003). A flexible sigmoid function of determinate growth. Annals of Botany, 91(3), 361–371. https://doi.org/10.1093/aob/mcg029 DOI: https://doi.org/10.1093/aob/mcg029
Ziadi, N., Brassard, M., Bélanger, G., Cambouris, A. N., Tremblay, N., Nolin, M. C., Claesssens, A., & Parent, L.-É. (2008). Critical nitrogen curve and nitrogen nutrition index for corn in eastern Canada. Agronomy Journal, 100(2), 271–276. https://doi.org/10.2134/agronj2007.0059 DOI: https://doi.org/10.2134/agronj2007.0059
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2025 Agronomía Colombiana

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)

Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.







