Effect of water deficit on photosynthesis and yield in pea plants (Pisum sativum L.): A systematic review
Efecto del déficit hídrico en la fotosíntesis y el rendimiento de arveja (Pisum sativum L.): una revisión sistemática
DOI:
https://doi.org/10.15446/agron.colomb.v43n2.118788Keywords:
drought, water stress, legumes, water potential, water use efficiency (en)sequía, estrés hídrico, leguminosas, potencial hídrico, uso eficiente del agua (es)
Downloads
Water deficit caused by drought is common and extreme because of climate change. Pea (Pisum sativum L.) crops undergo water deficits depending on the sowing season and location. Some mechanisms of these plants in response to drought include stomatal closure and a reduction in photosynthetic capacity. However, as a consequence, such mechanisms disrupt reproductive processes such as flowering and pod filling, which diminishes the yield of plants. Although these mechanisms have been studied, there is no systematic review of the effect of water deficit on photosynthesis and yield in P. sativum. This review aimed to combine, summarize, and interpret the current knowledge on the impact of water deficiency on photosynthesis and yield in P. sativum. We carried out a systematic review using the databases Scopus, Web of Science, and ScienceDirect. Water deficit diminishes CO2 assimilation by as much as 25%. This reduction is apparently due to stomatal closure (reduced by 28%) and, to a lesser degree, to variables such as the real efficiency of photosystem II (reduced by 15%). Water deficit reduces pea yield by 30% compared to control treatments (watered plants). The yield components most affected are the number of pods per plant, grains per plant, and pods per square meter. Few studies have assessed the relationship among yield, photosynthesis, and water status in P. sativum under water deficit conditions. Furthermore, significant knowledge gaps remain with respect to the combined effects of water deficit and interacting environmental factors (such as light intensity, temperature, and vapour pressure deficit) on the responses of field pea photosynthesis and yield. Additionally, there is a need to standardise methodologies for assessing water deficit status in both plant tissue and soil.
El déficit hídrico causado por sequías es común y extremo debido al cambio climático. Los cultivos de arveja (Pisum sativum L.) sufren déficit hídrico, dependiendo de la época de siembra y la ubicación. Algunos mecanismos de estas plantas en respuesta a la sequía son el cierre de estomas y la reducción de la capacidad fotosintética. Sin embargo, como consecuencia, se alteran procesos reproductivos como la floración y el llenado de vainas, lo que disminuye el rendimiento de las plantas. Aunque estos mecanismos han sido estudiados, no existe una revisión sistemática del efecto del déficit hídrico en la fotosíntesis y el rendimiento en P. sativum. Esta revisión tuvo como objetivo combinar, resumir e interpretar el conocimiento actual sobre los efectos del déficit hídrico en la fotosíntesis y el rendimiento en P. sativum. Se realizó una revisión sistemática utilizando las bases de datos Scopus, Web of Science y ScienceDirect. El déficit hídrico disminuye la asimilación de CO2 en 25%. Esta reducción se debe aparentemente al cierre estomático (reducido en un 28%) y, en menor medida, a variables como la eficiencia real del fotosistema II (reducida en un 15%). El déficit hídrico reduce el rendimiento de arveja en un 30% en comparación con los tratamientos de control (plantas regadas). Los componentes del rendimiento más afectados son número de vainas por planta, granos por planta y vainas por metro cuadrado. Pocos estudios han evaluado la relación entre el rendimiento, la fotosíntesis y el estado hídrico en P. sativum en condiciones de déficit hídrico. Adicionalmente, prevalecen varios vacíos del conocimiento acerca de los efectos combinados del déficit hídrico con otros factores ambientales (como intensidad lumínica, temperatura y déficit de presión de vapor) en la respuesta del rendimiento y la fotosíntesis de la arveja. También existe la necesidad de estandarizar metodologías para evaluar el déficit hídrico tanto en plantas como en el suelo.
References
Abd El–Mageed, T. A., El-Sherif, A. M. A., Ali, M. M., & Abd El-Wahed, M. H. (2017). Combined effect of deficit irrigation and potassium fertilizer on physiological response, plant water status, and yield of soybean in calcareous soil. Archives of Agronomy and Soil Science, 63(6), 827–840. https://doi.org/10.1080/03650340.2016.1240363
Al-Quraan, N. A., Al-Ajlouni, Z. I., & Qawasma, N. F. (2021). Physiological and biochemical characterization of the GABA shunt pathway in pea (Pisum sativum L.) seedlings under drought stress. Horticulturae, 7(6), Article 125. https://doi.org/10.3390/horticulturae7060125
Analin, B., Bakka, K., & Challabathula, D. (2023). Exacerbation of drought-induced physiological and biochemical changes in leaves of Pisum sativum upon restriction of COX and AOX pathways of mitochondrial oxidative electron transport. Journal of Biosciences, 49(1), Article 5. https://doi.org/10.1007/s12038-023-00380-0
Beebe, S. E., Rao, I. M., Blair, M. W., & Acosta-Gallegos, J. A. (2013). Phenotyping common beans for adaptation to drought. Frontiers in Physiology, 4, Article 35. https://doi.org/10.3389/fphys.2013.00035
Bueckert, R. A., Wagenhoffer, S., Hnatowich, G., & Warkentin, T. D. (2015). Effect of heat and precipitation on pea yield and reproductive performance in the field. Canadian Journal of Plant Science, 95(4), 629–639. https://doi.org/10.4141/cjps-2014-342
Carter, K. E., & Stoker, R. (1988). Responses of non-irrigated and irrigated garden peas to phosphorus and potassium on Lismore stony silt loam. New Zealand Journal of Experimental Agriculture, 16(1), 11–15. https://doi.org/10.1080/03015521.1988.10425608
Chaves, M. M., Flexas, J., & Pinheiro, C. (2009). Photosynthesis under drought and salt stress: Regulation mechanisms from whole plant to cell. Annals of Botany, 103(4), 551–560. https://doi.org/10.1093/aob/mcn125
Couchoud, M., Salon, C., Girodet, S., Jeudy, C., Vernoud, V., & Prudent, M. (2020). Pea efficiency of post-drought recovery relies on the strategy to fine-tune nitrogen nutrition. Frontiers in Plant Science, 11, Article 204. https://doi.org/10.3389/fpls.2020.00204
Dalal, V. K., & Tripathy, B. C. (2012). Modulation of chlorophyll biosynthesis by water stress in rice seedlings during chloroplast biogenesis. Plant, Cell and Environment, 35(9), 1685–1703. https://doi.org/10.1111/j.1365-3040.2012.02520.x
Embiale, A., Hussein, M., Husen, A., Sahile, S., & Mohammed, K. (2016). Differential sensitivity of Pisum sativum L. cultivars to water-deficit stress: Changes in growth, water status, chlorophyll fluorescence, and gas exchange attributes. Journal of Agronomy, 15(2), 45–57. https://doi.org/10.3923/ja.2016.45.57
Fang, X., Turner, N. C., Yan, G., Li, F., & Siddique, K. H. M. (2010). Flower numbers, pod production, pollen viability, and pistil function are reduced, and flower and pod abortion increased in chickpea (Cicer arietinum L.) under terminal drought. Journal of Experimental Botany, 61(2), 335–345. https://doi.org/10.1093/jxb/erp307
Farooq, M., Gogoi, N., Barthakur, S., Baroowa, B., Bharadwaj, N., Alghamdi, S. S., & Siddique, K. H. M. (2017). Drought stress in grain legumes during reproduction and grain filling. Journal of Agronomy and Crop Science, 203(2), 81–102. https://doi.org/10.1111/jac.12169
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress: Effects, mechanisms and management. Agronomy for Sustainable Development, 29(1), 185–212. https://doi.org/10.1051/agro:2008021
Flexas, J., Gallé, A., Galmés, J., Ribas-Carbo, M., & Medrano, H. (2012). The response of photosynthesis to soil water stress. In R. Aroca (Ed.), Plant responses to drought stress: From morphological to molecular features (pp. 129–144). Springer Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32653-0_5
Fougereux, J.-A., Doré, T., Ladonne, F., & Fleury, A. (1997). Water stress during reproductive stages affects seed quality and yield of pea (Pisum sativum L.). Crop Science, 37(4), 1247–1252. https://doi.org/10.2135/cropsci1997.0011183X003700040036x
Foyer, C. H., Lam, H. M., Nguyen, H. T., Siddique, K. H. M., Varshney, R. K., Colmer, T. D., Cowling, W., Bramley, H., Mori, T. A., Hodgson, J. M., Cooper, J. W., Miller, A. J., Kunert, K., Vorster, J., Cullis, C., Ozga, J. A., Wahlqvist, M. L., Liang, Y., Shou, H., ..., & Considine, M. J. (2016). Neglecting legumes has compromised human health and sustainable food production. Nature Plants, 2(8), Article 16112. https://doi.org/10.1038/NPLANTS.2016.112
Frechilla, S., González, E. M., Royuela, M., Minchin, F. R., Aparicio-Tejo, P. M., & Arrese-Igor, C. (2000). Source of nitrogen nutrition (nitrogen fixation or nitrate assimilation) is a major factor involved in pea response to moderate water stress. Journal of Plant Physiology, 157(6), 609–617. https://doi.org/10.1016/S0176-1617(00)80003-6
Furbank, R. T., Jimenez-Berni, J. A., George-Jaeggli, B., Potgieter, A. B., & Deery, D. M. (2019). Field crop phenomics: enabling breeding for radiation use efficiency and biomass in cereal crops. New Phytologist, 223(4), 1714–1727. https://doi.org/10.1111/nph.15817
Ge, J., Sun, C. X., Corke, H., Gul, K., Gan, R. Y., & Fang, Y. (2020). The health benefits, functional properties, modifications, and applications of pea (Pisum sativum L.) protein: Current status, challenges, and perspectives. Comprehensive Reviews in Food Science and Food Safety, 19(4), 1835–1876. https://doi.org/10.1111/1541-4337.12573
Henriet, C., Aimé, D., Térézol, M., Kilandamoko, A., Rossin, N., Combes-Soia, L., Labas, V., Serre, R. F., Prudent, M., Kreplak, J., Vernoud, V., & Gallardo, K. (2019). Water stress combined with sulfur deficiency in pea affects yield components but mitigates the effect of deficiency on seed globulin composition. Journal of Experimental Botany, 70(16), 4287–4303. https://doi.org/10.1093/jxb/erz114
Honda, S., Ohkubo, S., San, N. S., Nakkasame, A., Tomisawa, K., Katsura, K., Ookawa, T., Nagano, A. J., & Adachi, S. (2021). Maintaining higher leaf photosynthesis after the heading stage could promote biomass accumulation in rice. Scientific Reports, 11(1), Article 7579. https://doi.org/10.1038/s41598-021-86983-9
Hsiao, T. C., & Xu, L. K. (2000). Sensitivity of growth of roots versus leaves to water stress: biophysical analysis and relation to water transport. Journal of Experimental Botany, 51(350), 1595–1616. https://doi.org/10.1093/jexbot/51.350.1595
Jeuffroy, M.-H., Lecoeur, J., & Roche, R. (2010). The seed number. In N. Munier-Jolain, V. Biarnes, I. Chaillet, J. Lecoeur, & M.-H. Jeuffroy (Eds.), Physiology of the pea crop (pp. 104–109). CRC Press. https://www.taylorfrancis.com/chapters/edit/10.1201/b10504-6/seed-number-marieh%C3%A9l%C3%A8ne-jeuffroy-j%C3%A9r%C3%A9mielecoeur-romain-roche?context=ubx&refId=932a093a-1c4e-463d-b6c0-1d22111fad9f
Jin, J., Lauricella, D., Armstrong, R., Sale, P., & Tang, C. (2015). Phosphorus application and elevated CO₂ enhance drought tolerance in field pea grown in a phosphorus-deficient vertisol. Annals of Botany, 116(6), 975–985. https://doi.org/10.1093/aob/mcu209
Lecoeur, J. (2010). Vegetative development: The morphogenesis of plant organs. In N. Munier Jolain, V. Biarnès, I. Chaillet, J. Lecoeur, & M.-H. Jeuffroy (Eds.), Physiology of the pea crop (pp. 3–43). CRC Press. https://www.taylorfrancis.com/chapters/edit/10.1201/b10504-2/vegetative-developmentmorphogenesis-plant-organs-lecoeur?context=ubx&refId=fb9bfba7-40ad-414a-9c9c-e2cc4ed6286f
Lee, H., Calvin, K., Dasgupta, D., Krinner, G., Mukherji, A., Thorne, P., Trisos, C., Romero, J., Aldunce, P., & Barret, K. (2023). IPCC, 2023: Climate Change 2023: Synthesis Report, Summary for Policymakers. Contribution of Working Groups I, II, and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (Eds.)]. IPCC, Geneva, Switzerland. https://www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_LongerReport.pdf
Leport, L., Turner, N. C., French, R. J., Tennant, D., Thomson, B. D., & Siddique, K. H. M. (1998). Water relations, gas exchange, and growth of cool-season grain legumes in a Mediterranean-type environment. European Journal of Agronomy, 9(4), 295–303. https://doi.org/10.1016/S1161-0301(98)00042-2
Martin, R. J., & Jamieson, P. D. (1996). Effect of timing and intensity of drought on the growth and yield of field peas (Pisum sativum L.). New Zealand Journal of Crop and Horticultural Science, 24(2), 167–174. https://doi.org/10.1080/01140671.1996.9513949
Munier-Jolain, N. (2010). Individual seed weight. In N. Munier-Jolain, V. Biarnes, I. Chaillet, J. Lecoeur, & M.-H. Jeuffroy (Eds.), Physiology of the pea crop (pp. 109–117). CRC Press.
Nadeem, M., Li, J., Yahya, M., Sher, A., Ma, C., Wang, X., & Qiu, L. (2019). Research progress and perspective on drought stress in legumes: a review. International Journal of Molecular Sciences, 20(10), Article 2541. https://doi.org/10.3390/ijms20102541
Nemeskéri, E., Molnár, K., Vígh, R., Nagy, J. J., & Dobos, A. (2015). Relationships between stomatal behaviour, spectral traits, and water use and productivity of green peas (Pisum sativum L.) in dry seasons. Acta Physiologiae Plantarum, 37(2), Article 34. https://doi.org/10.1007/s11738-015-1776-0
Ney, B., Duthion, C., & Turc, O. (1994). Phenological response of pea to water stress during reproductive development. Crop Science, 34(1), 141–146. https://doi.org/10.2135/cropsci1994.0011183x003400010025x
Nogués, S., Allen, D. J., Morison, J. I. L., & Baker, N. R. (1998). Ultraviolet-B radiation effects on water relations, leaf development, and photosynthesis in droughted pea plants. Plant Physiology, 117(1), 173–181. https://doi.org/10.1104/pp.117.1.173
Pandey, J., Devadasu, E., Saini, D., Dhokne, K., Marriboina, S., Raghavendra, A. S. S., & Subramanyam, R. (2023). Reversible changes in the structure and function of the photosynthetic apparatus of pea (Pisum sativum) leaves under drought stress. Plant Journal, 113(1), 60–74. https://doi.org/10.1111/tpj.16034
Parry, C., Blonquist Jr., J. M., & Bugbee, B. (2014). In situ measurement of leaf chlorophyll concentration: Analysis of the optical/absolute relationship. Plant, Cell and Environment, 37(11), 2508–2520. https://doi.org/10.1111/pce.12324
Rodríguez-Maribona, B., Tenorio, J. L., Conde, J. R., & Ayerbe, L. (1992). Correlation between yield and osmotic adjustment of peas (Pisum sativum L.) under drought stress. Field Crops Research, 29(1), 15–22. https://doi.org/10.1016/0378-4290(92)90072-H
Serrago, R. A., Alzueta, I. I., Savin, R., & Slafer, G. A. (2013). Understanding grain yield responses to source-sink ratios during grain filling in wheat and barley under contrasting environments. Field Crops Research, 150, 42–51. https://doi.org/10.1016/j.fcr.2013.05.016
Soba, D., Arrese-Igor, C., & Aranjuelo, I. (2022). Additive effects of heatwave and water stresses on soybean seed yield is caused by impaired carbon assimilation at pod formation but not at flowering. Plant Science, 321, Article 111320. https://doi.org/10.1016/j.plantsci.2022.111320
Sońta, M., & Rekiel, A. (2020). Legumes – use for nutritional and feeding purposes. Journal of Elementology, 25(3), 835–849. https://doi.org/10.5601/jelem.2020.25.1.1953
Sun, Y., Wang, C., Chen, H. Y. H., & Ruan, H. (2020). Response of plants to water stress: a meta analysis. Frontiers in Plant Science, 11, Article 978. https://doi.org/10.3389/fpls.2020.00978
Suzuki, N., Rivero, R. M., Shulaev, V., Blumwald, E., & Mittler, R. (2014). Abiotic and biotic stress combinations. New Phytologist, 203(1), 32–43. https://doi.org/10.1111/nph.12797
Turner, N. C. (2018). Turgor maintenance by osmotic adjustment: 40 years of progress. Journal of Experimental Botany, 69(13), 3223–3233. https://doi.org/10.1093/jxb/ery181
Turner, N. C., Abbo, S., Berger, J. D., Chaturvedi, S. K., French, R. J., Ludwig, C., Mannur, D. M., Singh, S. J., & Yadava, H. S. (2007). Osmotic adjustment in chickpea (Cicer arietinum L.) results in no yield benefit under terminal drought. Journal of Experimental Botany, 58(2), 187–194. https://doi.org/10.1093/jxb/erl192
Wang, Z., Li, G., Sun, H., Ma, L., Guo, Y., Zhao, Z., Gao, H., & Mei, L. (2018). Effects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves. Biology Open, 7(11), Article 035279. https://doi.org/10.1242/bio.035279
Wu, A., Hammer, G. L., Doherty, A., von Caemmerer, S., & Farquhar, G. D. (2019). Quantifying impacts of enhancing photosynthesis on crop yield. Nature Plants, 5(4), 380–388. https://doi.org/10.1038/s41477-019-0398-8
Zandalinas, S. I., Fritschi, F. B., & Mittler, R. (2021). Global warming, climate change, and environmental pollution: recipe for a multifactorial stress combination disaster. Trends in Plant Science, 26(6), 588−599. https://doi.org/10.1016/j.tplants.2021.02.011
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
CrossRef Cited-by
1. Georgi D. Rashkov, Martin A. Stefanov, Preslava B. Borisova, Anelia G. Dobrikova, Emilia L. Apostolova. (2025). The Role of the Organization of Light-Harvesting Complex II in the Drought Sensitivity of Pisum sativum L.. International Journal of Molecular Sciences, 26(22), p.11078. https://doi.org/10.3390/ijms262211078.
Dimensions
PlumX
Article abstract page views
Downloads
License
Copyright (c) 2025 Agronomía Colombiana

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)

Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.







