Published

2025-04-30

Comparing spectral models to predict manganese content in Rosa spp. leaves using VIS-NIR data

Comparación de modelos espectrales para predecir el contenido de manganeso en hojas de Rosa spp. usando datos VIS-NIR

DOI:

https://doi.org/10.15446/agron.colomb.v43n1.118322

Keywords:

PLSR, PCR, crop nutrition, spectral reflectance, spectral smoothing, predictive models, multivariate analysis, spectroradiometer (en)
RMCP, RCP, nutrición de cultivos, reflectancia espectral, suavizado espectral, modelos predictivos, análisis multivariado, espectroradiómetro (es)

Downloads

Authors

This study, conducted on the Freedom rose cultivar grown under greenhouse conditions in the municipality of Tocancipá, Cundinamarca (Colombia), implemented Partial Least Squares Regression (PLSR) and Principal Component Regression (PCR) methods using visible and near infrared (VIS-NIR) spectroradiometry from 350 to 2500 nm to predict manganese (Mn) content in rose leaves. A randomized complete block design (RCBD) with manganese doses of 0%, 25%, 50%, 75%, and 100% of the reference dose of 2 mg L-1 was established in 25 plots with five treatments and five replicates. Samplings were conducted in the five phenological stages of “palmiche”, “rice”, “chickpea”, “scratch color”, and “straight sepals”, analyzing 10 plants per treatment, and spectral responses were measured on the adaxial leaf surface using the FieldSpec® 4 spectroradiometer. For model generation (PLSR and PCR), 24 predictive models were evaluated, comprising three spectral response ranges: range 1 (350-1000 nm), range 2 (350-1800 nm), and range 3 (350-2500 nm), applying different spectral correction methods: raw data (RD), Savitzky-Golay (SG), range normalization (RN), and Savitzky-Golay followed by range normalization (SG-RN). A total of 100 samples were used: 80 for calibration and 20 for external validation, randomly selected to represent the variability of the treatments. The spectral corrections improved the accuracy and robustness of the predictions, with the RN-PLSR and SG-RN-PLSR models showing the best performance metrics (R², RMSE, and RPD). The most relevant wavelengths were 523 nm, 557 nm, and around 720 nm, with correlations greater than 0.6 with the Mn concentration in leaves.

Este estudio, realizado en cultivo de rosa variedad Freedom sembrada bajo invernadero en el municipio de Tocancipá, Cundinamarca (Colombia), implementó métodos de Regresión por Mínimos Cuadrados Parciales (RMCP) y Regresión con Componentes Principales (RCP) utilizando espectroradiometría visible e infrarroja cercana (VIS-NIR) de 350 a 2500 nm para predecir el contenido de manganeso (Mn) en hojas de rosa. Se estableció un diseño de bloques completos al azar (BCA) con dosis de manganeso de 0%, 25%, 50%, 75% y 100% (referencia de 2 mg L-1) en 25 parcelas con cinco tratamientos y cinco repeticiones. Se realizaron muestreos en los cinco estados fenológicos “palmiche”, “arroz”, “garbanzo”, “rayando color” y “sépalos rectos”, analizando 10 plantas por tratamiento; las respuestas espectrales se midieron en la superficie adaxial de
las hojas utilizando el espectroradiómetro FieldSpec® 4. Para la generación de los modelos (RMCP y RCP), se evaluaron 24 modelos predictivos conformados por tres rangos de respuesta espectral: rango 1 (350 1000 nm), rango 2 (350-1800 nm) y rango 3 (350-2500 nm), aplicando diferentes métodos de corrección de espectro: datos crudos (RD), Savitzky Golay (SG), normalización por rangos (NR) y Savitzky-Golay seguido de normalización por rangos (SG-NR); se usaron 100 muestras en total: 80 para calibración y 20 para validación externa, seleccionadas aleatoriamente para representar la variabilidad de los tratamientos. Las correcciones del espectro mejoraron la precisión y solidez de la predicción, siendo los modelos NR-PLSR y SG-NR-PLSR los que presentaron las mejores valoraciones en las métricas (R², RMSE y RDP), mientras que las longitudes de onda más relevantes fueron 523 nm, 557 nm y cerca de 720 nm, con correlaciones superiores a 0,6 con la concentración de Mn en hojas.

References

Acosta, M., Quiñones, A., Munera, S., Paz, J. M., & Blasco, J. (2023). Rapid prediction of nutrient concentration in citrus leaves using Vis-NIR spectroscopy. Sensors, 23(14), Article 6530. https://doi.org/10.3390/s23146530 DOI: https://doi.org/10.3390/s23146530

Arbeláez Torres, G. (1993). La floricultura colombiana de exportación. Agronomía Colombiana, 10(1), 5–11. https://revistas.unal.edu.co/index.php/agrocol/article/view/21224

Boshkovski, B., Tzerakis, C., Doupis, G., Zapolska, A., Kalaitzidis, C., & Koubouris, G. (2020). Relationships of spectral reflectance with plant tissue mineral elements of common bean (Phaseolus vulgaris L.) under drought and salinity stresses. Communications in Soil Science and Plant Analysis, 51(5), 675–686. https://doi.org/10.1080/00103624.2020.1729789 DOI: https://doi.org/10.1080/00103624.2020.1729789

Franco Montoya, O. H., & Martínez Martínez, L. J. (2024). Relationship between spectral response and manganese concentrations for assessment of the nutrient status in rose crop. Agronomía Colombiana, 42(2), Article e110294. https://doi.org/10.15446/agron.colomb.v42n2.110294 DOI: https://doi.org/10.15446/agron.colomb.v42n2.110294

Gálvez-Sola, L., García-Sánchez, F., Pérez-Pérez, J. G., Gimeno, V., Navarro, J. M., Moral, R., Martínez-Nicolás, J. J., & Nieves, M. (2015). Rapid estimation of nutritional elements on citrus leaves by near infrared reflectance spectroscopy. Frontiers in Plant Science, 6, Article 571. https://doi.org/10.3389/fpls.2015.00571 DOI: https://doi.org/10.3389/fpls.2015.00571

Ghosh, S., Prasanna, V. L., Sowjanya, B., Srivani, P., Alagaraja, M., & Banji, D. (2013). Inductively coupled plasma–optical emission spectroscopy: A review. Asian Journal of Pharmaceutical Analysis, 3(1), 24–33. https://ajpaonline.com/HTMLPaper.aspx?Journal=Asian%20Journal%20of%20Pharmaceutical%20Analysis;PID=2013-3-1-6

Hariyadi, B. W., Nizak, F., Nurmalasari, I. R., & Kogoya, Y. (2019). Effect of dose and time of NPK fertilizer application on the growth and yield of tomato plants (Lycopersicum esculentum Mill). Agricultural Science, 2(2), 101–111. http://agriculturalscience.unmerbaya.ac.id/index.php/agriscience/article/view/26

Huber, S., Kneubühler, M., Psomas, A., Itten, K., & Zimmermann, N. E. (2008). Estimating foliar biochemistry from hyperspectral data in mixed forest canopy. Forest Ecology and Management, 256(3), 491–501. https://doi.org/10.1016/j.foreco.2008.05.011 DOI: https://doi.org/10.1016/j.foreco.2008.05.011

Hu, J., He, D., & Yang, P. (2011). Study on plant nutrition indicator using leaf spectral transmittance for nitrogen detection. In D. Li, Y. Liu, & Y. Chen (Eds.), Computer and computing technologies in agriculture IV: 4th IFIP TC 12 Conference, CCTA 2010 (Vol. 347, pp. 504–513). Springer. https://doi.org/10.1007/978-3-642-18369-0_60 DOI: https://doi.org/10.1007/978-3-642-18369-0_60

Humphries, J. M., Stangoulis, J. C., & Graham, R. D. (2006). Manganese. In A. V. Barker, & D. J. Pilbeam (Eds.), Handbook of plant nutrition (pp. 351–374). CRC Press. https://doi.org/10.1201/9781420014877 DOI: https://doi.org/10.1201/9781420014877.ch12

ICA – Instituto Colombiano Agropecuario. (2024). Con 700 millones de tallos, Colombia aporta variedad, color y belleza a la celebración de San Valentín. https://www.ica.gov.co/noticias/ica-colombia-exporta-flores-san-valentin-2024

Kusumiyati, K., Putri, I. E., Hamdani, J. S., & Suhandy, D. (2022). Real-time detection of the nutritional compounds in green Ratuni UNPAD’ cayenne pepper. Horticulturae, 8(6), Article 554. https://doi.org/10.3390/horticulturae8060554 DOI: https://doi.org/10.3390/horticulturae8060554

Lê Cao, K. A., Rossouw, D., Robert-Granié, C., & Besse, P. (2008). Sparse PLS: Variable selection when integrating omics data. Statistical Applications in Genetics and Molecular Biology, 7(1), Article 35. https://hal.science/hal-00300204v1/file/sPLS.pdf DOI: https://doi.org/10.2202/1544-6115.1390

Lee, W., Searcy, S. W., & Kataota, T. (2000). Assessing nitrogen stress in corn varieties of varying color citrus. ASAE Meeting Presentation, Paper No. 99-3034, 1–24. https://www.researchgate.net/publication/2455515

Liang, S. (2005). Quantitative remote sensing of land surfaces. John Wiley & Sons. https://onlinelibrary.wiley.com/doi/book/10.1002/047172372X

Mahajan, G. R., Das, B., Kumar, P., Murgaokar, D., Patel, K., Desai, A., Morajkar, S., Kulkarni, R. M., & Gauns, S. (2024). Spectroscopy-based chemometrics combined machine learning modeling predicts cashew foliar macro- and micronutrients. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 320, Article 124639. https://doi.org/10.1016/j.saa.2024.124639 DOI: https://doi.org/10.1016/j.saa.2024.124639

Mahajan, G. R., Das, B., Murgaokar, D., Herrmann, I., Berger, K., Sahoo, R. N., Patel, K., Desai, A., Morajkar, S., & Kulkarni, R. M. (2021). Monitoring the foliar nutrients status of mango using spectroscopy-based spectral indices and PLSR-combined machine learning models. Remote Sensing, 13(4), Article 641. https://doi.org/10.3390/rs13040641 DOI: https://doi.org/10.3390/rs13040641

Mevik, B. H., & Wehrens, R. (2007). The PLS package: Principal component and partial least squares regression in R. Journal of Statistical Software, 18, 1–23. https://doi.org/10.18637/jss.v018.i02 DOI: https://doi.org/10.18637/jss.v018.i02

Min, M., Lee, W. S., Kim, Y. H., & Bucklin, R. A. (2006). Nondestructive detection of nitrogen in Chinese cabbage leaves using VIS–NIR spectroscopy. HortScience, 41(1), 162–166. https://doi.org/10.21273/HORTSCI.41.1.162 DOI: https://doi.org/10.21273/HORTSCI.41.1.162

Rashed, M. H., Hoque, T. S., Jahangir, M. M. R., & Hashem, M. A. (2019). Manganese as a micronutrient in agriculture: Crop requirement and management. Journal of Environmental Science and Natural Resources, 12(1–2), 225–242. https://doi.org/10.3329/jesnr.v12i1-2.52040 DOI: https://doi.org/10.3329/jesnr.v12i1-2.52040

Ruppenthal, V., & Castro, A. M. C. (2005). Efeito do composto de lixo urbano na nutrição e produção de gladíolo. Revista Brasileira de Ciência do Solo, 29, 145–150. https://doi.org/10.1590/S0100-06832005000100016 DOI: https://doi.org/10.1590/S0100-06832005000100016

Santos, E. F., Santini, J. M. K., Paixão, A. P., Furlani Júnior, E., Lavres, J., Campos, M., & Reis, A. R. (2017). Physiological highlights of manganese toxicity symptoms in soybean plants: Mn toxicity responses. Plant Physiology and Biochemistry, 113, 6–19. https://doi.org/10.1016/j.plaphy.2017.01.022 DOI: https://doi.org/10.1016/j.plaphy.2017.01.022

Santoso, H., Tani, H., Wang, X., & Segah, H. (2019). Predicting oil palm leaf nutrient contents in Kalimantan, Indonesia by measuring reflectance with a spectroradiometer. International Journal of Remote Sensing, 40(19), 7581–7602. https://doi.org/10.1080/01431161.2018.1516323 DOI: https://doi.org/10.1080/01431161.2018.1516323

Wold, S., Sjöström, M., & Eriksson, L. (2001). PLS-regression: A basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58(2), 109–130. https://doi.org/10.1016/S0169-7439(01)00155-1 DOI: https://doi.org/10.1016/S0169-7439(01)00155-1

Yu, E., Zhao, R., Cai, Y., Huang, J., Li, C., Li, C., Mei, L., Bao, L., Chen, J., & Zhu, S. (2019). Determination of manganese content in cottonseed meal using near-infrared spectrometry and multivariate calibration. Journal of Cotton Research, 2, Article 12. https://doi.org/10.1186/s42397019-0030-5 DOI: https://doi.org/10.1186/s42397-019-0030-5

How to Cite

APA

Franco Montoya, O. H. & Martínez Martínez, L. J. (2025). Comparing spectral models to predict manganese content in Rosa spp. leaves using VIS-NIR data. Agronomía Colombiana, 43(1), e118322. https://doi.org/10.15446/agron.colomb.v43n1.118322

ACM

[1]
Franco Montoya, O.H. and Martínez Martínez, L.J. 2025. Comparing spectral models to predict manganese content in Rosa spp. leaves using VIS-NIR data. Agronomía Colombiana. 43, 1 (Jan. 2025), e118322. DOI:https://doi.org/10.15446/agron.colomb.v43n1.118322.

ACS

(1)
Franco Montoya, O. H.; Martínez Martínez, L. J. Comparing spectral models to predict manganese content in Rosa spp. leaves using VIS-NIR data. Agron. Colomb. 2025, 43, e118322.

ABNT

FRANCO MONTOYA, O. H.; MARTÍNEZ MARTÍNEZ, L. J. Comparing spectral models to predict manganese content in Rosa spp. leaves using VIS-NIR data. Agronomía Colombiana, [S. l.], v. 43, n. 1, p. e118322, 2025. DOI: 10.15446/agron.colomb.v43n1.118322. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/118322. Acesso em: 7 nov. 2025.

Chicago

Franco Montoya, Oscar Hernán, and Luis Joel Martínez Martínez. 2025. “Comparing spectral models to predict manganese content in Rosa spp. leaves using VIS-NIR data”. Agronomía Colombiana 43 (1):e118322. https://doi.org/10.15446/agron.colomb.v43n1.118322.

Harvard

Franco Montoya, O. H. and Martínez Martínez, L. J. (2025) “Comparing spectral models to predict manganese content in Rosa spp. leaves using VIS-NIR data”, Agronomía Colombiana, 43(1), p. e118322. doi: 10.15446/agron.colomb.v43n1.118322.

IEEE

[1]
O. H. Franco Montoya and L. J. Martínez Martínez, “Comparing spectral models to predict manganese content in Rosa spp. leaves using VIS-NIR data”, Agron. Colomb., vol. 43, no. 1, p. e118322, Jan. 2025.

MLA

Franco Montoya, O. H., and L. J. Martínez Martínez. “Comparing spectral models to predict manganese content in Rosa spp. leaves using VIS-NIR data”. Agronomía Colombiana, vol. 43, no. 1, Jan. 2025, p. e118322, doi:10.15446/agron.colomb.v43n1.118322.

Turabian

Franco Montoya, Oscar Hernán, and Luis Joel Martínez Martínez. “Comparing spectral models to predict manganese content in Rosa spp. leaves using VIS-NIR data”. Agronomía Colombiana 43, no. 1 (January 1, 2025): e118322. Accessed November 7, 2025. https://revistas.unal.edu.co/index.php/agrocol/article/view/118322.

Vancouver

1.
Franco Montoya OH, Martínez Martínez LJ. Comparing spectral models to predict manganese content in Rosa spp. leaves using VIS-NIR data. Agron. Colomb. [Internet]. 2025 Jan. 1 [cited 2025 Nov. 7];43(1):e118322. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/118322

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

138

Downloads

Download data is not yet available.