Biofertilizer enhances the expression of the CaWRKY6 gene in water-stressed plants of Capsicum anuum L.
Biofertilizante mejora la expresión del gen CaWRKY6 en plantas de Capsicum anuum L. sometidas a estrés hídrico
DOI:
https://doi.org/10.15446/agron.colomb.v43n2.118856Keywords:
organic agriculture, organic fertilizers, abiotic stress resistance, drought protection (en)agricultura orgánica, fertilizantes orgánicos, resistencia a estrés abiótico, protección contra sequía (es)
Downloads
Colombia has agroecological conditions for bell pepper (Capsicum annuum L.) cultivation. However, traditional management practices have depended mainly on agrochemicals. Organic production could enhance the value of products and facilitate their entry into international markets. Research indicates that biofertilizers and biostimulants can activate the gene expression that helps plants tolerate both biotic and abiotic stress. This study assessed the activation of the CaWRKY6 gene in response to water stress tolerance in C. annuum, after applying a biofertilizer to greenhouse-grown young plants to mitigate the impacts of drought. Foliar samples were taken 48 h after the application of five treatments: biofertilizer at two concentrations (5 ml L-1 and 10 ml L-1), salicylic acid (5 mg L-1), and two controls (water), followed by RNA extraction and an RT-qPCR test to determine the relative expression of the gene CaWRKY6. To compare the adjuvant effect of biofertilizer and salicylic acid, treated young plants were exposed to water depletion for 21 d. The ANOVA indicated differences between treatments with 5 ml L-1 and 10 ml L-1 of biofertilizer, and they had the highest CaWRKY6 gene expression, as well as higher growth and less wilting against water stress.
Colombia presenta condiciones agroecológicas para la producción de pimentón (Capsicum annuum L.). Sin embargo, su manejo tradicional ha sido principalmente por medio del uso de agroquímicos. La producción orgánica podría dar valor agregado a los productos, y facilitar su entrada a los mercados internacionales. Se ha evidenciado que los biofertilizantes y bioestimulantes pueden activar la expresión de genes que ayudan a las plantas a tolerar estrés biótico y abiótico. En este estudio se evaluó la activación del gen CaWRKY6, uno de los más destacados para C. annuum, tras la aplicación de un biofertilizante sobre plántulas de pimentón cultivadas bajo invernadero. Se analizaron muestras foliares 48 h después de aplicar cinco tratamientos: biofertilizante a dos concentraciones (5 ml L-1 y 10 ml L-1), ácido salicílico (5 mg L-1) y dos controles (agua). Después se extrajo ARN y mediante una prueba RT-qPCR se determinó la expresión relativa del gen CaWRKY6. Para comparar el efecto adyuvante del biofertilizante y el ácido salicílico, las plantas jóvenes tratadas se expusieron a la falta de agua durante 21 d. El ANOVA indicó diferencias entre los tratamientos con 5 ml L-1 y 10 ml L-1 de biofertilizante; además, estos tuvieron la mayor expresión del gen CaWRKY6, mayor crecimiento y menor marchitez por el estrés hídrico.
References
Abdou Zayan, S. (2020). Impact of climate change on plant diseases and IPM strategies. In S. Topolovec-Pintarić (Ed.), Plant diseases – Current threats and management trends. IntechOpen. https://doi.org/10.5772/intechopen.87055
Agronegocios. (2015). El futuro del pimentón que se produce en Colombia está en la más exclusiva gastronomía. https://www.agronegocios.co/agricultura/el-futuro-del-pimenton-esta-en-la-mas-exclusiva-gastronomia-2621159
Ahammed, G. J., Li, X., Wan, H., Zhou, G., & Cheng, Y. (2020). SlWRKY81 reduces drought tolerance by attenuating proline biosynthesis in tomato. Scientia Horticulturae, 270, Article 109444. https://doi.org/10.1016/j.scienta.2020.109444
Bulle, M., Rahman, M. M., Islam, M. R., & Abbagani, S. (2025). Strategies to develop climate-resilient chili peppers: Transcription factor optimization through genome editing. Planta, 262(2), Article 30. https://doi.org/10.1007/s00425-025-04747-5
Bykova, O., Chuine, I., & Morin, X. (2019). Highlighting the importance of water availability in reproductive processes to understand climate change impacts on plant biodiversity. Perspectives in Plant Ecology, Evolution and Systematics, 37, 20–25. https://doi.org/10.1016/j.ppees.2019.01.003
Cai, H., Yang, S., Yan, Y., Xiao, Z., Cheng, J., Wu, J., Qiu, A., Lai, Y., Mou, S., Guan, D., Huang, R., & He, S. (2015). CaWRKY6 transcriptionally activates CaWRKY40, regulates Ralstonia solanacearum resistance, and confers high-temperature and high-humidity tolerance in pepper. Journal of Experimental Botany, 66(11), 3163–3174. https://doi.org/10.1093/jxb/erv125
Campos, H., Trejo, C., Peña-Valdivia, C. B., García-Nava, R., Conde-Martínez, F. V., & Cruz-Ortega, M. R. (2014). Stomatal and non-stomatal limitations of bell pepper (Capsicum annuum L.) plants under water stress and re-watering: Delayed restoration of photosynthesis during recovery. Environmental and Experimental Botany, 98, 56–64. https://doi.org/10.1016/j.envexpbot.2013.10.015
Campos‐Soriano, L., Bundó, M., Bach‐Pages, M., Chiang, S., Chiou, T., & San Segundo, B. (2020). Phosphate excess increases susceptibility to pathogen infection in rice. Molecular Plant Pathology, 21(4), 555–570. https://doi.org/10.1111/mpp.12916
Casilimas, H., Monsalve, O., Bojacá, C. R., Gil, R., Villagrán, E., Arias, L. A., & Fuentes, L. S. (2012). Manejo de plagas y enfermedades. In C. Bojacá, & O. Monsalve (Eds.), Manual de producción de pimentón bajo invernadero (pp. 129–152). Universidad de Bogotá Jorge Tadeo Lozano. http://hdl.handle.net/20.500.12324/34356 DOI: https://doi.org/10.2307/j.ctv2175q34
Dang, F.-F., Wang, Y.-N., Yu, L., Eulgem, T., Lai, Y., Liu, Z.-Q., Wang, X., Qiu, A.-L., Zhang, T.-X., Lin, J., Chen, Y.-S., Guan, D.-Y., Cai, H.-Y., Mou, S.-L., & He, S.-L. (2013). CaWRKY40, a WRKY protein of pepper, plays an important role in the regulation of tolerance to heat stress and resistance to Ralstonia solanacearum infection. Plant, Cell & Environment, 36(4), 757–774. https://doi.org/10.1111/pce.12011
Elahi, E., Weijun, C., Zhang, H., & Nazeer, M. (2019). Agricultural intensification and damages to human health in relation to agrochemicals: Application of artificial intelligence. Land Use Policy, 83, 461–474. https://doi.org/10.1016/j.landusepol.2019.02.023
Estaji, A., & Niknam, F. (2020). Foliar salicylic acid spraying effect on growth, seed oil content, and physiology of drought-stressed Silybum marianum L. plant. Agricultural Water Management, 234, Article 106116. https://doi.org/10.1016/j.agwat.2020.106116
Etesami, H., Alikhani, H. A., & Hosseini, H. M. (2015). Indole-3-acetic acid (IAA) production trait, a useful screening to select endophytic and rhizosphere competent bacteria for rice growth promoting agents. MethodsX, 2, 72–78. https://doi.org/10.1016/j.mex.2015.02.008
Goñi, O., Quille, P., & O’Connell, S. (2018). Ascophyllum nodosum extract biostimulants and their role in enhancing tolerance to drought stress in tomato plants. Plant Physiology and Biochemistry, 126, 63–73. https://doi.org/10.1016/j.plaphy.2018.02.024
Han, X., Xi, Y., Zhang, Z., Mohammadi, M. A., Joshi, J., Borza, T., & Wang-Pruski, G. (2021). Effects of phosphite as a plant biostimulant on metabolism and stress response for better plant performance in Solanum tuberosum. Ecotoxicology and Environmental Safety, 210, Article 111873. https://doi.org/10.1016/j.ecoenv.2020.111873
Hussain, A., Noman, A., Khan, M. I., Zaynab, M., Aqeel, M., Anwar, M., Ashraf, M. F., Liu, Z., Raza, A., Mahpara, S., Bakhsh, A., & He, S. (2019). Molecular regulation of pepper innate immunity and stress tolerance: An overview of WRKY TFs. Microbial Pathogenesis, 135, Article 103610. https://doi.org/10.1016/j.micpath.2019.103610
Jang, J.-O., Kim, B.-H., Lee, J.-B., Joa, J.-H., & Koh, S. (2019). Evaluation of bacterial spot disease of Capsicum annuum L. in drought stress environment by high temperature. Research in Plant Disease, 25(2), 62–70. https://doi.org/10.5423/RPD.2019.25.2.62
Jaramillo Noreña, J. E., Aguilar Aguilar, P. A., Espitia Malagón, E. M., Tamayo Molano, P. J., & Guzmán Arroyave, M. (2014). Manejo integrado del cultivo de pimentón. In Modelo productivo del cultivo de pimentón bajo condiciones protegidas en el oriente antioqueño (1st ed., pp. 44–136). Corporación Colombiana de Investigación Agropecuaria - Corpoica. http://hdl.handle.net/20.500.12324/13753 DOI: https://doi.org/10.21930/978-958-8711-72-0
Jingyuan, Z., Xuexiao, Z., Zhenchuan, M., & Bingyan, X. (2011). A novel pepper (Capsicum annuum L.) WRKY gene, CaWRKY30, is involved in pathogen stress responses. Journal of Plant Biology, 54(5), 329–337. https://doi.org/10.1007/s12374-011-9171-x
Kour, D., Rana, K. L., Yadav, A. N., Yadav, N., Kumar, M., Kumar, V., Vyas, P., Dhaliwal, H. S., & Saxena, A. K. (2020). Microbial biofertilizers: Bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatalysis and Agricultural Biotechnology, 23, Article 101487. https://doi.org/10.1016/j.bcab.2019.101487
Lee, S. G., Kim, S. K., Lee, H. J., Lee, H. S., & Lee, J. H. (2018). Impact of moderate and extreme climate change scenarios on growth, morphological features, photosynthesis, and fruit production of hot pepper. Ecology and Evolution, 8(1), 197–206. https://doi.org/10.1002/ece3.3647
Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods, 25(4), 402–408. https://doi.org/10.1006/meth.2001.1262
Malo, I., Bernacchia, G., & Arévalo, P. (2015). Activación de genes de defensa en plantas de tomate de mesa Lycopersicum esculentum L., a través de la aplicación de sustancias químicas y naturales. La Granja: Revista de Ciencias de la Vida, 21(1), 61–68. https://doi.org/10.17163/lgr.n21.2015.05
Mandal, A., Sarkar, B., Mandal, S., Vithanage, M., Patra, A. K., & Manna, M. C. (2020). Impact of agrochemicals on soil health. In M. N. Vara Prasad (Ed.), Agrochemicals detection, treatment and remediation (pp. 161–187). Butterworth-Heinemann. https://doi.org/10.1016/B978-0-08-103017-2.00007-6
Martínez Bernal, L. F., Bello Rodríguez, P. L., & Castellanos Domínguez, O. F. (2012). Entorno normativo y certificación. In L. F. Bernal, P. L. Bello Rodríguez, & O. F. Castellanos (Eds.), Sostenibilidad y desarrollo: el valor agregado de la agricultura orgánica (1st ed., pp. 75–104). Universidad Nacional de Colombia. https://repositorio.unal.edu.co/handle/unal/10045
Melnikova, N. V., Dmitriev, A. A., Belenikin, M. S., Speranskaya, A. S., Krinitsina, A. A., Rachinskaia, O. A., Lakunina, V. A., Krasnov, G. S., Snezhkina, A. V., Sadritdinova, A. F., Uroshlev, L. A., Koroban, N. V., Samatadze, T. E., Amosova, A. V., Zelenin, A. V., Muravenko, O. V., Bolsheva, N. L., & Kudryavtseva, A. V. (2015). Excess fertilizer responsive miRNAs revealed in Linum usitatissimum L. Biochimie, 109, 36-41. https://doi.org/10.1016/j.biochi.2014.11.017
MINCIT. (2019, May 9). Pimentón colombiano, a un paso de llegar a Estados Unidos, el mayor importador a nivel mundial. http://mincit.gov.co/prensa/noticias/comercio/pimenton-colombiano-a-un-paso-de-llegar-a-estados
Ministerio de Agricultura y Desarrollo Rural- MADR. (2020). Resolución No. 187 de 2006. https://www.minagricultura.gov.co/tramites-servicios/Documents/Resolucion_187_de_2006.pdf
Ntanasi, T., Karavidas, I., Savvas, D., Spyrou, G. P., Giannothanasis, E., Consentino, B. B., Papasotiropoulos, V., Sabatino, L., & Ntatsi, G. (2025). Physiological and yield responses of pepper (Capsicum annuum L.) genotypes to drought stress. Plants, 14(13), Article 1934. https://doi.org/10.3390/plants14131934
Orozco-Mosqueda, M. C., Glick, B. R., & Santoyo, G. (2020). ACC deaminase in plant growth-promoting bacteria (PGPB): An efficient mechanism to counter salt stress in crops. Microbiological Research, 235, Article 126439. https://doi.org/10.1016/j.micres.2020.126439
Park, M., Jo, S., Kwon, J.-K., Park, J., Ahn, J. H., Kim, S., Lee, Y.-H., Yang, T.-J., Hur, C.-G., Kang, B.-C., Kim, B.-D., & Choi, D. (2011). Comparative analysis of pepper and tomato reveals euchromatin expansion of pepper genome caused by differential accumulation of Ty3/Gypsy-like elements. BMC Genomics, 12, Article 85. https://doi.org/10.1186/1471-2164-12-85
Pérez-Jiménez, M., Pazos-Navarro, M., Piñero, M. C., Otálora-Alcón, G., López-Marín, J., & del Amor, F. M. (2016). Regulation of the drought response of sweet pepper (Capsicum annuum L.) by foliar-applied hormones, in Mediterranean-climate greenhouse conditions. Plant Growth Regulation, 80(2), 159–169. https://doi.org/10.1007/s10725-016-0153-3
Roselló I Oltra, J., & Porcuna, J. L. (2012). El manejo del cultivo en tomate y pimiento. In J. Roselló i Oltra & J. L. Porcuna (Eds.), Cultivo ecológico del tomate y del pimiento (pp. 3–54). Cuadernos Técnicos SEAE, Sociedad Española de Agricultura Ecológica. https://www.icia.es/icia/download/Agroecología/Material/Cultivo_ecologico.pdf
Sinha, R., Irulappan, V., Mohan-Raju, B., Suganthi, A., & Senthil-Kumar, M. (2019). Impact of drought stress on simultaneously occurring pathogen infection in field-grown chickpea. Scientific Reports, 9(1), Article 5577. https://doi.org/10.1038/s41598-019-41463-z
Thakur, M., Bhattacharya, S., Khosla, P. K., & Puri, S. (2019). Improving production of plant secondary metabolites through biotic and abiotic elicitation. Journal of Applied Research on Medicinal and Aromatic Plants, 12, 1–12. https://doi.org/10.1016/j.jarmap.2018.11.004
Verly, C., Djoman, A. C. R., Rigault, M., Giraud, F., Rajjou, L., Saint-Macary, M.-E., & Dellagi, A. (2020). Plant defense stimulator mediated defense activation is affected by nitrate fertilization and developmental stage in Arabidopsis thaliana. Frontiers in Plant Science, 11, Article 583. https://doi.org/10.3389/fpls.2020.00583
Vijayakumar, S., Durgadevi, S., Arulmozhi, P., Rajalakshmi, S., Gopalakrishnan, T., & Parameswari, N. (2019). Effect of seaweed liquid fertilizer on yield and quality of Capsicum annuum L. Acta Ecologica Sinica, 39(5), 406–410. https://doi.org/10.1016/j.chnaes.2018.10.001
Xu, D., Deng, Y., Xi, P., Yu, G., Wang, Q., Zeng, Q., Jiang, Z., & Gao, L. (2019). Fulvic acid-induced disease resistance to Botrytis cinerea in table grapes may be mediated by regulating phenylpropanoid metabolism. Food Chemistry, 286, 226–233. https://doi.org/10.1016/j.foodchem.2019.02.015
Yaseen, A. A., Ahmed, S. J., & Bakr, T. D. (2024). Effect of biofertilizers in improving production of hot pepper (Capsicum annuum L.), and tolerating drought stress. Zanco Journal of Pure and Applied Sciences, 36(6), 104–117. https://doi.org/10.21271/ZJPAS.36.6.12
Zhang, L., Liu, D., Yin, Q., & Liu, J. (2024). Organic certification, online market access, and agricultural product prices: Evidence from Chinese apple farmers. Agriculture, 14(5), Article 669. https://doi.org/10.3390/agriculture14050669
Zhang, X., Ma, X., Wang, S., Liu, S., & Shi, S. (2024). Physiological and genetic aspects of resistance to abiotic stresses in Capsicum species. Plants, 13(21), Article 3013. https://doi.org/10.3390/plants13213013
Zheng, J., Liu, F., Zhu, C., Li, X., Dai, X., Yang, B., Zou, X., & Ma, Y. (2019). Identification, expression, alternative splicing and functional analysis of pepper WRKY gene family in response to biotic and abiotic stresses. PLoS ONE, 14(7), Article e0219775. https://doi.org/10.1371/journal.pone.0219775
How to Cite
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Download Citation
License
Copyright (c) 2025 Agronomía Colombiana

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
© Centro Editorial de la Facultad de Ciencias Agrarias, Universidad Nacional de Colombia
Reproduction and quotation of material appearing in the journal is authorized provided the following are explicitly indicated: journal name, author(s) name, year, volume, issue and pages of the source. The ideas and observations recorded by the authors are their own and do not necessarily represent the views and policies of the Universidad Nacional de Colombia. Mention of products or commercial firms in the journal does not constitute a recommendation or endorsement on the part of the Universidad Nacional de Colombia; furthermore, the use of such products should comply with the product label recommendations.
The Creative Commons license used by Agronomia Colombiana journal is: Attribution - NonCommercial - ShareAlike (by-nc-sa)

Agronomia Colombiana by Centro Editorial of Facultad de Ciencias Agrarias, Universidad Nacional de Colombia is licensed under a Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional License.
Creado a partir de la obra en http://revistas.unal.edu.co/index.php/agrocol/.







