Comparing spectral models to predict manganese content in Rosa spp. leaves using VIS-NIR data
Comparación de modelos espectrales para predecir el contenido de manganeso en hojas de Rosa spp. usando datos VIS-NIR
DOI:
https://doi.org/10.15446/agron.colomb.v43n1.118322Keywords:
PLSR, PCR, crop nutrition, spectral reflectance, spectral smoothing, predictive models, multivariate analysis, spectroradiometer (en)RMCP, RCP, nutrición de cultivos, reflectancia espectral, suavizado espectral, modelos predictivos, análisis multivariado, espectroradiómetro (es)
Downloads
This study, conducted on the Freedom rose cultivar grown under greenhouse conditions in the municipality of Tocancipá, Cundinamarca (Colombia), implemented Partial Least Squares Regression (PLSR) and Principal Component Regression (PCR) methods using visible and near infrared (VIS-NIR) spectroradiometry from 350 to 2500 nm to predict manganese (Mn) content in rose leaves. A randomized complete block design (RCBD) with manganese doses of 0%, 25%, 50%, 75%, and 100% of the reference dose of 2 mg L-1 was established in 25 plots with five treatments and five replicates. Samplings were conducted in the five phenological stages of “palmiche”, “rice”, “chickpea”, “scratch color”, and “straight sepals”, analyzing 10 plants per treatment, and spectral responses were measured on the adaxial leaf surface using the FieldSpec® 4 spectroradiometer. For model generation (PLSR and PCR), 24 predictive models were evaluated, comprising three spectral response ranges: range 1 (350-1000 nm), range 2 (350-1800 nm), and range 3 (350-2500 nm), applying different spectral correction methods: raw data (RD), Savitzky-Golay (SG), range normalization (RN), and Savitzky-Golay followed by range normalization (SG-RN). A total of 100 samples were used: 80 for calibration and 20 for external validation, randomly selected to represent the variability of the treatments. The spectral corrections improved the accuracy and robustness of the predictions, with the RN-PLSR and SG-RN-PLSR models showing the best performance metrics (R², RMSE, and RPD). The most relevant wavelengths were 523 nm, 557 nm, and around 720 nm, with correlations greater than 0.6 with the Mn concentration in leaves.
Este estudio, realizado en cultivo de rosa variedad Freedom sembrada bajo invernadero en el municipio de Tocancipá, Cundinamarca (Colombia), implementó métodos de Regresión por Mínimos Cuadrados Parciales (RMCP) y Regresión con Componentes Principales (RCP) utilizando espectroradiometría visible e infrarroja cercana (VIS-NIR) de 350 a 2500 nm para predecir el contenido de manganeso (Mn) en hojas de rosa. Se estableció un diseño de bloques completos al azar (BCA) con dosis de manganeso de 0%, 25%, 50%, 75% y 100% (referencia de 2 mg L-1) en 25 parcelas con cinco tratamientos y cinco repeticiones. Se realizaron muestreos en los cinco estados fenológicos “palmiche”, “arroz”, “garbanzo”, “rayando color” y “sépalos rectos”, analizando 10 plantas por tratamiento; las respuestas espectrales se midieron en la superficie adaxial de
las hojas utilizando el espectroradiómetro FieldSpec® 4. Para la generación de los modelos (RMCP y RCP), se evaluaron 24 modelos predictivos conformados por tres rangos de respuesta espectral: rango 1 (350 1000 nm), rango 2 (350-1800 nm) y rango 3 (350-2500 nm), aplicando diferentes métodos de corrección de espectro: datos crudos (RD), Savitzky Golay (SG), normalización por rangos (NR) y Savitzky-Golay seguido de normalización por rangos (SG-NR); se usaron 100 muestras en total: 80 para calibración y 20 para validación externa, seleccionadas aleatoriamente para representar la variabilidad de los tratamientos. Las correcciones del espectro mejoraron la precisión y solidez de la predicción, siendo los modelos NR-PLSR y SG-NR-PLSR los que presentaron las mejores valoraciones en las métricas (R², RMSE y RDP), mientras que las longitudes de onda más relevantes fueron 523 nm, 557 nm y cerca de 720 nm, con correlaciones superiores a 0,6 con la concentración de Mn en hojas.
References
Acosta, M., Quiñones, A., Munera, S., Paz, J. M., & Blasco, J. (2023). Rapid prediction of nutrient concentration in citrus leaves using Vis-NIR spectroscopy. Sensors, 23(14), Article 6530. https://doi.org/10.3390/s23146530 DOI: https://doi.org/10.3390/s23146530
Arbeláez Torres, G. (1993). La floricultura colombiana de exportación. Agronomía Colombiana, 10(1), 5–11. https://revistas.unal.edu.co/index.php/agrocol/article/view/21224
Boshkovski, B., Tzerakis, C., Doupis, G., Zapolska, A., Kalaitzidis, C., & Koubouris, G. (2020). Relationships of spectral reflectance with plant tissue mineral elements of common bean (Phaseolus vulgaris L.) under drought and salinity stresses. Communications in Soil Science and Plant Analysis, 51(5), 675–686. https://doi.org/10.1080/00103624.2020.1729789 DOI: https://doi.org/10.1080/00103624.2020.1729789
Franco Montoya, O. H., & Martínez Martínez, L. J. (2024). Relationship between spectral response and manganese concentrations for assessment of the nutrient status in rose crop. Agronomía Colombiana, 42(2), Article e110294. https://doi.org/10.15446/agron.colomb.v42n2.110294 DOI: https://doi.org/10.15446/agron.colomb.v42n2.110294
Gálvez-Sola, L., García-Sánchez, F., Pérez-Pérez, J. G., Gimeno, V., Navarro, J. M., Moral, R., Martínez-Nicolás, J. J., & Nieves, M. (2015). Rapid estimation of nutritional elements on citrus leaves by near infrared reflectance spectroscopy. Frontiers in Plant Science, 6, Article 571. https://doi.org/10.3389/fpls.2015.00571 DOI: https://doi.org/10.3389/fpls.2015.00571
Ghosh, S., Prasanna, V. L., Sowjanya, B., Srivani, P., Alagaraja, M., & Banji, D. (2013). Inductively coupled plasma–optical emission spectroscopy: A review. Asian Journal of Pharmaceutical Analysis, 3(1), 24–33. https://ajpaonline.com/HTMLPaper.aspx?Journal=Asian%20Journal%20of%20Pharmaceutical%20Analysis;PID=2013-3-1-6
Hariyadi, B. W., Nizak, F., Nurmalasari, I. R., & Kogoya, Y. (2019). Effect of dose and time of NPK fertilizer application on the growth and yield of tomato plants (Lycopersicum esculentum Mill). Agricultural Science, 2(2), 101–111. http://agriculturalscience.unmerbaya.ac.id/index.php/agriscience/article/view/26
Huber, S., Kneubühler, M., Psomas, A., Itten, K., & Zimmermann, N. E. (2008). Estimating foliar biochemistry from hyperspectral data in mixed forest canopy. Forest Ecology and Management, 256(3), 491–501. https://doi.org/10.1016/j.foreco.2008.05.011 DOI: https://doi.org/10.1016/j.foreco.2008.05.011
Hu, J., He, D., & Yang, P. (2011). Study on plant nutrition indicator using leaf spectral transmittance for nitrogen detection. In D. Li, Y. Liu, & Y. Chen (Eds.), Computer and computing technologies in agriculture IV: 4th IFIP TC 12 Conference, CCTA 2010 (Vol. 347, pp. 504–513). Springer. https://doi.org/10.1007/978-3-642-18369-0_60 DOI: https://doi.org/10.1007/978-3-642-18369-0_60
Humphries, J. M., Stangoulis, J. C., & Graham, R. D. (2006). Manganese. In A. V. Barker, & D. J. Pilbeam (Eds.), Handbook of plant nutrition (pp. 351–374). CRC Press. https://doi.org/10.1201/9781420014877 DOI: https://doi.org/10.1201/9781420014877.ch12
ICA – Instituto Colombiano Agropecuario. (2024). Con 700 millones de tallos, Colombia aporta variedad, color y belleza a la celebración de San Valentín. https://www.ica.gov.co/noticias/ica-colombia-exporta-flores-san-valentin-2024
Kusumiyati, K., Putri, I. E., Hamdani, J. S., & Suhandy, D. (2022). Real-time detection of the nutritional compounds in green Ratuni UNPAD’ cayenne pepper. Horticulturae, 8(6), Article 554. https://doi.org/10.3390/horticulturae8060554 DOI: https://doi.org/10.3390/horticulturae8060554
Lê Cao, K. A., Rossouw, D., Robert-Granié, C., & Besse, P. (2008). Sparse PLS: Variable selection when integrating omics data. Statistical Applications in Genetics and Molecular Biology, 7(1), Article 35. https://hal.science/hal-00300204v1/file/sPLS.pdf DOI: https://doi.org/10.2202/1544-6115.1390
Lee, W., Searcy, S. W., & Kataota, T. (2000). Assessing nitrogen stress in corn varieties of varying color citrus. ASAE Meeting Presentation, Paper No. 99-3034, 1–24. https://www.researchgate.net/publication/2455515
Liang, S. (2005). Quantitative remote sensing of land surfaces. John Wiley & Sons. https://onlinelibrary.wiley.com/doi/book/10.1002/047172372X
Mahajan, G. R., Das, B., Kumar, P., Murgaokar, D., Patel, K., Desai, A., Morajkar, S., Kulkarni, R. M., & Gauns, S. (2024). Spectroscopy-based chemometrics combined machine learning modeling predicts cashew foliar macro- and micronutrients. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 320, Article 124639. https://doi.org/10.1016/j.saa.2024.124639 DOI: https://doi.org/10.1016/j.saa.2024.124639
Mahajan, G. R., Das, B., Murgaokar, D., Herrmann, I., Berger, K., Sahoo, R. N., Patel, K., Desai, A., Morajkar, S., & Kulkarni, R. M. (2021). Monitoring the foliar nutrients status of mango using spectroscopy-based spectral indices and PLSR-combined machine learning models. Remote Sensing, 13(4), Article 641. https://doi.org/10.3390/rs13040641 DOI: https://doi.org/10.3390/rs13040641
Mevik, B. H., & Wehrens, R. (2007). The PLS package: Principal component and partial least squares regression in R. Journal of Statistical Software, 18, 1–23. https://doi.org/10.18637/jss.v018.i02 DOI: https://doi.org/10.18637/jss.v018.i02
Min, M., Lee, W. S., Kim, Y. H., & Bucklin, R. A. (2006). Nondestructive detection of nitrogen in Chinese cabbage leaves using VIS–NIR spectroscopy. HortScience, 41(1), 162–166. https://doi.org/10.21273/HORTSCI.41.1.162 DOI: https://doi.org/10.21273/HORTSCI.41.1.162
Rashed, M. H., Hoque, T. S., Jahangir, M. M. R., & Hashem, M. A. (2019). Manganese as a micronutrient in agriculture: Crop requirement and management. Journal of Environmental Science and Natural Resources, 12(1–2), 225–242. https://doi.org/10.3329/jesnr.v12i1-2.52040 DOI: https://doi.org/10.3329/jesnr.v12i1-2.52040
Ruppenthal, V., & Castro, A. M. C. (2005). Efeito do composto de lixo urbano na nutrição e produção de gladíolo. Revista Brasileira de Ciência do Solo, 29, 145–150. https://doi.org/10.1590/S0100-06832005000100016 DOI: https://doi.org/10.1590/S0100-06832005000100016
Santos, E. F., Santini, J. M. K., Paixão, A. P., Furlani Júnior, E., Lavres, J., Campos, M., & Reis, A. R. (2017). Physiological highlights of manganese toxicity symptoms in soybean plants: Mn toxicity responses. Plant Physiology and Biochemistry, 113, 6–19. https://doi.org/10.1016/j.plaphy.2017.01.022 DOI: https://doi.org/10.1016/j.plaphy.2017.01.022
Santoso, H., Tani, H., Wang, X., & Segah, H. (2019). Predicting oil palm leaf nutrient contents in Kalimantan, Indonesia by measuring reflectance with a spectroradiometer. International Journal of Remote Sensing, 40(19), 7581–7602. https://doi.org/10.1080/01431161.2018.1516323 DOI: https://doi.org/10.1080/01431161.2018.1516323
Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: A basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58(2), 109–130. https://doi.org/10.1016/S0169-7439(01)00155-1 DOI: https://doi.org/10.1016/S0169-7439(01)00155-1
Yu, E., Zhao, R., Cai, Y., Huang, J., Li, C., Li, C., Mei, L., Bao, L., Chen, J., & Zhu, S. (2019). Determination of manganese content in cottonseed meal using near-infrared spectrometry and multivariate calibration. Journal of Cotton Research, 2, Article 12. https://doi.org/10.1186/s42397019-0030-5 DOI: https://doi.org/10.1186/s42397-019-0030-5
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2025 Agronomía Colombiana

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)

Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.







