Application of bokashi improves the agronomic quality and bioactive compounds of radish cv. Quiron
La aplicación de bocashi mejora la calidad agronómica y los compuestos bioactivos del rábano cv. Quiron
DOI:
https://doi.org/10.15446/agron.colomb.v43n2.118449Keywords:
chemical fertilizer, Raphanus sativus L., organic fertilizer, total polyphenols (en)fertilizante químico, Raphanus sativus L., fertilizante orgánico, polifenoles totales (es)
Downloads
The aim of the study was to compare horticultural variables of radish cv. Quiron using bokashi, boiled chicken manure (BCM), and a mineral fertilizer. Experiments were conducted in a plastic greenhouse with the following treatments: fertigation with BCM concentrations in water (2.5%, 5.0%, 7.5%, and 10%), bokashi, mineral fertilizer in substrate, and control (water). The agronomic variables evaluated were: storage root biomass, storage root volume, leaf biomass, and chlorophyll index. Bioactive compounds, total polyphenol content, antioxidant capacity, and nitrate contents in storage root were also quantified. All agronomic variables were influenced by the treatments. For storage root biomass, the highest averages were obtained with bokashi and mineral fertilization, surpassing the other treatments. Root volume significantly increased with all treatments except for BCM 7.5%, with bokashi application resulting in the highest mean, followed by mineral fertilization. Leaf biomass was significantly enhanced by BCM 5.0%, BCM 7.5%, bokashi, and mineral fertilizer, with the latter showing the highest mean. The chlorophyll index increased with bokashi and mineral treatments. Total polyphenol contents significantly increased with all treatments, with bokashi, mineral, and BCM 5.0% and 7.5% showing the highest averages. Both DPPH and nitrate levels significantly increased with all treatments, with bokashi having the highest mean, followed by mineral fertilizer. FRAP levels were significantly elevated by all treatments, with bokashi and mineral fertilizer resulting in the highest means.
El objetivo del estudio fue comparar variables hortícolas del rábano cv. Quirón utilizando bocashi, estiércol hervido de pollo (EPH) y un fertilizante mineral. Los experimentos se llevaron a cabo en un invernadero de plástico, con los siguientes tratamientos: fertirrigación con concentraciones de EPH en agua (2,5; 5,0; 7,5 y 10%); bocashi, fertilizante mineral en el sustrato; y control (agua). Las variables agronómicas evaluadas fueron: biomasa de raíz tuberosa, volumen de raíz tuberosa, biomasa foliar e índice de clorofila. Se cuantificaron también compuestos bioactivos, contenido total de polifenoles, capacidad antioxidante y cantidad de nitratos en la raíz tuberosa. Todas las variables agronómicas fueron influenciadas por los tratamientos. Para la biomasa de raíz tuberosa, las medias más altas se observaron con bocashi y fertilización mineral, superando a los otros tratamientos. El volumen de la raíz tuberosa aumentó significativamente con todos los tratamientos, excepto para el EPH 7,5%, con bocashi mostrando la media más alta, seguido de la fertilización mineral. La biomasa foliar se incrementó significativamente con EPH 5,0%, EPH 7,5%, bocashi y fertilizante mineral, el cual tuvo la media más alta. El índice de clorofila aumentó con los tratamientos de bocashi y fertilizante mineral. Los contenidos totales de polifenoles aumentaron significativamente con todos los tratamientos, siendo bocashi, fertilizante mineral y EPH 5,0% y 7,5% los que tuvieron las medias más altas. Tanto los niveles de DPPH como los de nitratos aumentaron significativamente con todos los tratamientos, con bocashi teniendo la media más alta, seguido de fertilizante mineral. Los niveles del FRAP se incrementaron significativamente en todos los tratamientos, resultando en las medias más altas con bocashi y fertilizante mineral.
References
Aboyeji, C. M. (2019). Impact of green manures of Vernonia amygdalina and Chromolaena odorata on growth, yield, mineral and proximate composition of radish (Raphanus sativus L.). Scientific Reports, 9, Article 17659. https://doi.org/10.1038/s41598-019-54071-8
Altieri, M. A., Nicholls, C. I., Henao, A., & Lana, M. A. (2015). Agroecology and the design of climate change-resilient farming systems. Agronomy for Sustainable Development, 35(3), 869–890. https://doi.org/10.1007/s13593-015-0285-2
Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239(1), 70–76. https://doi.org/10.1006/abio.1996.0292
Bobo-García, G., Davidov-Pardo, G., Arroqui, C., Vírseda, P., Marín-Arroyo, M. R., & Navarro, M. (2015). Intra-laboratory validation of microplate methods for total phenolic content and antioxidant activity on polyphenolic extracts, and comparison with conventional spectrophotometric methods. Journal of the Science of Food and Agriculture, 95(1), 204–209. https://doi.org/10.1002/jsfa.6706
Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT – Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5
Cataldo, D. A., Maroon, M., Schrader, L. E., & Youngs, V. L. (1975). Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Communications in Soil Science and Plant Analysis, 6(1), 71–80. https://doi.org/10.1080/00103627509366547
Cavalcante, L. F., Bezerra, F. T. C., Souto, A. G., Bezerra, M. A. F., Lima, G. S., Gheyi, H. R., Pereira, J. F. S., & Beckmann-Cavalcante, M. Z. (2019). Biofertilizers in horticultural crops. Comunicata Scientiae, 10(4), 415–428. https://doi.org/10.14295/cs.v10i4.3058
Cojocaru, A., Vlase, L., Munteanu, N., Stan, T., Teliban, G. C., Burducea, M., & Stoleru, V. (2020). Dynamic of phenolic compounds, antioxidant activity, and yield of rhubarb under chemical, organic and biological fertilization. Plants, 9(3), Article 355. https://doi.org/10.3390/plants9030355
De Guzman, R. S., & Dagupan, J. R. (2022). Growth and yield performance of radish as affected by different amount of EM-Bokashi in lahar soil. European Journal of Agricultural and Rural Education, 3(4), 9–14. https://doi.org/10.5281/zenodo.6473209
Erdal, I., Ekinci, K., Kumbul, B. S., & Madenli, E. C. (2025). Effect of dairy manure-derived bokashi prepared from different organic materials on lettuce growth and mineral nutrition. Journal of Soil Science and Plant Nutrition, 25, 2923–2936. https://doi.org/10.1007/s42729-025-02309-y
Frías-Moreno, M. N., Parra-Quezada, R. A., González-Aguilar, G., Ruíz-Canizales, J., Molina-Corral, F. J., Sepúlveda, D. R., Salas-Salazar, N., & Olivas, G. I. (2021). Quality, bioactive compounds, antioxidant capacity, and enzymes of raspberries at different maturity stages, effects of organic vs. conventional fertilization. Foods, 10(5), Article 953. https://doi.org/10.3390/foods10050953
Furlanetto, A. D., Martinez, R. A. S., Lima, M. V. G., Santi, A., Vendruscolo, M. C., & Magalhães, M. O. L. (2020). Agroecological management in production of radish fertilized with cow urine. Revista Verde de Agroecologia e Desenvolvimento Sustentável, 15(4), 353–359. https://doi.org/10.18378/rvads.v15i4.8082
Gamba, M., Asllanaj, E., Raguindin, P. F., Glisic, M., Franco, O. H., Minder, B., Bussler, W., Metzger, B., Kern, H., & Muka, T. (2021). Nutritional and phytochemical characterization of radish (Raphanus sativus): A systematic review. Trends in Food Science & Technology, 113, 205–218. https://doi.org/10.1016/j.tifs.2021.04.045
Goulart, R. G. T., Santos, C. A., Oliveira, C. M., Costa, E. S. P., Oliveira, F. A., Andrade, N. F., & Carmo, M. G. F. (2018). Desempenho agronômico de cultivares de alface sob adubação orgânica em Seropédica, RJ. Revista Brasileira de Agropecuária Sustentável, 8(3), 66–72. https://doi.org/10.21206/rbas.v8i3.3011
Hata, F. T., Paula, M. T., Moreira, A. A., Ventura, M. U., Lima, R. F., Fregonezi, G. A. F., & Oliveira, A. L. M. (2021). Adubos orgânicos e fertirrigação com esterco aviário fervido para o cultivo de morangueiro. Revista de la Facultad de Agronomía de la Universidad del Zulia, 38(2), 342–359. https://doi.org/10.47280/RevFacAgron(LUZ).v38.n2.07
Hata, F. T., Silva, D. C., Yassunaka-Hata, N. N., Cancian, M. A. Q., Sanches, I. A., Poças, C. E. P., Ventura, M. U., Spinosa, W. A., & Macedo, R. B. (2023). Leafy vegetables’ agronomic variables, nitrate, and bioactive compounds have different responses to bokashi, mineral fertilization, and boiled chicken manure. Horticulturae, 9(2), Article 194. https://doi.org/10.3390/horticulturae9020194
Hata, F. T., Ventura, M. U., Fregonezi, G. A. F., & Lima, R. F. (2021). Bokashi, boiled manure and penergetic applications increased agronomic production variables and may enhance powdery mildew severity of organic tomato plants. Horticulturae, 7(2), Article 27. https://doi.org/10.3390/horticulturae7020027
Hata, F. T., Ventura, M. U., Sousa, V., & Fregonezi, G. A. F. (2019). Low-cost organic fertilizations and bioactivator for arugula–radish intercropping. Emirates Journal of Food and Agriculture, 31(10), 773–778. https://www.cabidigitallibrary.org/doi/pdf/10.5555/20209902596
Jumrani, K., Bhatia, V. S., Kataria, S., & Rastogi, A. (2024). The interactive effect of high temperature and water deficit stress on nitrogen fixation, photosynthesis, chlorophyll fluorescence, seed yield and quality in soybean (Glycine max). Plant Physiology Reports, 29(1), 125–140. https://doi.org/10.1007/s40502-023-00763-3
Kruker, G., Guidi, E. S., Santos, J. M. D. S. D., Mafra, Á. L., & Almeida, J. A. D. (2023). Quality of bokashi-type biofertilizer formulations and its application in the production of vegetables in an ecological system. Horticulturae, 9(12), Article 1314. https://doi.org/10.3390/horticulturae9121314
Machado, R. M. A., Alves-Pereira, I., Lourenço, D., & Ferreira, R. M. A. (2020). Effect of organic compost and inorganic nitrogen fertigation on spinach growth, phytochemical accumulation and antioxidant activity. Heliyon, 6(9), Article e05085. https://doi.org/10.1016/j.heliyon.2020.e05085
Maia, A. H., Souza, M. E., Silva, F. C., Rebelatto, B. F., Silva, T. O., Souza, V. S., & Ferreira, L. S. (2018). Productivity of radish fertilized with different doses of bovine manure. African Journal of Agricultural Research, 13(18), 963–968. https://doi.org/10.5897/AJAR2018.13140
Maki, Y., Soejima, H., Kitamura, T., Sugiyama, T., Sato, T., Watahiki, M. K., & Yamaguchi, J. (2021). 3-Phenyllactic acid, a root-promoting substance isolated from Bokashi fertilizer, exhibits synergistic effects with tryptophan. Plant Biotechnology, 38(1), 9–16. https://doi.org/10.5511/plantbiotechnology.20.0727a
Mbouobda, H. D., Fotso, J. C. D., Djeuani, C. A., Baliga, M. O., & Omokolo, N. D. (2014). Comparative evaluation of enzyme activities and phenol content of Irish potato (Solanum tuberosum) grown under EM and IMO manures Bokashi. International Journal of Biological and Chemical Sciences, 8(1), 157–166. https://doi.org/10.4314/ijbcs.v8i1.15
Mbouobda, H. D., Fotso, J. C. D., Djeuani, C. A., Fai, K., & Omokolo, N. D. (2013). Impact of effective and indigenous microorganisms manures on Colocassia esculenta and enzymes activities. African Journal of Agricultural Research, 8(12), 1086–1092. https://doi.org/10.5897/AJAR12.1867
Mendivil-Lugo, C., Nava-Pérez, E., Armenta-Bojórquez, A. D., Ruelas-Ayala, R. D., & Félix-Herrán, J. A. (2020). Elaboración de un abono orgánico tipo bocashi y su evaluación en la germinación y crecimiento del rábano. Biotecnia, 22(1), 17–23. https://doi.org/10.18633/biotecnia.v22i1.1120
Octavia, D., Murniati., Suharti, S., Hani, A., Mindawati, N., Suratman., Swestiani, D., Junaeid, A., Undaharta, N. K. E., Santosa, P. B., Wahyuningtyas, R. S., & Faubiany, V. (2023). Smart agroforestry for sustaining soil fertility and community livelihood. Forest Science and Technology, 19(4), 315–328. https://doi.org/10.1080/21580103.2023.2269970
Oliveira, E. Q., Souza, R. J., Cruz, M. C. M., Marques, V. B., & França, A. C. (2010). Produtividade de alface e rúcula, em sistema consorciado, sob adubação orgânica e mineral. Horticultura Brasileira, 28(1), 36–40. https://doi.org/10.1590/S0102-05362010000100007
Olle, M. (2021). Review: Bokashi technology as a promising technology for crop production in Europe. Journal of Horticultural Science & Biotechnology, 96(2), 145–152. https://doi.org/10.1080/14620316.2020.1810140
Ombita, S. N., Mwendwa, S. M., & Mureithi, S. M. (2024). Influence of organic fertilization on growth and yield of strawberry (Fragaria × ananassa) in Kabete and Mbooni areas, Kenya. Heliyon, 10(3), Article e25324. https://doi.org/10.1016/j.heliyon.2024.e25324
Quiroz, M., & Céspedes, C. (2019). Bokashi as an amendment and source of nitrogen in sustainable agricultural systems: A review. Journal of Soil Science and Plant Nutrition, 19, 237–248. https://doi.org/10.1007/s42729-019-0009-9
Roig-Coll, S., & Kechagia, A. (2020). Fermenting locally to improve soil fertility: Global lessons to the future of food sovereignty. In N. Betoret, & E. Betoret (Eds.), Sustainability of the food system: Sovereignty, waste, and nutrients bioavailability (pp. 25–31). Academic Press. https://doi.org/10.1016/B978-0-12-818293-2.00002-1
Scotton, J. C., Pereira, J. S., Campos, A. A. B., Pinto, D. F. P., Costa, W. L. F., & Homma, S. K. (2017). Different sources of inoculum to the bokashi provides distinct effects on the soil quality. Revista Brasileira de Agropecuária Sustentável, 7(3), 32–38. https://doi.org/10.21206/rbas.v7i3.411
Shingo, G. Y., & Ventura, M. U. (2009). Collard greens yield with mineral and organic fertilization. Semina: Ciências Agrárias, 30(3), 589–594. https://doi.org/10.5433/1679-0359.2009v30n3p589
Suthamathy, N., & Seran, T. H. (2013). Residual effect of organic manure EM Bokashi applied to proceeding crop of vegetable cowpea (Vigna unguiculata) on succeeding crop of radish (Raphanus sativus). Research Journal of Agriculture and Forestry Sciences, 1(1), 2–5. https://www.isca.me/AGRI_FORESTRY/Archive/v1/i1/1.ISCA-RJAFS-2013-001.php
Teixeira, P. C., Donagemma, G. K., Fontana, A., & Teixeira, W. G. (2017). Manual de métodos de análise de solo (3th ed.). Embrapa. https://www.infoteca.cnptia.embrapa.br/handle/doc/1085209
Tommonaro, G., Abbamondi, G. R., Nicolaus, B., Poli, A., D’Angelo, C., Iodice, C., & De Prisco, R. (2021). Productivity and nutritional trait improvements of different tomatoes cultivated with effective microorganisms technology. Agriculture, 11(2), Article 112. https://doi.org/10.3390/agriculture11020112
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2025 Agronomía Colombiana

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)

Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.







