Structural and phylogenetic characterization of a polyphenol oxidase gene in lulo (Solanum quitoense Lam.)
Caracterización estructural y filogenética de un gen de polifenol oxidasa en lulo (Solanum quitoense Lam.)
DOI:
https://doi.org/10.15446/agron.colomb.v43n1.118599Keywords:
Solanaceae, catechol oxidase, browning, phenolic compounds, protein domain, naranjilla (en)Solanaceae, catecol oxidasa, pardeamiento, compuestos fenólicos, dominio proteico, naranjilla (es)
Downloads
The lulo or naranjilla (Solanum quitoense Lam.) is one of the most important Colombian native fruits. The sale and industrial processing of fresh fruit is severely limited by enzymatic browning. Until now, there was no knowledge about polyphenol oxidases (PPO) in lulo. The aim of this study was to understand some structural and phylogenetic aspects of the first lulo ppo gene that has been characterized. Using two pairs of degenerate primers, two fragments of lulo genomic DNA were isolated by PCR, sequenced and assembled into a partial sequence of 1417 bp (SquPPO1) lacking introns. Hybridization of a 920-bp probe generated from a potato ppo gene with a 12 kb region of BamHI-PstI, BamHI-XbaI and XbaI-PstI digested lulo DNA confirmed the presence of at least one ppo gene in this species. While two conserved sites (Tyr-1 and Tyr-2) have been identified in the copper-binding domains of other Solanaceae PPOs, no Tyr-2 site was found in lulo PPO because of a conservative substitution DxE in this region. Phylogenetic analysis placed the SquPPO1 gene in the same cluster as the SmePPO4, SmePPO5, and SmePPO6 eggplant (Solanum melongena L.) genes. Our results show that SquPPO1 is phylogenetically closer to eggplant ppo genes than to those of potato, tobacco, and tomato and that it exhibits a variation that modifies the distribution of protein-conserved sites. These findings offer new insights into the molecular basis of enzymatic browning in lulo and may inform strategies to reduce postharvest losses.
El lulo o naranjilla (Solanum quitoense Lam.) es una de las frutas nativas colombianas más importantes. La venta y el procesamiento industrial de la fruta fresca son severamente limitados por el pardeamiento enzimático. Hasta ahora, no había conocimiento sobre las polifenol-oxidasas (PPO) en lulo. El objetivo de este estudio fue conocer algunos aspectos estructurales y filogenéticos del primer gen ppo de lulo caracterizado. Utilizando dos pares de iniciadores degenerados, dos fragmentos de ADN genómico de lulo fueron aislados por PCR, secuenciados y ensamblados en una secuencia parcial de 1417 pb (SquPPO1) que carece de intrones. La hibridación de una sonda de 920 pb generada a partir de un gen ppo de papa con una región de 12 kb de ADN de lulo digerido con BamHI-PstI, BamHI-XbaI y XbaI-PstI confirmó la presencia de al menos un gen ppo en esta especie. Mientras que se han identificado dos sitios conservados (Tyr-1 y Tyr-2) en los dominios de unión a cobre de otras PPOs de solanáceas, no se encontró ningún sitio Tyr-2 en la PPO de lulo debido a una sustitución conservativa DxE en esta región. El análisis filogenético situó al gen SquPPO1 en el mismo grupo que los genes SmePPO4, SmePPO5 y SmePPO6 de la berenjena (Solanum melongena L.). Nuestros resultados muestran que SquPPO1 es filogenéticamente más cercano a los genes ppo de berenjena que a los de papa, tabaco y tomate, y que presenta una variación que modifica la distribución de los sitios conservados de la proteína. Estos hallazgos ofrecen nuevos conocimientos sobre las bases moleculares del pardeamiento enzimático en lulo y pueden servir de base a estrategias para reducir las pérdidas poscosecha.
References
Araji, S., Grammer, T. A., Gertzen, R., Anderson, S. D., Mikulic-Petkovsek, M., Veberic, R., Phu, M. L., Solar, A., Leslie, C. A., Dandekar, A. M., & Escobar, M. A. (2014). Novel roles for the polyphenol oxidase enzyme in secondary metabolism and the regulation of cell death in walnut. Plant Physiology, 164(3), 1191–1203. https://doi.org/10.1104/pp.113.228593 DOI: https://doi.org/10.1104/pp.113.228593
Bonierbale, M. W., Plaisted, R. L., & Tanksley, S. D. (1988). RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics, 120(4), 1095–1103. https://doi.org/10.1093/genetics/120.4.1095 DOI: https://doi.org/10.1093/genetics/120.4.1095
Carels, N., Hatey, P., Jabbari, K., & Bernardi, G. (1998). Compositional properties of homologous coding sequences from plants. Journal of Molecular Evolution, 46, 45–53. https://doi.org/10.1007/PL00006282 DOI: https://doi.org/10.1007/PL00006282
Cary, J. W., Lax, A. R., & Flurkey, W. H. (1992). Cloning and characterization of cDNAs coding for Vicia faba polyphenol oxidase. Plant Molecular Biology, 20, 245–253. https://doi.org/10.1007/BF00014492 DOI: https://doi.org/10.1007/BF00014492
Chang, C., Zhang, H., Xu, J., You, M., Li, B., & Liu, G. (2007). Variation in two PPO genes associated with polyphenol oxidase activity in seeds of common wheat. Euphytica, 154, 181–193. https://doi.org/10.1007/s10681-006-9285-2 DOI: https://doi.org/10.1007/s10681-006-9285-2
Chi, M., Bhagwat, B., Lane, W. D., Tang, G., Su, Y., Sun, R., Oomah, B. D., Wiersma, P. A., & Xiang, Y. (2014). Reduced polyphenol oxidase gene expression and enzymatic browning in potato (Solanum tuberosum L.) with artificial microRNAs. BMC Plant Biology, 14, Article 62. https://doi.org/10.1186/1471-2229-14-62 DOI: https://doi.org/10.1186/1471-2229-14-62
Constabel, C. P., & Barbehenn, R. V. (2008). Defensive roles of polyphenol oxidase in plants. In A. Schaller (Ed.), Induced plant resistance to herbivory (pp. 253–269). Springer. https://doi.org/10.1007/978-1-4020-8182-8_12 DOI: https://doi.org/10.1007/978-1-4020-8182-8_12
Constabel, C. P., & Ryan, C. A. (1998). A survey of wound- and methyl jasmonate-induced leaf polyphenol oxidase in crop plants. Phytochemistry, 47(4), 507–511. https://doi.org/10.1016/S0031-9422(97)00539-6 DOI: https://doi.org/10.1016/S0031-9422(97)00539-6
Constabel, C. P., Yip, L., Patton, J. J., & Christopher, M. E. (2000). Polyphenol oxidase from hybrid poplar. Cloning and expression in response to wounding and herbivory. Plant Physiology, 124(1), 285–296. https://doi.org/10.1104/pp.124.1.285 DOI: https://doi.org/10.1104/pp.124.1.285
Deanna, R., Acosta, M. C., Scaldaferro, M., & Chiarini, F. (2022). Chromosome evolution in the family Solanaceae. Frontiers in Plant Science, 12, Article 787590. https://doi.org/10.3389/fpls.2021.787590 DOI: https://doi.org/10.3389/fpls.2021.787590
Doganlar, S., Frary, A., Daunay, M. C., Lester, R. N., & Tanksley, S. D. (2002). A comparative genetic linkage map of eggplant (Solanum melongena) and its implications for genome evolution in the Solanaceae. Genetics, 161(4), 1697–1711. https://doi.org/10.1093/genetics/161.4.1697 DOI: https://doi.org/10.1093/genetics/161.4.1697
Doyle, M., & Doyle, A. (1990). Isolation of DNA from small amounts of plant tissues. BRL Focus, 12, 13–15.
Edgar, R. C. (2021). Muscle5. https://github.com/rcedgar/muscle/releases/tag/v5.3
Festa, R. A., & Thiele, D. J. (2011). Copper: An essential metal in biology. Current Biology, 21(21), R877–R883. https://doi.org/10.1016/j.cub.2011.09.040 DOI: https://doi.org/10.1016/j.cub.2011.09.040
García-Borrón, J. C., & Solano, F. (2002). Molecular anatomy of tyrosinase and its related proteins: Beyond the histidine bound metal catalytic center. Pigment Cell Research, 15(3), 162–173. https://doi.org/10.1034/j.1600-0749.2002.02012.x DOI: https://doi.org/10.1034/j.1600-0749.2002.02012.x
Gerdemann, C., Eicken, C., & Krebs, B. (2002). The crystal structure of catechol oxidase: New insight into the function of type-3 copper proteins. Accounts of Chemical Research, 35(3), 183–191. https://doi.org/10.1021/ar990019a DOI: https://doi.org/10.1021/ar990019a
Goldman, M. H. S., Seurinck, J., Marins, M., Goldman, G. H., & Mariani, C. (1998). A tobacco flower-specific gene encodes a polyphenol oxidase. Plant Molecular Biology, 36, 479–485. https://doi.org/10.1023/A:1005914918284 DOI: https://doi.org/10.1023/A:1005914918284
Halaouli, S., Asther, M., Sigoillot, J. C., Hamdi, M., & Lomascolo, A. (2006). Fungal tyrosinases: New prospects in molecular characteristics, bioengineering and biotechnological applications. Journal of Applied Microbiology, 100(2), 219–232. https://doi.org/10.1111/j.1365-2672.2006.02866.x DOI: https://doi.org/10.1111/j.1365-2672.2006.02866.x
Hasan, M. U., Malik, A. U., Ali, S., Imtiaz, A., Munir, A., Amjad, W., & Anwar, R. (2019). Modern drying techniques in fruits and vegetables to overcome postharvest losses: A review. Journal of Food Processing and Preservation, 43, Article e14280. https://doi.org/10.1111/jfpp.14280 DOI: https://doi.org/10.1111/jfpp.14280
Heiser, C. B. (1985). Ethnobotany of the naranjilla (Solanum quitoense) and its relatives. Economic Botany, 39(1), 4–11. https://doi.org/10.1007/BF02861168 DOI: https://doi.org/10.1007/BF02861168
Hong, Q., Chen, Y. L., Lin, D., Yang, R. Q., Cao, K. Y., Zhang, L. J., Liu, Y. M., Sun, L. C., & Cao, M. J. (2024). Expression of polyphenol oxidase of Litopenaeus vannamei and its characterization. Food Chemistry, 432, Article 137258. https://doi.org/10.1016/j.foodchem.2023.137258 DOI: https://doi.org/10.1016/j.foodchem.2023.137258
Jackman, M. P., Huber, M., Hajnal, A., & Lerch, K. (1992). Stabilization of the oxy form of tyrosinase by a single conservative amino acid substitution. Biochemical Journal, 282(3), 915–918. https://doi.org/10.1042/bj2820915 DOI: https://doi.org/10.1042/bj2820915
Jukanti, A. K., Bruckner, P. L., & Fischer, A. M. (2004). Evaluation of wheat polyphenol oxidase genes. Cereal Chemistry, 81(4), 481–485. https://doi.org/10.1094/CCHEM.2004.81.4.481 DOI: https://doi.org/10.1094/CCHEM.2004.81.4.481
Klabunde, T., Eicken, C., Sacchettini, J. C., & Krebs, B. (1998). Crystal structure of a plant catechol oxidase containing a dicopper center. Nature Structural & Molecular Biology, 5(12), 1084–1090. https://doi.org/10.1038/4193 DOI: https://doi.org/10.1038/4193
Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096 DOI: https://doi.org/10.1093/molbev/msy096
Larter, M., Dunbar-Wallis, A., Berardi, A. E., & Smith, S. D. (2018). Convergent evolution at the pathway level: Predictable regulatory changes during flower color transitions. Molecular Biology and Evolution, 35(9), 2159–2169. https://doi.org/10.1093/molbev/msy117 DOI: https://doi.org/10.1093/molbev/msy117
Lerch, K. (1983). Neurospora tyrosinase: Structural, spectroscopic and catalytic properties. Molecular and Cellular Biochemistry, 52(2), 125–138. https://doi.org/10.1007/BF00224921 DOI: https://doi.org/10.1007/BF00224921
Li, F. (2020). Purification, kinetic parameters, and isoforms of polyphenol oxidase from “Xushu 22” sweet potato skin. Journal of Food Biochemistry, 44(2), Article e13452. https://doi.org/10.1111/jfbc.13452 DOI: https://doi.org/10.1111/jfbc.13452
Liu, H., Pan, M., Lu, Y., Wang, M., Huang, S., Li, J., Luo, K., Luo, L., Yao, M., Hua, D., & Wang, H. (2023). Purification and comparison of soluble and membrane-bound polyphenol oxidase from potato (Solanum tuberosum) tubers. Protein Expression and Purification, 202, Article 106195. https://doi.org/10.1016/j.pep.2022.106195 DOI: https://doi.org/10.1016/j.pep.2022.106195
Livingstone, K. D., Lackney, V. K., Blauth, J. R., van Wijk, R., & Jahn, M. K. (1999). Genome mapping in Capsicum and the evolution of genome structure in the Solanaceae. Genetics, 152(3), 1183–1202. https://doi.org/10.1093/genetics/152.3.1183 DOI: https://doi.org/10.1093/genetics/152.3.1183
Massa, A. N., Beecher, B., & Morris, C. F. (2007). Polyphenol oxidase (PPO) in wheat and wild relatives: Molecular evidence for a multigene family. Theoretical and Applied Genetics, 114(7), 1239–1247. https://doi.org/10.1007/s00122-007-0514-4 DOI: https://doi.org/10.1007/s00122-007-0514-4
Mayer, A. M. (2006). Polyphenol oxidases in plants and fungi: Going places? A review. Phytochemistry, 67(21), 2318–2331. https://doi.org/10.1016/j.phytochem.2006.08.006 DOI: https://doi.org/10.1016/j.phytochem.2006.08.006
Mishra, B., & Singh Sangwan, N. (2019). Amelioration of cadmium stress in Withania somnifera by ROS management: Active participation of primary and secondary metabolism. Plant Growth Regulation, 87(3), 403–412. https://doi.org/10.1007/s10725-019-00480-8 DOI: https://doi.org/10.1007/s10725-019-00480-8
Molitor, C., Mauracher, S. G., Pargan, S., Mayer, R. L., Halbwirth, H., & Rompel, A. (2015). Latent and active aurone synthase from petals of C. grandiflora: A polyphenol oxidase with unique characteristics. Planta, 242(3), 519–537. https://doi.org/10.1007/s00425-015-2261-0 DOI: https://doi.org/10.1007/s00425-015-2261-0
Moon, K. M., Kwon, E. B., Lee, B., & Kim, C. Y. (2020). Recent trends in controlling the enzymatic browning of fruit and vegetable products. Molecules, 25(12), Article 2754. https://doi.org/10.3390/molecules25122754 DOI: https://doi.org/10.3390/molecules25122754
Nakayama, T., Yonekura-Sakakibara, K., Sato, T., Kikuchi, S., Fukui, Y., Fukuchi-Mizutani, M., Ueda, T., Nakao, M., Tanaka, Y., Kusumi, T., & Nishino, T. (2000). Aureusidin synthase: A polyphenol oxidase homolog responsible for flower coloration. Science, 290(5494), 1163–1166. https://doi.org/10.1126/science.290.5494.1163 DOI: https://doi.org/10.1126/science.290.5494.1163
Nasoohi, N., Khajeh, K., Mohammadian, M., & Ranjbar, B. (2013). Enhancement of catalysis and functional expression of a bacterial laccase by single amino acid replacement. International Journal of Biological Macromolecules, 60, 56–61. https://doi.org/10.1016/j.ijbiomac.2013.05.011 DOI: https://doi.org/10.1016/j.ijbiomac.2013.05.011
Rychlik, W., Spencer, W. J., & Rhoads, R. E. (1990). Optimization of the annealing temperature for DNA amplification in vitro. Nucleic Acids Research, 18(21), 6409–6412. https://doi.org/10.1093/nar/18.21.6409 DOI: https://doi.org/10.1093/nar/18.21.6409
Sarsenova, A., Demir, D., Çağlayan, K., Abiyev, S., Darbayeva, T., & Eken, C. (2023). Purification and properties of polyphenol oxidase of dried Volvariella bombycina. Biology, 12(1), Article 53. https://doi.org/10.3390/biology12010053 DOI: https://doi.org/10.3390/biology12010053
Shetty, S. M., Chandrashekar, A., & Venkatesh, Y. P. (2011). Eggplant polyphenol oxidase multigene family: Cloning, phylogeny, expression analyses and immunolocalization in response to wounding. Phytochemistry, 72, 2275–2287. https://doi.org/10.1016/j.phytochem.2011.08.028 DOI: https://doi.org/10.1016/j.phytochem.2011.08.028
Tanksley, S. D., Ganal, M. W., Prince, J. P., de Vicente, M. C., Bonierbale, M. W., Broun, P., Fulton, T. M., Giovannoni, J. J., Grandillo, S., & Martin, G. B. (1992). High density molecular linkage maps of the tomato and potato genomes. Genetics, 132, 1141–1160. https://doi.org/10.1093/genetics/132.4.1141 DOI: https://doi.org/10.1093/genetics/132.4.1141
Taranto, F., Pasqualone, A., Mangini, G., Tripodi, P., Miazzi, M. M., Pavan, S., & Montemurro, C. (2017). Polyphenol oxidases in crops: Biochemical, physiological and genetic aspects. International Journal of Molecular Sciences, 18(2), Article 377. https://doi.org/10.3390/ijms18020377 DOI: https://doi.org/10.3390/ijms18020377
Thipyapong, P., Hunt, M. D., & Steffens, J. C. (1995). Systemic wound induction of potato (Solanum tuberosum) polyphenol oxidase. Phytochemistry, 40(3), 673–676. https://doi.org/10.1016/0031-9422(95)00359-F DOI: https://doi.org/10.1016/0031-9422(95)00359-F
Thipyapong, P., Joel, M. D., & Steffens, J. C. (1997). Differential expression and turnover of the tomato polyphenol oxidase gene family during vegetative and reproductive development. Plant Physiology, 113(3), 707–718. https://doi.org/10.1104/pp.113.3.707 DOI: https://doi.org/10.1104/pp.113.3.707
Thipyapong, P., Stout, M. J., & Attajarusit, J. (2007). Functional analysis of polyphenol oxidases by antisense/sense technology. Molecules, 12(6), 1569–1595. https://doi.org/10.3390/12081569 DOI: https://doi.org/10.3390/12081569
Thygesen, P. W., Dry, I. B., & Robinson, S. P. (1995). Polyphenol oxidase in potato (a multigene family that exhibits differential expression patterns). Plant Physiology, 109(2), 525–531. https://doi.org/10.1104/pp.109.2.525 DOI: https://doi.org/10.1104/pp.109.2.525
Tran, L. T., Taylor, J. S., & Constabel, C. P. (2012). The polyphenol oxidase gene family in land plants: Lineage-specific duplication and expansion. BMC Genomics, 13, Article 395. https://doi.org/10.1186/1471-2164-13-395 DOI: https://doi.org/10.1186/1471-2164-13-395
Villard, C., Munakata, R., Kitajima, S., van Velzen, R., Schranz, M. E., Larbat, R., & Hehn, A. (2021). A new P450 involved in the furanocoumarin pathway underlies a recent case of convergent evolution. New Phytologist, 231(5), 1923–1939. https://doi.org/10.1111/nph.17458 DOI: https://doi.org/10.1111/nph.17458
Wang, J., & Constabel, C. P. (2004). Three polyphenol oxidases from hybrid poplar are differentially expressed during development and after wounding and elicitor treatment. Physiologia Plantarum, 122(3), 344–353. https://doi.org/10.1111/j.1399-3054.2004.00403.x DOI: https://doi.org/10.1111/j.1399-3054.2004.00403.x
Wei, X. M., Shu, J., Fahad, S., Tao, K. L., Zhang, J. W., Chen, G. L., Liang, Y. C., Wang, M. Q., Chen, S. Y., & Liao, J. (2023). Polyphenol oxidases regulate pollen development through modulating flavonoids homeostasis in tobacco. Plant Physiology and Biochemistry, 198, Article 107702. https://doi.org/10.1016/j.plaphy.2023.107702 DOI: https://doi.org/10.1016/j.plaphy.2023.107702
Wold-McGimsey, F., Krosch, C., Alarcón-Reverte, R., Ravet, K., Katz, A., Stromberger, J., Mason, R. E., & Pearce, S. (2023). Multitarget genome editing reduces polyphenol oxidase activity in wheat (Triticum aestivum L.) grains. Frontiers in Plant Science, 14, Article 1247680. https://doi.org/10.3389/fpls.2023.1247680 DOI: https://doi.org/10.3389/fpls.2023.1247680
Yoruk, R., & Marshall, M. R. (2003). Physicochemical properties and function of plant polyphenol oxidase: A review. Journal of Food Biochemistry, 27, 361–422. https://doi.org/10.1111/j.1745-4514.2003.tb00289.x DOI: https://doi.org/10.1111/j.1745-4514.2003.tb00289.x
Zhang, J., & Sun, X. (2021). Recent advances in polyphenol oxidase-mediated plant stress responses. Phytochemistry, 181, Article 112588. https://doi.org/10.1016/j.phytochem.2020.112588 DOI: https://doi.org/10.1016/j.phytochem.2020.112588
Zhang, S. (2023). Recent advances of polyphenol oxidases in plants. Molecules, 28(5), Article 2158. https://doi.org/10.3390/molecules28052158 DOI: https://doi.org/10.3390/molecules28052158
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2025 Agronomía Colombiana

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)

Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.







