Effect of phosphine dose and exposure time on postharvest quality of Hass avocado (Persea americana Mill.)
Efecto de dosis y tiempos de exposición a fosfina en la calidad poscosecha de aguacate Hass (Persea americana Mill.)
DOI:
https://doi.org/10.15446/agron.colomb.v42n3.117960Keywords:
phytosanitary management, postharvest treatment, magnesium phosphide, longitudinal analysis, avocado export (en)manejo fitosanitario, tratamiento poscosecha, fosfuro de magnesio, análisis longitudinal, exportación de aguacate (es)
Downloads
The Hass avocado in Colombia has great export potential, although its commercialization faces restrictions due to quarantine pests. Fumigation with magnesium phosphide has become a key postharvest strategy for pest control in refrigerated fruits. However, there is limited information regarding its impact on Hass avocados. This study evaluated the effect of treatments with phosphine at different concentrations (0, 200, 400, and 800 ppm) and exposure times (36 and 72 h) on postharvest quality in avocados refrigerated at 7°C. Fruit firmness, color of the exocarp and mesocarp, weight loss, and ethylene production were analyzed using a longitudinal multivariate analysis of variance. No direct damage to fruit quality was detected related to phosphine concentration or exposure time. Although significant differences in firmness and color were observed, these effects were attributed to variations in gas concentrations, such as CO2, inside the barrels, and the fruit maturation process. Ethylene production increased with higher doses and longer exposure times, reaching a significant peak 72 h after harvest, coinciding with the climacteric point. These differences were related to the physiological maturation process of the avocados. Magnesium phosphide did not directly affect the quality of Hass avocados under the evaluated conditions. Magnesium phosphide is considered a viable option for phytosanitary pest control, although further studies are needed to assess its effectiveness against specific avocado pests.
El aguacate Hass en Colombia tiene un gran potencial de exportación, aunque enfrenta restricciones comerciales debido a las plagas cuarentenarias. La fumigación con fosfuro de magnesio se ha considerado como una estrategia clave de poscosecha para el control de plagas en frutas refrigeradas. Sin embargo, hay poca información respecto a su impacto en la calidad de frutos de aguacate Hass. Este estudio evaluó el efecto de tratamientos con fosfina a diferentes concentraciones (0, 200, 400 y 800 ppm) y tiempos de exposición (36 y 72 h) sobre la calidad postcosecha en aguacates refrigerados a 7°C. Se analizaron la firmeza de fruto, color del exocarpo y mesocarpo, pérdida de peso y producción de etileno mediante un análisis de varianza multivariado longitudinal. No se detectaron daños directos en la calidad de la fruta relacionados con la concentración de fosfina ni el tiempo de exposición al gas. Aunque se observaron diferencias significativas en la firmeza y el color de los frutos, estos efectos fueron atribuibles a variaciones en la concentración de gases, como el CO2, dentro de los barriles, y al proceso de maduración de los frutos. La producción de etileno aumentó con dosis más altas y tiempos de exposición más prolongados, alcanzando un pico significativo 72 h después de la cosecha, coincidiendo con el punto climatérico. Estas diferencias se vincularon con el proceso fisiológico de maduración de los aguacates. El fosfuro de magnesio no afectó directamente la calidad del aguacate Hass bajo las condiciones evaluadas. El fosfuro de magnesio es una opción viable para el control fitosanitario de plagas, aunque se requieren más estudios para evaluar su efectividad frente a algunas plagas específicas del aguacate.
References
Agrafioti, P., Athanassiou, C. G., & Subramanyam, B. (2019). Efficacy of heat treatment on phosphine resistant and susceptible populations of stored product insects. Journal of Stored Products Research, 81, 100–106. https://doi.org/10.1016/j.jspr.2018.11.007 DOI: https://doi.org/10.1016/j.jspr.2018.11.007
Aguirre-Joya, J. A., Ventura-Sobrevilla, J., Martínez-Vazquez, G., Ruelas-Chacón, X., Rojas, R., Rodríguez-Herrera, R., & Aguilar, C. N. (2017). Effects of a natural bioactive coating on the quality and shelf-life prolongation at different storage conditions of avocado (Persea americana Mill.) cv. Hass. Food Packaging and Shelf Life, 14(Part B), 102–107. https://doi.xorg/10.1016/j.fpsl.2017.09.003 DOI: https://doi.org/10.1016/j.fpsl.2017.09.003
Ahmed, Q., Ren, Y., Emery, R., Newman, J., & Agarwal, M. (2018). Evaluation of ethyl formate, phosphine, and their combination to disinfest harvested celery against purple scum springtails. HortTechnology, 28(4), 492–501. https://doi.org/10.21273/HORTTECH04030-18 DOI: https://doi.org/10.21273/HORTTECH04030-18
Alzahrani, S. M., & Ebert, P. R. (2019). Oxygen and arsenite synergize phosphine toxicity by distinct mechanisms. Toxicological Sciences, 167(2), 419–425. https://doi.org/10.1093/toxsci/kfy248 DOI: https://doi.org/10.1093/toxsci/kfy248
Arora, S., Stanley, J., & Srivastava, C. (2021). Temporal dynamics of phosphine fumigation against insect pests in wheat storage. Crop Protection, 144, Article 105602. https://doi.org/10.1016/j.cropro.2021.105602 DOI: https://doi.org/10.1016/j.cropro.2021.105602
Astudillo-Ordóñez, C. E., & Rodríguez, P. (2018). Physicochemical parameters of avocado Persea americana Mill. cv. Hass (Lauraceae) grown in Antioquia (Colombia) for export. Corpoica Ciencia y Tecnología Agropecuaria, 19(2), 383–392. https://doi.org/10.21930/rcta.vol19_num2_art:694 DOI: https://doi.org/10.21930/rcta.vol19_num2_art:694
Bernal-Estrada, J., & Cartagena-Valenzuela, J. (2017). Contenido de lípidos y composición relativa de los ácidos. Memorias del V Congreso Latinoamericano del Aguacate (pp. 389–400). Ciudad Guzmán, Jalisco, México. https://www.avocadosource.com/Journals/Memorias_VCLA/2017/Memorias_VCLA_2017_PG_389.pdf
Carabalí Muñoz, A., Caicedo Vallejo, A. M., & Holguín, C. M. (2021). Guía para el reconocimiento y manejo de las principales plagas de aguacate cv. Hass en Colombia. Agrosavia. https://editorial.agrosavia.co/index.php/publicaciones/catalog/view/226/208/1422-1 DOI: https://doi.org/10.21930/agrosavia.nbook.7404913
Carvalho, C. P., Velásquez, M. A., & Van Rooyen, Z. (2014). Determination of the minimum dry matter index for the optimum harvest of ‘Hass’ avocado fruits in Colombia. Agronomía Colombiana, 32(3), 399–406. https://doi.org/10.15446/agron.colomb.v32n3.46031 DOI: https://doi.org/10.15446/agron.colomb.v32n3.46031
Castellanos, D. A., Mendoza, R., Gavara, R., & Herrera, A. O. (2017). Respiration and ethylene generation modeling of “Hass” avocado and feijoa fruits and application in modified atmosphere packaging. International Journal of Food Properties, 20(2), 333–349. https://doi.org/10.1080/10942912.2016.1160921 DOI: https://doi.org/10.1080/10942912.2016.1160921
Castellanos, D. A., Polanía, W., & Herrera, A. O. (2016). Development of an equilibrium modified atmosphere packaging (EMAP) for feijoa fruits and modeling firmness and color evolution. Postharvest Biology and Technology, 120, 193–203. https://doi.org/10.1016/j.postharvbio.2016.06.012 DOI: https://doi.org/10.1016/j.postharvbio.2016.06.012
Cato, A., Afful, E., Nayak, M. K., & Phillips, T. W. (2019). Evaluation of knockdown bioassay methods to assess phosphine resistance in the red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Insects, 10(5), Article 140. https://doi.org/10.3390/insects10050140 DOI: https://doi.org/10.3390/insects10050140
Cerdas Araya, M. D. M., Montero Calderón, M., & Somarribas Jones, O. (2014). Verificación del contenido de materia seca como indicador de cosecha para aguacate (Persea americana) cultivar Hass en zona intermedia de producción de Los Santos, Costa Rica. Agronomía Costarricense, 38(1), 207–214. https://doi.org/10.15517/rac.v38i1.15205 DOI: https://doi.org/10.15517/rac.v38i1.15205
Cumming, G., Fidler, F., & Vaux, D. L. (2007). Error bars in experimental biology. Journal of Cell Biology, 177, 7–11. https://doi.org/10.1083/jcb.200611141 DOI: https://doi.org/10.1083/jcb.200611141
Dirección de Impuestos y Aduanas Nacionales (DIAN). (2024, July). Tablero de Información Estadística de Comercio Exterior. Dirección de Impuestos y Aduanas Nacionales. https://www.dian.gov.co/dian/cifras/Paginas/Tablero-de-estadisticas-decomercio-exterior.aspx
El-Shafei, W. K. M. (2020). Comparison between using phosphine and/or carbon dioxide for controlling Plodia interpunctella and Oryzaephilus surinamensis in stored date fruits. Middle East Journal of Applied Sciences, 10(4), 657–664. https://doi.org/10.36632/mejas/2020.10.4.56 DOI: https://doi.org/10.36632/mejas/2020.10.4.56
Escobar, J. V., Rodriguez, P., Cortes, M., & Correa, G. (2019). Influencia de la materia seca como índice de madurez de cosecha y tiempo de almacenamiento en frío sobre la calidad del aguacate cv. Hass producido en la región del trópico alto. Información Tecnológica, 30(3), 199–210. https://doi.org/10.4067/S0718-07642019000300199 DOI: https://doi.org/10.4067/S0718-07642019000300199
Espinosa-Cruz, C. C., Valle-Guadarrama, S., Ybarra-Moncada, M. C., & Martínez-Damián, M. T. (2014). Comportamiento postcosecha de frutos de aguacate “Hass” afectado por temperatura y atmósfera modificada con microperforado. Revista Fitotecnia Mexicana, 37(3), 235–242. https://doi.org/10.35196/rfm.2014.3.235 DOI: https://doi.org/10.35196/rfm.2014.3.235
FAO – Food and Agriculture Organization. (2022, July). FAOSTAT. https://www.fao.org/faostat/en/#data
Ferreyra, R., Sellés, G., Saavedra, J., Ortiz, J., Zúñiga, C., Troncoso, C., Rivera, S. A., González-Agüero, M., & Defilippi, B. G. (2016). Identification of pre-harvest factors that affect fatty acid profiles of avocado fruit (Persea americana Mill) cv. “Hass” at harvest. South African Journal of Botany, 104, 15–20. https://doi.org/10.1016/j.sajb.2015.10.006 DOI: https://doi.org/10.1016/j.sajb.2015.10.006
Friedrich, S., Konietschke, F., & Pauly, M. (2018). Analysis of multivariate data and repeated measures designs with the R package MANOVA.RM. arXiv preprint. https://doi.org/10.48550/arXiv.1801.08002
Garcia, F., Lin, W., Mellano, V., & Davidov-Pardo, G. (2021). Effect of biopolymer coatings made of zein nanoparticles and ε-polylysine as postharvest treatments on the shelf-life of avocados (Persea americana Mill. Cv. Hass). Journal of Agriculture and Food Research, 7, Article 100260. https://doi.org/10.1016/j.jafr.2021.100260 DOI: https://doi.org/10.1016/j.jafr.2021.100260
Goulao, L. F., & Oliveira, C. M. (2008). Cell wall modifications during fruit ripening: When a fruit is not the fruit. Trends in Food Science & Technology, 19(1), 4–25. https://doi.org/10.1016/j.tifs.2007.07.002 DOI: https://doi.org/10.1016/j.tifs.2007.07.002
Güncan, A., Altunç, Y. E., Karayar, Ş., Bahat, T. N., & Yüksel, E. S. (2023). Optimizing phosphine fumigation efficiency in hazelnut industry: Determining optimal exposure time for stored product pest control. International Journal of Agriculture Environment and Food Sciences, 7(3), 540–549. https://doi.org/10.31015/jaefs.2023.3.8 DOI: https://doi.org/10.31015/jaefs.2023.3.8
Guzmán, L. F., Machida-Hirano, R., Borrayo, E., Cortés-Cruz, M., Espíndola-Barquera, M. C., & García, E. H. (2017). Genetic structure and selection of a core collection for long term conservation of avocado in Mexico. Frontiers in Plant Science, 8, Article 243. https://doi.org/10.3389/fpls.2017.00243 DOI: https://doi.org/10.3389/fpls.2017.00243
Gwanpua, S. G., Qian, Z., & East, A. R. (2018). Modelling ethylene regulated changes in ‘Hass’ avocado quality. Postharvest Biology and Technology, 136, 12–22. https://doi.org/10.1016/j.postharvbio.2017.10.002 DOI: https://doi.org/10.1016/j.postharvbio.2017.10.002
Heather, N. W., & Hallman, G. J. (2008). Pest management and phytosanitary trade barriers (1st ed.). CABI Digital Library. https://doi.org/10.1079/9781845933432.0000 DOI: https://doi.org/10.1079/9781845933432.0001
Hertog, M. L. A. T. M., Nicholson, S. E., & Whitmore, K. (2003). The effect of modified atmospheres on the rate of quality change in “Hass” avocado. Postharvest Biology and Technology, 29(1), 41–53. https://doi.org/10.1016/S0925-5214(02)00211-9 DOI: https://doi.org/10.1016/S0925-5214(02)00211-9
ICA, & ANDI. (2016). Manual para la elaboración de protocolos para ensayos de eficacia con PQUA. https://www.andi.com.co/Uploads/Manual_Protocolos_Ensayos_Eficacia_PQUA_REV_08_09_2016%20(2).pdf
IPPC – International Plant Protection Convention. (2024). Secretaría de la CIPF. 2024. Glosario de términos fitosanitarios. Norma internacional para medidas fitosanitarias n.º 5. Roma. FAO en nombre de la Secretaría de la Convención Internacional de Protección Fitosanitaria. https://assets.ippc.int/static/media/files/publication/es/2024/07/ISPM_05_2024_Es_Glossary_PostCPM-18_InkAmdts_2024-07-28.pdf
Kim, B. S., Hong, K. J., Kwon, T. H., Lee, K. Y., Lee, B. H., & Lee, S. E. (2022). Phosphine fumigation followed by cold treatment to control peach fruit moth, Carposina sasakii, larvae on “Fuji” apples intended for export. Applied Sciences, 12(15), Article 7514. https://doi.org/10.3390/app12157514 DOI: https://doi.org/10.3390/app12157514
Kim, B. S., Park, C. G., Moon, Y. M., Sung, B. K., Ren, Y., Wylie, S. J., & Lee, B. H. (2016). Quarantine treatments of imported nursery plants and exported cut flowers by phosphine gas (PH3) as methyl bromide alternative. Journal of Economic Entomology, 109(6), 2334–2340. https://doi.org/10.1093/jee/tow200 DOI: https://doi.org/10.1093/jee/tow200
Kyung, Y., Kim, H. K., Lee, J. S., Kim, B. S., Yang, J. O., Lee, B. H., Koo, H. N., & Kim, G. H. (2018). Efficacy and phytotoxicity of phosphine as fumigants for Frankliniella occidentalis (Thysanoptera: Thripidae) on Asparagus. Journal of Economic Entomology, 111(6), 2644–2651. https://doi.org/10.1093/jee/toy218 DOI: https://doi.org/10.1093/jee/toy218
Lampiri, E., Agrafioti, P., & Athanassiou, C. G. (2021). Delayed mortality, resistance and the sweet spot, as the good, the bad and the ugly in phosphine use. Scientific Reports, 11(1), Article 3933. https://doi.org/10.1038/s41598-021-83463-y DOI: https://doi.org/10.1038/s41598-021-83463-y
Li, L., Zhang, G., Li, B., Yang, J. O., Park, M. G., & Liu, T. (2020). Postharvest treatment of mandarin fruit using a combination of methyl bromide and phosphine against Bactrocera dorsalis (Diptera: Tephritidae). Pest Management Science, 76(5), 1938–1943. https://doi.org/10.1002/ps.5726 DOI: https://doi.org/10.1002/ps.5726
Liu, S. S., & Liu, Y. B. (2014). Reducing injury of lettuce from phosphine fumigation. HortTechnology, 24(2), 188–195. https://doi.org/10.21273/horttech.24.2.188 DOI: https://doi.org/10.21273/HORTTECH.24.2.188
Liu, T., Li, L., Li, B., Zhan, G., & Wang, Y. (2018). Evaluation of lowtemperature phosphine fumigation for control of oriental fruit fly in loquat fruit. Journal of Economic Entomology, 111(3), 1165–1170. https://doi.org/10.1093/jee/toy029 DOI: https://doi.org/10.1093/jee/toy029
Liu, Y. B. (2012). Oxygenated phosphine fumigation for control of Nasonovia ribisnigri (Homoptera: Aphididae) on harvested lettuce. Journal of Economic Entomology, 105(3), 810–816. https://doi.org/10.1603/EC11328 DOI: https://doi.org/10.1603/EC11328
Lizarazo-Peña, P., Benjumea-Orozco, S., & Herrera Arévalo, A. O. (2024). Effects of phosphine and plant extracts on flower thrips mortality and the quality of cut flowers. Agronomía Colombiana, 42(1), Article 112909. https://doi.org/10.15446/agron.colomb.v42n1.112909 DOI: https://doi.org/10.15446/agron.colomb.v42n1.112909
Lu, Q. Y., Zhang, Y., Wang, Y., Wang, D., Lee, R., Gao, K., & Heber, D. (2009). California Hass avocado: Profiling of carotenoids, tocopherol, fatty acid, and fat content during maturation and from different growing areas. Journal of Agricultural and Food Chemistry, 57, 10408–10413. https://doi.org/10.1021/jf901839h DOI: https://doi.org/10.1021/jf901839h
Ma, Y., Li, L., Li, B., Liu, Q., Ren, Y., Wang, P., & Liu, T. (2024). Phosphine fumigation followed by forced hot-air treatment for postharvest control of Bactrocera dorsalis in dragon fruit. Journal of Pest Science, 1–12. https://doi.org/10.1007/s10340-024-01848-0 DOI: https://doi.org/10.1007/s10340-024-01848-0
Montgomery, D. (2017). Diseño y análisis de experimentos (9th ed.). Limusa S. A.
Nath, N. S., Bhattacharya, I., Tuck, A. G., Schlipalius, D. I., & Ebert, P. R. (2011). Mechanisms of phosphine toxicity. Journal of Toxicology, 2011, Article 494168. https://doi.org/10.1155/2011/494168 DOI: https://doi.org/10.1155/2011/494168
Obenland, D., Cranney, J. R., Tebbets, S., Walse, S., & Arpaia, M. L. (2021). Fumigating citrus with phosphine does not impact marketability or eating quality. Plant Health Progress, 22(4), 516–523. https://doi.org/10.1094/PHP-03-21-0053-RS DOI: https://doi.org/10.1094/PHP-03-21-0053-RS
Pathare, P. B., Opara, U. L., & Al-Said, F. A. J. (2013). Colour measurement and analysis in fresh and processed foods: A review. Food and Bioprocess Technology, 6(1), 36–60. https://doi.org/10.1007/s11947-012-0867-9 DOI: https://doi.org/10.1007/s11947-012-0867-9
Pedreschi, R., Uarrota, V., Fuentealba, C., Alvaro, J. E., Olmedo, P., Defilippi, B. G., Meneses, C., & Campos-Vargas, R. (2019). Primary metabolism in avocado fruit. Frontiers in Plant Science, 10, Article 795. https://doi.org/10.3389/fpls.2019.00795 DOI: https://doi.org/10.3389/fpls.2019.00795
Perotti, V. E., Moreno, A. S., & Podestá, F. E. (2014). Physiological aspects of fruit ripening: The mitochondrial connection. Mitochondrion, 17, 1–6. https://doi.org/10.1016/j.mito.2014.04.010 DOI: https://doi.org/10.1016/j.mito.2014.04.010
Pidakala, P. P. B., Esfandi, K., Afsar, S., Baldassarre, C., Ortiz, G. I., Page-Weir, N., & Woolf, A. B. (2024). Effects of phosphine (ECO2FUME®) on ‘Hass’ avocado fruit quality and target pest mortality. New Zealand Journal of Crop and Horticultural Science, 52(2), 159−169. https://doi.org/10.1080/01140671.2022.2111446 DOI: https://doi.org/10.1080/01140671.2022.2111446
Restrepo Giraldo, P. A. (2019). El fosfuro de magnesio como alternativa para el control de plagas en pos-cosecha de flores tipo exportación [Specialization thesis, Corporación Universitaria Lasallista].
Rojas-Graü, M. A., Oms-Oliu, G., Soliva-Fortuny, R., Martín-Belloso, O. (2009). The use of packaging techniques to maintain freshness in fresh-cut fruits and vegetables: A review. International Journal of Food Science and Technology, 44(5), 875−889. https://doi.org/10.1111/j.1365-2621.2009.01911.x DOI: https://doi.org/10.1111/j.1365-2621.2009.01911.x
Rosas Flores, N., Saucedo Veloz, S., García Osorio, C., & Saucedo Reyes, D. (2016). Producción de etileno y cambios asociados a la maduración de frutos de aguacate “Hass” y “Carmen Hass”. Revista Iberoamericana de Tecnología Postcosecha, 17(1), 24–29. https://www.redalyc.org/pdf/813/81346341004.pdf
Rosas Flores, N., Saucedo Veloz, C., Saucedo Reyes, D., López Jiménez, A., Valle Guadarrama, S., Ramírez Guzmán, M. E., & Chávez Franco, S. H. (2021). Maduración en poscosecha de frutos de aguacate cultivares Hass y Méndez tratados con etefón. Acta Agronómica, 69(4), 275–284. https://doi.org/10.15446/acag.v69n4.89994 DOI: https://doi.org/10.15446/acag.v69n4.89994
Shikwambana, K., Mafeo, T. P., & Mathaba, N. (2021). Effect of postharvest glucose infusion on exocarp colour of Hass’ avocado (Persea americana Mill) during ripening. Journal of Horticulture and Postharvest Research, 4(4), 439–452. https://doi.org/10.22077/jhpr.2021.4254.1202
Sierra, N. M., Londoño, A., Gómez, J. M., Herrera, A. O., & Castellanos, D. A. (2019). Evaluation and modeling of changes in shelf life, firmness and color of ‘Hass’ avocado depending on storage temperature. Food Science and Technology International, 25(5), 370−384. https://doi.org/10.1177/1082013219826825 DOI: https://doi.org/10.1177/1082013219826825
UNEP. (2020). Handbook for the montreal protocol on substances that deplete the ozone layer (14th ed.). UN Environment Programme. Ozone Secretariat. https://ozone.unep.org/sites/default/files/Handbooks/MP-Handbook-2020-English.pdf
Walse, S. S., & Jimenez, L. R. (2021). Postharvest fumigation of fresh citrus with cylinderized phosphine to control bean thrips (Thysanoptera: Thripidae). Horticulturae, 7(6), Article 134. https://doi.org/10.3390/horticulturae7060134 DOI: https://doi.org/10.3390/horticulturae7060134
Wang, D., Collins, P. J., & Gao, X. (2006). Optimising indoor phosphine fumigation of paddy rice bag-stacks under sheeting for control of resistant insects. Journal of Stored Products Research, 42(2), 207–217. https://doi.org/10.1016/j.jspr.2005.02.001 DOI: https://doi.org/10.1016/j.jspr.2005.02.001
Wason, S., & Selladurai, M. (2023). Is phosphine an ideal candidate for fruit fly disinfestation in Java apple, Syzygium samarangense?. Food and Humanity, 1, 662−669. https://doi.org/10.1016/j.foohum.2023.07.011 DOI: https://doi.org/10.1016/j.foohum.2023.07.011
Wickham, H. (2016). ggplot2. Elegant graphics for data analysis (2nd ed.). Springer. https://doi.org/10.1007/978-3-319-24277-4 DOI: https://doi.org/10.1007/978-3-319-24277-4
Williams, L. O. (1977). The avocados, a Synopsis of the genus Persea, subg. Persea. Economic Botany, 31(3), 315–320. https://doi.org/10.1007/BF02866883 DOI: https://doi.org/10.1007/BF02866883
Zhang, F., Wang, Y., Li, L., & Liu, T. (2013). Effects of phosphine fumigation on postharvest quality of four Chinese cut flower species. Postharvest Biology and Technology, 86, 66–72. https://doi.org/10.1016/j.postharvbio.2013.06.016 DOI: https://doi.org/10.1016/j.postharvbio.2013.06.016
Zhang, F., Wang, Y., Liu, B., Ren, L., Gong, S., & Liu, T. (2015). Low temperature phosphine fumigation for postharvest control of western flower thrips, Frankliniella occidentalis (Thysanoptera: Thripidae) on oriental lily. Postharvest Biology and Technology, 100, 136–141. https://doi.org/10.1016/j.postharvbio.2014.09.011 DOI: https://doi.org/10.1016/j.postharvbio.2014.09.011
Zou, H., Li, L., Li, B., Ren, Y., & Liu, T. (2025). Phosphine and phosphine plus ethyl formate for controlling papaya mealybug (Hemiptera: Pseudococcidae) on succulents. Journal of Economic Entomology, 118(1), 152–159. https://doi.org/10.1093/jee/toae270 DOI: https://doi.org/10.1093/jee/toae270
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2024 Agronomía Colombiana

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)

Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.







