Published

2025-04-30

Structural and phylogenetic characterization of a polyphenol oxidase gene in lulo (Solanum quitoense Lam.)

Caracterización estructural y filogenética de un gen de polifenol oxidasa en lulo (Solanum quitoense Lam.)

DOI:

https://doi.org/10.15446/agron.colomb.v43n1.118599

Keywords:

Solanaceae, catechol oxidase, browning, phenolic compounds, protein domain, naranjilla (en)
Solanaceae, catecol oxidasa, pardeamiento, compuestos fenólicos, dominio proteico, naranjilla (es)

Downloads

Authors

The lulo or naranjilla (Solanum quitoense Lam.) is one of the most important Colombian native fruits. The sale and industrial processing of fresh fruit is severely limited by enzymatic browning. Until now, there was no knowledge about polyphenol oxidases (PPO) in lulo. The aim of this study was to understand some structural and phylogenetic aspects of the first lulo ppo gene that has been characterized. Using two pairs of degenerate primers, two fragments of lulo genomic DNA were isolated by PCR, sequenced and assembled into a partial sequence of 1417 bp (SquPPO1) lacking introns. Hybridization of a 920-bp probe generated from a potato ppo gene with a 12 kb region of BamHI-PstI, BamHI-XbaI and XbaI-PstI digested lulo DNA confirmed the presence of at least one ppo gene in this species. While two conserved sites (Tyr-1 and Tyr-2) have been identified in the copper-binding domains of other Solanaceae PPOs, no Tyr-2 site was found in lulo PPO because of a conservative substitution DxE in this region. Phylogenetic analysis placed the SquPPO1 gene in the same cluster as the SmePPO4, SmePPO5, and SmePPO6 eggplant (Solanum melongena L.) genes. Our results show that SquPPO1 is phylogenetically closer to eggplant ppo genes than to those of potato, tobacco, and tomato and that it exhibits a variation that modifies the distribution of protein-conserved sites. These findings offer new insights into the molecular basis of enzymatic browning in lulo and may inform strategies to reduce postharvest losses.

El lulo o naranjilla (Solanum quitoense Lam.) es una de las frutas nativas colombianas más importantes. La venta y el procesamiento industrial de la fruta fresca son severamente limitados por el pardeamiento enzimático. Hasta ahora, no había conocimiento sobre las polifenol-oxidasas (PPO) en lulo. El objetivo de este estudio fue conocer algunos aspectos estructurales y filogenéticos del primer gen ppo de lulo caracterizado. Utilizando dos pares de iniciadores degenerados, dos fragmentos de ADN genómico de lulo fueron aislados por PCR, secuenciados y ensamblados en una secuencia parcial de 1417 pb (SquPPO1) que carece de intrones. La hibridación de una sonda de 920 pb generada a partir de un gen ppo de papa con una región de 12 kb de ADN de lulo digerido con BamHI-PstI, BamHI-XbaI y XbaI-PstI confirmó la presencia de al menos un gen ppo en esta especie. Mientras que se han identificado dos sitios conservados (Tyr-1 y Tyr-2) en los dominios de unión a cobre de otras PPOs de solanáceas, no se encontró ningún sitio Tyr-2 en la PPO de lulo debido a una sustitución conservativa DxE en esta región. El análisis filogenético situó al gen SquPPO1 en el mismo grupo que los genes SmePPO4, SmePPO5 y SmePPO6 de la berenjena (Solanum melongena L.). Nuestros resultados muestran que SquPPO1 es filogenéticamente más cercano a los genes ppo de berenjena que a los de papa, tabaco y tomate, y que presenta una variación que modifica la distribución de los sitios conservados de la proteína. Estos hallazgos ofrecen nuevos conocimientos sobre las bases moleculares del pardeamiento enzimático en lulo y pueden servir de base a estrategias para reducir las pérdidas poscosecha.

References

Araji, S., Grammer, T. A., Gertzen, R., Anderson, S. D., Mikulic-Petkovsek, M., Veberic, R., Phu, M. L., Solar, A., Leslie, C. A., Dandekar, A. M., & Escobar, M. A. (2014). Novel roles for the polyphenol oxidase enzyme in secondary metabolism and the regulation of cell death in walnut. Plant Physiology, 164(3), 1191–1203. https://doi.org/10.1104/pp.113.228593 DOI: https://doi.org/10.1104/pp.113.228593

Bonierbale, M. W., Plaisted, R. L., & Tanksley, S. D. (1988). RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics, 120(4), 1095–1103. https://doi.org/10.1093/genetics/120.4.1095 DOI: https://doi.org/10.1093/genetics/120.4.1095

Carels, N., Hatey, P., Jabbari, K., & Bernardi, G. (1998). Compositional properties of homologous coding sequences from plants. Journal of Molecular Evolution, 46, 45–53. https://doi.org/10.1007/PL00006282 DOI: https://doi.org/10.1007/PL00006282

Cary, J. W., Lax, A. R., & Flurkey, W. H. (1992). Cloning and characterization of cDNAs coding for Vicia faba polyphenol oxidase. Plant Molecular Biology, 20, 245–253. https://doi.org/10.1007/BF00014492 DOI: https://doi.org/10.1007/BF00014492

Chang, C., Zhang, H., Xu, J., You, M., Li, B., & Liu, G. (2007). Variation in two PPO genes associated with polyphenol oxidase activity in seeds of common wheat. Euphytica, 154, 181–193. https://doi.org/10.1007/s10681-006-9285-2 DOI: https://doi.org/10.1007/s10681-006-9285-2

Chi, M., Bhagwat, B., Lane, W. D., Tang, G., Su, Y., Sun, R., Oomah, B. D., Wiersma, P. A., & Xiang, Y. (2014). Reduced polyphenol oxidase gene expression and enzymatic browning in potato (Solanum tuberosum L.) with artificial microRNAs. BMC Plant Biology, 14, Article 62. https://doi.org/10.1186/1471-2229-14-62 DOI: https://doi.org/10.1186/1471-2229-14-62

Constabel, C. P., & Barbehenn, R. V. (2008). Defensive roles of polyphenol oxidase in plants. In A. Schaller (Ed.), Induced plant resistance to herbivory (pp. 253–269). Springer. https://doi.org/10.1007/978-1-4020-8182-8_12 DOI: https://doi.org/10.1007/978-1-4020-8182-8_12

Constabel, C. P., & Ryan, C. A. (1998). A survey of wound- and methyl jasmonate-induced leaf polyphenol oxidase in crop plants. Phytochemistry, 47(4), 507–511. https://doi.org/10.1016/S0031-9422(97)00539-6 DOI: https://doi.org/10.1016/S0031-9422(97)00539-6

Constabel, C. P., Yip, L., Patton, J. J., & Christopher, M. E. (2000). Polyphenol oxidase from hybrid poplar. Cloning and expression in response to wounding and herbivory. Plant Physiology, 124(1), 285–296. https://doi.org/10.1104/pp.124.1.285 DOI: https://doi.org/10.1104/pp.124.1.285

Deanna, R., Acosta, M. C., Scaldaferro, M., & Chiarini, F. (2022). Chromosome evolution in the family Solanaceae. Frontiers in Plant Science, 12, Article 787590. https://doi.org/10.3389/fpls.2021.787590 DOI: https://doi.org/10.3389/fpls.2021.787590

Doganlar, S., Frary, A., Daunay, M. C., Lester, R. N., & Tanksley, S. D. (2002). A comparative genetic linkage map of eggplant (Solanum melongena) and its implications for genome evolution in the Solanaceae. Genetics, 161(4), 1697–1711. https://doi.org/10.1093/genetics/161.4.1697 DOI: https://doi.org/10.1093/genetics/161.4.1697

Doyle, M., & Doyle, A. (1990). Isolation of DNA from small amounts of plant tissues. BRL Focus, 12, 13–15.

Edgar, R. C. (2021). Muscle5. https://github.com/rcedgar/muscle/releases/tag/v5.3

Festa, R. A., & Thiele, D. J. (2011). Copper: An essential metal in biology. Current Biology, 21(21), R877–R883. https://doi.org/10.1016/j.cub.2011.09.040 DOI: https://doi.org/10.1016/j.cub.2011.09.040

García-Borrón, J. C., & Solano, F. (2002). Molecular anatomy of tyrosinase and its related proteins: Beyond the histidine bound metal catalytic center. Pigment Cell Research, 15(3), 162–173. https://doi.org/10.1034/j.1600-0749.2002.02012.x DOI: https://doi.org/10.1034/j.1600-0749.2002.02012.x

Gerdemann, C., Eicken, C., & Krebs, B. (2002). The crystal structure of catechol oxidase: New insight into the function of type-3 copper proteins. Accounts of Chemical Research, 35(3), 183–191. https://doi.org/10.1021/ar990019a DOI: https://doi.org/10.1021/ar990019a

Goldman, M. H. S., Seurinck, J., Marins, M., Goldman, G. H., & Mariani, C. (1998). A tobacco flower-specific gene encodes a polyphenol oxidase. Plant Molecular Biology, 36, 479–485. https://doi.org/10.1023/A:1005914918284 DOI: https://doi.org/10.1023/A:1005914918284

Halaouli, S., Asther, M., Sigoillot, J. C., Hamdi, M., & Lomascolo, A. (2006). Fungal tyrosinases: New prospects in molecular characteristics, bioengineering and biotechnological applications. Journal of Applied Microbiology, 100(2), 219–232. https://doi.org/10.1111/j.1365-2672.2006.02866.x DOI: https://doi.org/10.1111/j.1365-2672.2006.02866.x

Hasan, M. U., Malik, A. U., Ali, S., Imtiaz, A., Munir, A., Amjad, W., & Anwar, R. (2019). Modern drying techniques in fruits and vegetables to overcome postharvest losses: A review. Journal of Food Processing and Preservation, 43, Article e14280. https://doi.org/10.1111/jfpp.14280 DOI: https://doi.org/10.1111/jfpp.14280

Heiser, C. B. (1985). Ethnobotany of the naranjilla (Solanum quitoense) and its relatives. Economic Botany, 39(1), 4–11. https://doi.org/10.1007/BF02861168 DOI: https://doi.org/10.1007/BF02861168

Hong, Q., Chen, Y. L., Lin, D., Yang, R. Q., Cao, K. Y., Zhang, L. J., Liu, Y. M., Sun, L. C., & Cao, M. J. (2024). Expression of polyphenol oxidase of Litopenaeus vannamei and its characterization. Food Chemistry, 432, Article 137258. https://doi.org/10.1016/j.foodchem.2023.137258 DOI: https://doi.org/10.1016/j.foodchem.2023.137258

Jackman, M. P., Huber, M., Hajnal, A., & Lerch, K. (1992). Stabilization of the oxy form of tyrosinase by a single conservative amino acid substitution. Biochemical Journal, 282(3), 915–918. https://doi.org/10.1042/bj2820915 DOI: https://doi.org/10.1042/bj2820915

Jukanti, A. K., Bruckner, P. L., & Fischer, A. M. (2004). Evaluation of wheat polyphenol oxidase genes. Cereal Chemistry, 81(4), 481–485. https://doi.org/10.1094/CCHEM.2004.81.4.481 DOI: https://doi.org/10.1094/CCHEM.2004.81.4.481

Klabunde, T., Eicken, C., Sacchettini, J. C., & Krebs, B. (1998). Crystal structure of a plant catechol oxidase containing a dicopper center. Nature Structural & Molecular Biology, 5(12), 1084–1090. https://doi.org/10.1038/4193 DOI: https://doi.org/10.1038/4193

Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096 DOI: https://doi.org/10.1093/molbev/msy096

Larter, M., Dunbar-Wallis, A., Berardi, A. E., & Smith, S. D. (2018). Convergent evolution at the pathway level: Predictable regulatory changes during flower color transitions. Molecular Biology and Evolution, 35(9), 2159–2169. https://doi.org/10.1093/molbev/msy117 DOI: https://doi.org/10.1093/molbev/msy117

Lerch, K. (1983). Neurospora tyrosinase: Structural, spectroscopic and catalytic properties. Molecular and Cellular Biochemistry, 52(2), 125–138. https://doi.org/10.1007/BF00224921 DOI: https://doi.org/10.1007/BF00224921

Li, F. (2020). Purification, kinetic parameters, and isoforms of polyphenol oxidase from “Xushu 22” sweet potato skin. Journal of Food Biochemistry, 44(2), Article e13452. https://doi.org/10.1111/jfbc.13452 DOI: https://doi.org/10.1111/jfbc.13452

Liu, H., Pan, M., Lu, Y., Wang, M., Huang, S., Li, J., Luo, K., Luo, L., Yao, M., Hua, D., & Wang, H. (2023). Purification and comparison of soluble and membrane-bound polyphenol oxidase from potato (Solanum tuberosum) tubers. Protein Expression and Purification, 202, Article 106195. https://doi.org/10.1016/j.pep.2022.106195 DOI: https://doi.org/10.1016/j.pep.2022.106195

Livingstone, K. D., Lackney, V. K., Blauth, J. R., van Wijk, R., & Jahn, M. K. (1999). Genome mapping in Capsicum and the evolution of genome structure in the Solanaceae. Genetics, 152(3), 1183–1202. https://doi.org/10.1093/genetics/152.3.1183 DOI: https://doi.org/10.1093/genetics/152.3.1183

Massa, A. N., Beecher, B., & Morris, C. F. (2007). Polyphenol oxidase (PPO) in wheat and wild relatives: Molecular evidence for a multigene family. Theoretical and Applied Genetics, 114(7), 1239–1247. https://doi.org/10.1007/s00122-007-0514-4 DOI: https://doi.org/10.1007/s00122-007-0514-4

Mayer, A. M. (2006). Polyphenol oxidases in plants and fungi: Going places? A review. Phytochemistry, 67(21), 2318–2331. https://doi.org/10.1016/j.phytochem.2006.08.006 DOI: https://doi.org/10.1016/j.phytochem.2006.08.006

Mishra, B., & Singh Sangwan, N. (2019). Amelioration of cadmium stress in Withania somnifera by ROS management: Active participation of primary and secondary metabolism. Plant Growth Regulation, 87(3), 403–412. https://doi.org/10.1007/s10725-019-00480-8 DOI: https://doi.org/10.1007/s10725-019-00480-8

Molitor, C., Mauracher, S. G., Pargan, S., Mayer, R. L., Halbwirth, H., & Rompel, A. (2015). Latent and active aurone synthase from petals of C. grandiflora: A polyphenol oxidase with unique characteristics. Planta, 242(3), 519–537. https://doi.org/10.1007/s00425-015-2261-0 DOI: https://doi.org/10.1007/s00425-015-2261-0

Moon, K. M., Kwon, E. B., Lee, B., & Kim, C. Y. (2020). Recent trends in controlling the enzymatic browning of fruit and vegetable products. Molecules, 25(12), Article 2754. https://doi.org/10.3390/molecules25122754 DOI: https://doi.org/10.3390/molecules25122754

Nakayama, T., Yonekura-Sakakibara, K., Sato, T., Kikuchi, S., Fukui, Y., Fukuchi-Mizutani, M., Ueda, T., Nakao, M., Tanaka, Y., Kusumi, T., & Nishino, T. (2000). Aureusidin synthase: A polyphenol oxidase homolog responsible for flower coloration. Science, 290(5494), 1163–1166. https://doi.org/10.1126/science.290.5494.1163 DOI: https://doi.org/10.1126/science.290.5494.1163

Nasoohi, N., Khajeh, K., Mohammadian, M., & Ranjbar, B. (2013). Enhancement of catalysis and functional expression of a bacterial laccase by single amino acid replacement. International Journal of Biological Macromolecules, 60, 56–61. https://doi.org/10.1016/j.ijbiomac.2013.05.011 DOI: https://doi.org/10.1016/j.ijbiomac.2013.05.011

Rychlik, W., Spencer, W. J., & Rhoads, R. E. (1990). Optimization of the annealing temperature for DNA amplification in vitro. Nucleic Acids Research, 18(21), 6409–6412. https://doi.org/10.1093/nar/18.21.6409 DOI: https://doi.org/10.1093/nar/18.21.6409

Sarsenova, A., Demir, D., Çağlayan, K., Abiyev, S., Darbayeva, T., & Eken, C. (2023). Purification and properties of polyphenol oxidase of dried Volvariella bombycina. Biology, 12(1), Article 53. https://doi.org/10.3390/biology12010053 DOI: https://doi.org/10.3390/biology12010053

Shetty, S. M., Chandrashekar, A., & Venkatesh, Y. P. (2011). Eggplant polyphenol oxidase multigene family: Cloning, phylogeny, expression analyses and immunolocalization in response to wounding. Phytochemistry, 72, 2275–2287. https://doi.org/10.1016/j.phytochem.2011.08.028 DOI: https://doi.org/10.1016/j.phytochem.2011.08.028

Tanksley, S. D., Ganal, M. W., Prince, J. P., de Vicente, M. C., Bonierbale, M. W., Broun, P., Fulton, T. M., Giovannoni, J. J., Grandillo, S., & Martin, G. B. (1992). High density molecular linkage maps of the tomato and potato genomes. Genetics, 132, 1141–1160. https://doi.org/10.1093/genetics/132.4.1141 DOI: https://doi.org/10.1093/genetics/132.4.1141

Taranto, F., Pasqualone, A., Mangini, G., Tripodi, P., Miazzi, M. M., Pavan, S., & Montemurro, C. (2017). Polyphenol oxidases in crops: Biochemical, physiological and genetic aspects. International Journal of Molecular Sciences, 18(2), Article 377. https://doi.org/10.3390/ijms18020377 DOI: https://doi.org/10.3390/ijms18020377

Thipyapong, P., Hunt, M. D., & Steffens, J. C. (1995). Systemic wound induction of potato (Solanum tuberosum) polyphenol oxidase. Phytochemistry, 40(3), 673–676. https://doi.org/10.1016/0031-9422(95)00359-F DOI: https://doi.org/10.1016/0031-9422(95)00359-F

Thipyapong, P., Joel, M. D., & Steffens, J. C. (1997). Differential expression and turnover of the tomato polyphenol oxidase gene family during vegetative and reproductive development. Plant Physiology, 113(3), 707–718. https://doi.org/10.1104/pp.113.3.707 DOI: https://doi.org/10.1104/pp.113.3.707

Thipyapong, P., Stout, M. J., & Attajarusit, J. (2007). Functional analysis of polyphenol oxidases by antisense/sense technology. Molecules, 12(6), 1569–1595. https://doi.org/10.3390/12081569 DOI: https://doi.org/10.3390/12081569

Thygesen, P. W., Dry, I. B., & Robinson, S. P. (1995). Polyphenol oxidase in potato (a multigene family that exhibits differential expression patterns). Plant Physiology, 109(2), 525–531. https://doi.org/10.1104/pp.109.2.525 DOI: https://doi.org/10.1104/pp.109.2.525

Tran, L. T., Taylor, J. S., & Constabel, C. P. (2012). The polyphenol oxidase gene family in land plants: Lineage-specific duplication and expansion. BMC Genomics, 13, Article 395. https://doi.org/10.1186/1471-2164-13-395 DOI: https://doi.org/10.1186/1471-2164-13-395

Villard, C., Munakata, R., Kitajima, S., van Velzen, R., Schranz, M. E., Larbat, R., & Hehn, A. (2021). A new P450 involved in the furanocoumarin pathway underlies a recent case of convergent evolution. New Phytologist, 231(5), 1923–1939. https://doi.org/10.1111/nph.17458 DOI: https://doi.org/10.1111/nph.17458

Wang, J., & Constabel, C. P. (2004). Three polyphenol oxidases from hybrid poplar are differentially expressed during development and after wounding and elicitor treatment. Physiologia Plantarum, 122(3), 344–353. https://doi.org/10.1111/j.1399-3054.2004.00403.x DOI: https://doi.org/10.1111/j.1399-3054.2004.00403.x

Wei, X. M., Shu, J., Fahad, S., Tao, K. L., Zhang, J. W., Chen, G. L., Liang, Y. C., Wang, M. Q., Chen, S. Y., & Liao, J. (2023). Polyphenol oxidases regulate pollen development through modulating flavonoids homeostasis in tobacco. Plant Physiology and Biochemistry, 198, Article 107702. https://doi.org/10.1016/j.plaphy.2023.107702 DOI: https://doi.org/10.1016/j.plaphy.2023.107702

Wold-McGimsey, F., Krosch, C., Alarcón-Reverte, R., Ravet, K., Katz, A., Stromberger, J., Mason, R. E., & Pearce, S. (2023). Multitarget genome editing reduces polyphenol oxidase activity in wheat (Triticum aestivum L.) grains. Frontiers in Plant Science, 14, Article 1247680. https://doi.org/10.3389/fpls.2023.1247680 DOI: https://doi.org/10.3389/fpls.2023.1247680

Yoruk, R., & Marshall, M. R. (2003). Physicochemical properties and function of plant polyphenol oxidase: A review. Journal of Food Biochemistry, 27, 361–422. https://doi.org/10.1111/j.1745-4514.2003.tb00289.x DOI: https://doi.org/10.1111/j.1745-4514.2003.tb00289.x

Zhang, J., & Sun, X. (2021). Recent advances in polyphenol oxidase-mediated plant stress responses. Phytochemistry, 181, Article 112588. https://doi.org/10.1016/j.phytochem.2020.112588 DOI: https://doi.org/10.1016/j.phytochem.2020.112588

Zhang, S. (2023). Recent advances of polyphenol oxidases in plants. Molecules, 28(5), Article 2158. https://doi.org/10.3390/molecules28052158 DOI: https://doi.org/10.3390/molecules28052158

How to Cite

APA

Pulido Jiménez, M. A., Gómez Daza, S. & Núñez, V. (2025). Structural and phylogenetic characterization of a polyphenol oxidase gene in lulo (Solanum quitoense Lam.). Agronomía Colombiana, 43(1), e118599. https://doi.org/10.15446/agron.colomb.v43n1.118599

ACM

[1]
Pulido Jiménez, M.A., Gómez Daza, S. and Núñez, V. 2025. Structural and phylogenetic characterization of a polyphenol oxidase gene in lulo (Solanum quitoense Lam.). Agronomía Colombiana. 43, 1 (Jan. 2025), e118599. DOI:https://doi.org/10.15446/agron.colomb.v43n1.118599.

ACS

(1)
Pulido Jiménez, M. A.; Gómez Daza, S.; Núñez, V. Structural and phylogenetic characterization of a polyphenol oxidase gene in lulo (Solanum quitoense Lam.). Agron. Colomb. 2025, 43, e118599.

ABNT

PULIDO JIMÉNEZ, M. A.; GÓMEZ DAZA, S.; NÚÑEZ, V. Structural and phylogenetic characterization of a polyphenol oxidase gene in lulo (Solanum quitoense Lam.). Agronomía Colombiana, [S. l.], v. 43, n. 1, p. e118599, 2025. DOI: 10.15446/agron.colomb.v43n1.118599. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/118599. Acesso em: 17 nov. 2025.

Chicago

Pulido Jiménez, Mauricio Antonio, Silvia Gómez Daza, and Víctor Núñez. 2025. “Structural and phylogenetic characterization of a polyphenol oxidase gene in lulo (Solanum quitoense Lam.)”. Agronomía Colombiana 43 (1):e118599. https://doi.org/10.15446/agron.colomb.v43n1.118599.

Harvard

Pulido Jiménez, M. A., Gómez Daza, S. and Núñez, V. (2025) “Structural and phylogenetic characterization of a polyphenol oxidase gene in lulo (Solanum quitoense Lam.)”, Agronomía Colombiana, 43(1), p. e118599. doi: 10.15446/agron.colomb.v43n1.118599.

IEEE

[1]
M. A. Pulido Jiménez, S. Gómez Daza, and V. Núñez, “Structural and phylogenetic characterization of a polyphenol oxidase gene in lulo (Solanum quitoense Lam.)”, Agron. Colomb., vol. 43, no. 1, p. e118599, Jan. 2025.

MLA

Pulido Jiménez, M. A., S. Gómez Daza, and V. Núñez. “Structural and phylogenetic characterization of a polyphenol oxidase gene in lulo (Solanum quitoense Lam.)”. Agronomía Colombiana, vol. 43, no. 1, Jan. 2025, p. e118599, doi:10.15446/agron.colomb.v43n1.118599.

Turabian

Pulido Jiménez, Mauricio Antonio, Silvia Gómez Daza, and Víctor Núñez. “Structural and phylogenetic characterization of a polyphenol oxidase gene in lulo (Solanum quitoense Lam.)”. Agronomía Colombiana 43, no. 1 (January 1, 2025): e118599. Accessed November 17, 2025. https://revistas.unal.edu.co/index.php/agrocol/article/view/118599.

Vancouver

1.
Pulido Jiménez MA, Gómez Daza S, Núñez V. Structural and phylogenetic characterization of a polyphenol oxidase gene in lulo (Solanum quitoense Lam.). Agron. Colomb. [Internet]. 2025 Jan. 1 [cited 2025 Nov. 17];43(1):e118599. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/118599

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

149

Downloads

Download data is not yet available.