Hormones mitigate salt stress in tomato (Solanum lycopersicum L.) plants during vegetative growth
Las hormonas mitigan el estrés salino en plantas de tomate (Solanum lycopersicum L.) durante el crecimiento vegetativo
DOI:
https://doi.org/10.15446/agron.colomb.v43n1.118425Keywords:
plant hormones, naphthaleneacetic acid, gibberellic acid, abiotic stress (en)hormonas vegetales, ácido naftalenacético, ácido giberélico, estrés abiótico (es)
Downloads
Tomato is one of the most important vegetables in Colombia. This crop is sensitive to salinity, so high salt concentrations in the soil can negatively affect its growth and development; tolerance levels vary among cultivars. A viable strategy used in other cultivated species is the application of phytohormones that help plants acclimate to variable environments. Since few studies report the influence of growth regulators that alleviate this type of stress in tomatoes, this research aimed to determine the effect of different naphthaleneacetic acid and gibberellic acid doses on some physiological and growth parameters in tomato plants subjected to saline stress. We implemented a randomized design with a 2 × 6 factorial scheme. The first factor corresponded to salinity with two levels (0 and 40 mM), and the second factor involved the individual application of hormones (auxins – naphthaleneacetic acid (NAA) and gibberellins – gibberellic acid (ProGibb SP®)) at doses of 50, 75, and 100 μM each, for a total of 12 treatments with six replicates. We evaluated growth variables such as plant height, number of leaves, leaf area, fresh biomass of the aerial part and roots, as well as physiological variables of chlorophyll content and stomatal conductance (gs). The application of gibberellins at 100 μM demonstrated the ability to mitigate the deleterious effects of salinity on some growth parameters in tomato plants by improving leaf expansion and aerial fresh biomass.
El tomate es una de las hortalizas más importantes en Colombia. Este cultivo es sensible a la salinidad, por lo que las altas concentraciones de sal en el suelo pueden afectar negativamente su crecimiento y desarrollo, con niveles de tolerancia que varían entre cultivares. Una estrategia viable en otras especies cultivadas es la aplicación de fitohormonas, las cuales permiten a las plantas aclimatarse a entornos variables. En este sentido y considerando que pocos estudios reportan la influencia de reguladores de crecimiento en el alivio de este tipo de estrés en tomate, la presente investigación buscó determinar el efecto de diferentes dosis de ácido naftalenacético y ácido giberélico sobre algunos parámetros fisiológicos y de crecimiento en plantas de tomate sometidas a estrés salino. Se realizó un diseño completamente al azar con un esquema factorial 2 × 6. El primer factor correspondió a la salinidad con dos niveles (0 y 40 mM) y el segundo factor a la aplicación individual de hormonas (auxinas – ácido naftalenacético (NAA) y giberelinas - ácido giberélico (ProGibb SP®) en dosis de 50, 75 y 100 μM cada una, para un total de 12 tratamientos con 6 repeticiones. Se evaluaron variables de crecimiento como altura, número de hojas, área foliar, biomasa fresca de parte área y raíz, y variables fisiológicas como contenido de clorofila y conductancia estomática (gs). La aplicación de giberelinas en dosis de 100 μM demostró que puede mitigar el efecto deletéreo de la salinidad en algunos parámetros de crecimiento en plantas de tomate, mejorando la expansión foliar y la biomasa fresca de la parte aérea.
References
Abed Jeber, B., & Khaeim, H. M. (2019). Effect of foliar application of amino acids, organic acids, and naphthalene acetic acid on growth and yield traits of wheat. Plant Archives, 19(Sup2), 824–826. https://plantarchives.org/SPL%20ISSUE%20SUPP%202,2019/147__824-826_.pdf
Acosta-Motos, J. R., Ortunõ, M. F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M. J., & Hernandez, J. A. (2017). Plant response to salt stress: Adaptive mechanisms. Agronomy, 7(1), Article 18. https://doi.org/10.3390/agronomy7010018 DOI: https://doi.org/10.3390/agronomy7010018
Ahmad, B., Mukarram, M., Choudhary, S., Petrík, P., Dar, T. A., & Khan, M. M. A. (2024). Adaptive responses of nitric oxide (NO)and its intricate dialogue watt phytohormones during salinity stress. Plant Physiology and Biochemistry, 208, Article 108504. https://doi.org/10.1016/j.plaphy.2024.108504 DOI: https://doi.org/10.1016/j.plaphy.2024.108504
Anjum, S. A., Xie X., Wang, L., Saleem, M. F., Man, C., & Lei, W. (2011). Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6(9), 2026–2032. https://academicjournals.org/article/article1380900919_Anjum%2520et%2520al.pdf
Bidadi, H., Yamaguchi, S., Asahina, M., & Satoh, S. (2010). Effects of shoot-applied gibberellin/gibberellin-biosynthesis inhibitors on root growth and expression of gibberellin biosynthesis genes in Arabidopsis thaliana. Plant Root, 4, 4–11. https://doi.org/10.3117/plantroot.4.4 DOI: https://doi.org/10.3117/plantroot.4.4
Boccaccini, A., Santopolo, S., Capauto, D., Lorrai, L., Minutello, E., Serino, E., Costantino, P., & Vittorioso, P. (2014). The DOF protein DAG1 and the DELLA protein GAI cooperate in negatively regulating the AtGA3ox1 gene. Molecular Plant, 7(9), 1486–1489. https://doi.org/10.1093/mp/ssu046 DOI: https://doi.org/10.1093/mp/ssu046
Casanova-Sáez, R., & Voß, U. (2019). Auxin metabolism controls developmental decisions in land plants. Trends in Plant Science, 24(8), 741–754. https://doi.org/10.1016/j.tplants.2019.05.006 DOI: https://doi.org/10.1016/j.tplants.2019.05.006
De Smet, I., Lau, S., Voß, U., Vanneste, U., Benjamins, R., Rademacher, E. H., Schlereth, A., De Rybel, B., Vassileva, V., Grunewald, W., Naudts, M., Levesque, M. P., Ehrismann, J. S., Inzé, D., Luschnig, C., Benfey, P. N., Weijers, D., Van Montagu, M. C. E., Bennett, M. J., ..., & Beeckman, T. (2010). Bimodular auxin response controls organogenesis in Arabidopsis. Proceedings of the National Academy of Sciences, 107(6), 2705–2710. https://doi.org/10.1073/pnas.0915001107 DOI: https://doi.org/10.1073/pnas.0915001107
Fahad, S., Hussain, S., Matloob, A., Khan, F. A., Khaliq, A., Saud, S., Hassan, S., Shan, D., Khan, F., Ullah, N., Faiq, M., Khan, M. R., Tareen, A. K., Khan, A., Ullah, A., Ullah, N., & Huang, J. (2015). Phytohormones and plant responses to salinity stress: A review. Plant Growth Regulations, 75, 391–404. https://doi.org/10.1007/s10725-014-0013-y DOI: https://doi.org/10.1007/s10725-014-0013-y
FAO – Food and Agriculture Organization of the United Nations. (2024). Global map of salt affected soils (GSASmap). https://www.fao.org/global-soil-partnership/gsasmap/en
FAOSTAT. (2019). Crops and livestock products. Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/en/#data/QCL/visualize
Feng, D., Gao, Q., Liu, J., Tang, J., Hua, Z., & Sun, X. (2023). Categories of exogenous substances and their effect on alleviation of plant salt stress, European Journal of Agronomy, 142, Article 126656. https://doi.org/10.1016/j.eja.2022.126656 DOI: https://doi.org/10.1016/j.eja.2022.126656
Fita, A., Rodríguez-Burruezo, A., Boscaiu, M., Prohens, J., & Vicente, O. (2015). Breeding and domesticating crops adapted to drought and salinity: A new paradigm for increasing food production. Frontiers in Plant Science, 6, Article 978. https://doi.org/10.3389/fpls.2015.00978 DOI: https://doi.org/10.3389/fpls.2015.00978
Fu, X., & Harberd, N. P. (2003). Auxin promotes Arabidopsis root growth by modulating gibberellin response. Nature, 421, 740–743. https://doi.org/10.1038/nature01387 DOI: https://doi.org/10.1038/nature01387
Furdi, F., Velicevici, G., Popescu, S., Petolescu, C., & Berar, V. (2013). The effect of salt stress on proline accumulation in several Romanian tomato varieties. Journal of Horticulture, Forestry and Biotechnology, 17(1), 359–362. https://www.usab-tm.ro/Journal-HFB/romana/2013/Lista%20Lucrari%20PDF/Volum%2017(1)%20PDF/69Furdi%20Florina.pdf
Gao, X., Zhang, Y., He, Z., & Fu, X. (2017). Gibberellins. In J. Li, C. Li, & S. M. Smith (Eds.), Hormone metabolism and signaling in plants (pp. 107–160). Academic Press. https://doi.org/10.1016/B978-0-12-811562-6.00004-9 DOI: https://doi.org/10.1016/B978-0-12-811562-6.00004-9
Gornals, M. P. (2015). Estudio de la respuesta a estrés salino en Paulownia sp. cultivada in vitro [Undegraduate thesis, Universitat de les Illes Balears]. https://dspace.uib.es/xmlui/bitstream/handle/11201/2773/TFG_GBIQ_DavidPrietoGornals.pdf?sequence=1
Hedden, P., & Sponsel, V. (2015). A century of gibberellin research. Journal of Plant Growth Regulation, 34, 740–760. https://doi.org/10.1007/s00344-015-9546-1 DOI: https://doi.org/10.1007/s00344-015-9546-1
Heuvelink, E. (Ed.) (2018). Tomatoes (2nd ed). CABI. https://www.cabidigitallibrary.org/doi/book/10.1079/9781780641935.0000 DOI: https://doi.org/10.1079/9781780641935.0000
Iqbal, N., Masood, A., & Khan, N. A. (2012). Phytohormones in salinity tolerance: Ethylene and gibberellins cross talk. In N. A. Khan, R. Nazar, N. Iqbal, & N. A. Anjum (Eds.), Phytohormones and abiotic stress tolerance in plants (pp. 77–98). Springer. https://link.springer.com/chapter/10.1007/978-3-642-25829-9_3 DOI: https://doi.org/10.1007/978-3-642-25829-9_3
Jahan, M. A. H. S., Hossain, A., Silva, J. A. T., El Sabagh, A., Rashid, M. H., & Barutçular, C. (2019). Effect of naphthaleneacetic acid on root and plant growth and yield of ten irrigated wheat genotypes. Pakistan Journal of Botany, 51(2), 451–459. https://doi.org/10.30848/PJB2019-2(11) DOI: https://doi.org/10.30848/PJB2019-2(11)
Javid, M. G., Sorooshzadeh, A., Moradi, F., Sanavy, S. A. M. M., & Allahdadi, I. (2011). The role of phytohormones in alleviating salt stress in crop plants. Australian Journal Crop Science, 5(6), 726–734. https://cropj.com/javid_5_6_2011_726_734.pdf
Kashyap, S. P., Kumari, N., Mishra, P., Moharana, D. P., & Aamir, M. (2021). Tapping the potential of Solanum lycopersicum L. pertaining to salinity tolerance: Perspectives and challenges. Genetic Resources and Crop Evolution, 68, 2207–2233. https://link.springer.com/article/10.1007/s10722-021-01174-9 DOI: https://doi.org/10.1007/s10722-021-01174-9
Khalloufi, M., Martínez-Andújar, C., Lachaâl, M., Karry-Bouraoui, N., Pérez-Alfocea, F., & Albacete, A. (2017). The interaction between foliar GA3 application and arbuscular mycorrhizal fungi inoculation improves growth in salinized tomato (Solanum lycopersicum L.) plants by modifying the hormonal balance. Journal of Plant Physiology, 214, 134–144. https://doi.org/10.1016/j.jplph.2017.04.012 DOI: https://doi.org/10.1016/j.jplph.2017.04.012
Kishor, P. B. K., Tiozon Jr, R. M., Fernie, A. R., & Sreenivasulu, N. (2022). Abscisic acid and its role in the modulation of plant growth, development, and yield stability. Trends in Plant Science, 27(12), 1283–1295. https://doi.org/10.1016/j.tplants.2022.08.013 DOI: https://doi.org/10.1016/j.tplants.2022.08.013
Li, J., Sima, W., Ouyang, B., Wang, T., Ziaf, K., Luo, Z., Liu, L., Li, H., Chen, M., Huang, Y., Feng, Y., Hao, Y., & Ye, Z. (2012). Tomato SlDREB gene restricts leaf expansion and internode elongation by downregulating key genes for gibberellin biosynthesis. Journal of Experimental Botany, 63(18), 6407–6420. https://doi.org/10.1093/jxb/ers295 DOI: https://doi.org/10.1093/jxb/ers295
Li, X., Wang, S., Chen, X., Cong, Y., Cui, J., Shi, Q., Liu, H., & Diao, M. (2022). The positive effects of exogenous sodium nitroprusside on the plant growth, photosystem II efficiency and Calvin cycle of tomato seedlings under salt stress. Scientia Horticulturae, 299, Article 111016. https://doi.org/10.1016/j.scienta.2022.111016 DOI: https://doi.org/10.1016/j.scienta.2022.111016
Martínez Villavicencio, N., López Alonzo, C. V., Basurto Sotelo, M., & Pérez Leal, R. (2011). Efectos por salinidad en el desarrollo vegetativo. Medio Ambiente y Desarrollo Sustentable, 5(3), 156–161. https://revistascientificas.uach.mx/index.php/tecnociencia/article/view/694/772
Meier, U. (2001). Estadios de las plantas mono- y dicotiledóneas. BBCH Monografía (2nd ed.). Centro Federal de Investigaciones Biológicas para Agricultura y Silvicultura https://www.juliuskuehn.de/media/Veroeffentlichungen/bbch%20epaper%20span/page.pdf
MinAgricultura. (2024, July). Reporte: área, producción y rendimiento nacional por cultivo. Evaluaciones Agropecuarias Municipales – EVA – Oficina Asesora de Planeación y Prospectiva – MADR. https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1
Murcia, G., Fontana, A., Pontin, M., Baraldi, R., Bertazza, G., & Piccoli, P. N. (2017). ABA and GA3 regulate the synthesis of primary and secondary metabolites related to alleviation from biotic and abiotic stresses in grapevine. Phytochemistry, 135, 34–52. https://doi.org/10.1016/j.phytochem.2016.12.007 DOI: https://doi.org/10.1016/j.phytochem.2016.12.007
Murillo-Amador, B., Reyes-Pérez, J. J., Hernández-Montiel, L. G., Rueda-Puente, E. O., De Lucia, B., Beltrán-Morales, F. A., & Ruiz-Espinoza, F. H. (2017). Physiological responses to salinity in Solanum lycopersicum L. varieties. Pakistan Journal of Botany, 49(3), 809–818. https://www.pakbs.org/pjbot/papers/1497345731.pdf
Nir, I., Shohat, H., Panizel, I., Olszewski, N., Aharoni, A., & Weiss, D. (2017). The tomato DELLA protein PROCERA acts in guard cells to promote stomatal closure. The Plant Cell, 29(12), 3186−3197. https://doi.org/10.1105/tpc.17.00542 DOI: https://doi.org/10.1105/tpc.17.00542
Oh, E., Zhu, J-Y., Bai, M-Y., Arenhart, R. A., Sun Y., Wang, Z-Y. (2014). Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl. Elife, 3, Article e03031. https://doi.org/10.7554/eLife.03031 DOI: https://doi.org/10.7554/eLife.03031
Omena-Garcia, R. P., Martins, A. O., Medeiros, D. B., Vallarino, J. G., Ribeiro, D. M., Fernie, A. R., Araújo, W. L., & Nunes-Nesi, A. (2019). Growth and metabolic adjustments in response to gibberellin deficiency in drought stressed tomato plants. Environmental and Experimental Botany, 159, 95–107. https://doi.org/10.1016/j.envexpbot.2018.12.011 DOI: https://doi.org/10.1016/j.envexpbot.2018.12.011
Rodríguez, P., Dell’Amico, J., Morales, D., Sánchez Blanco, M. J., & Alarcón, J. J. (1997). Effects of salinity on growth, shoot water relations and root hydraulic conductivity in tomato plants. The Journal of Agricultural Science, 128(4), 439–444. https://doi.org/10.1017/S0021859697004309 DOI: https://doi.org/10.1017/S0021859697004309
Saldaña, T. M., Bejarano, C. A., & Guaqueta, S. (2017). Efecto de la salinidad en el crecimiento de plantas de tomate tipo chonto. Revista Colombiana de Ciencias Hortícolas, 11(2), 329–342. https://doi.org/10.17584/rcch.2017v11i2.7347 DOI: https://doi.org/10.17584/rcch.2017v11i2.7347
Shahzad, K., Hussain, S., Arfan, M., Hussain, S., Waraich, E. A., Zamir, S., Saddique, M., Rauf, A., Kamal, K. Y., Hano, C., & El-Esawi, M. A. (2021). Exogenously applied gibberellic acid enhances growth and salinity stress tolerance of maize through modulating the morpho-physiological, biochemical and molecular attributes. Biomolecules, 11(7), Article 1005. https://doi.org/10.3390/biom11071005 DOI: https://doi.org/10.3390/biom11071005
SIAC – Sistema de Información Ambiental de Colombia. (2025, March). Susceptibilidad a la degradación de los suelos por salinización en Colombia. http://www.siac.gov.co/salinizacion-detalle-degradacion
Silva, A. A., Cardenal-Rubio, Z. C., Linhares, P. C. A., Silva, K. R. E., Pimentel, G. V., & Marchiori, P. E. R. (2022). Genotypic variation of sugarcane for salinity tolerance: Morphological and physiological responses. Ciência e Agrotecnologia, 46, Article e000122. https://doi.org/10.1590/1413-7054202246000122 DOI: https://doi.org/10.1590/1413-7054202246000122
Singh, M., Singh. V. P., & Prasad, S. M. (2016). Responses of photosynthesis, nitrogen and proline metabolism to salinity stress in Solanum lycopersicum under different levels of nitrogen supplementation. Plant Physiology and Biochemistry, 109, 72–83. https://doi.org/10.1016/j.plaphy.2016.08.021 DOI: https://doi.org/10.1016/j.plaphy.2016.08.021
Sukiran, N. A., Steel, P. G., & Knight, M. R. (2020). Basal stomatal aperture is regulated by GA-DELLAs in Arabidopsis. Journal of Plant Physiology, 250, Article 153182. https://doi.org/10.1016/j.jplph.2020.153182 DOI: https://doi.org/10.1016/j.jplph.2020.153182
Taïbi, K., Taïbi, F., Abderrahim, L. A., Ennajah, A., Belkhodja, M., & Mulet, J. M. (2016). Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. South African Journal of Botany, 105, 306–312. https://doi.org/10.1016/j.sajb.2016.03.011 DOI: https://doi.org/10.1016/j.sajb.2016.03.011
Taiz, L., Zeiger, E., Moller, I. M., & Murphy, A. (2017). Fisiologia e desenvolvimento de plantas (6th ed.). Artmed. https://books.google.com.co/booksid=PpO4DQAAQBAJ&printsec=frontcover#v=onepage&q&f=false
Tong, H., Xiao, Y., Liu, D., Gao, S., Liu, L., Yin, Y., Jin, Y., Qian, Q., & Chu, C. (2014). Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice. Plant Cell, 26(11), 4376–4393. https://doi.org/10.1105/tpc.114.132092 DOI: https://doi.org/10.1105/tpc.114.132092
Zawaski, C., & Busov, B. V. (2014). Roles of gibberellin catabolism and signaling in growth and physiological response to drought and short-day photoperiods in Populus trees. PLoS ONE, 9(1), Article e86217. https://doi.org/10.1371/journal.pone.0086217 DOI: https://doi.org/10.1371/journal.pone.0086217
Zhang, H., & Sonnewald, U. (2017) Differences and commonalities of plant responses to single and combined stresses. The Plant Journal, 90(5), 839–855. https://doi.org/10.1111/tpj.13557 DOI: https://doi.org/10.1111/tpj.13557
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2025 Agronomía Colombiana

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)

Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.







