Published

2025-07-25

The impact of global warming on fruit crops and mitigation strategies: A comprehensive review

El impacto del calentamiento global en los cultivos de frutales y las estrategias de mitigación: una revisión comprensiva

DOI:

https://doi.org/10.15446/agron.colomb.v43n2.118860

Keywords:

climate adaptation, phenological stages, yield losses, adaptation strategies (en)
adaptación al clima, fases fenológicas, pérdidas de rendimiento, estrategias de adaptación (es)

Downloads

Authors

Global warming poses a significant challenge to the agricultural sector, with fruit cultivation being particularly susceptible due to its intricate relationship with specific climatic conditions. The observed increases in global air temperatures, coupled with alterations in precipitation patterns and a higher frequency of extreme weather events, are fundamentally reshaping fruit production on a worldwide scale. This article explores the multifaceted impacts of global warming on fruit cultivation, highlighting key issues such as shifts in phenological phases, declines in crop yields, increased pressure from pests and diseases, and the growing scarcity of water resources. Furthermore, it provides a comprehensive analysis of adaptation and mitigation strategies, encompassing sustainable agricultural practices, the development of climate-resilient fruit varieties, and the implementation of effective water management strategies. Addressing these complex challenges is of paramount importance to ensure the long-term viability and economic sustainability of fruit production in the face of evolving climatic conditions.

El calentamiento global plantea un desafío significativo para el sector agrícola, siendo el cultivo de frutales particularmente susceptible debido a su intrincada relación con condiciones climáticas específicas. Los aumentos observados en las temperaturas globales del aire, junto con las alteraciones en los patrones de precipitación y una mayor frecuencia de eventos climáticos extremos, están reconfigurando fundamentalmente la producción de frutales a escala global. Este artículo profundiza en los impactos multifacéticos del calentamiento global en el cultivo de frutales, explorando cuestiones críticas como los cambios en las fases fenológicas, la disminución de los rendimientos de los cultivos, la mayor presión de plagas y enfermedades, y la creciente escasez de recursos hídricos. Además, proporciona un análisis comprensivo de las estrategias de adaptación y mitigación, que abarcan las prácticas agrícolas sostenibles, el desarrollo de variedades de frutales resistentes al clima y la implementación de estrategias efectivas de gestión del agua. Abordar estos desafíos complejos es de suma importancia para asegurar la viabilidad a largo plazo y la sostenibilidad económica de la producción de frutales bajo las condiciones climáticas en evolución.

References

Alengebawy, A., Ran, Y., Osman, A. I., Jin, K., Samer, M., & Ai, P. (2024). Anaerobic digestion of agricultural waste for biogas production and sustainable bioenergy recovery: A review. Environmental Chemistry Letters, 22(1), 2641–2668. https://doi.org/10.1007/s10311-024-01789-1

Ameen, M., Mahmood, A., Ahmad, M., Javaid, M., Nadeem, M. A., Asif, M., Balal, R. M., & Khan, B. A. (2023). Impacts of climate change on fruit physiology and quality. In M. Hasanuzzaman (Ed.), Climate-resilient agriculture (Vol. 1, pp. 93–124). Springer Cham. https://doi.org/10.1007/978-3-031-37424-1_5

Asfaw, A., Simane, B., Bantider, A., & Hassen, A. (2019). Determinants in the adoption of climate change adaptation strategies: Evidence from rainfed-dependent smallholder farmers in north-central Ethiopia (Woleka sub-basin). Environment, Development and Sustainability, 21, 2535–2565. https://doi.org/10.1007/s10668-018-0150-y

Bacelar, E., Pinto, T., Anjos, R., Morais, M. C., Oliveira, I., Vilela, A., & Cosme, F. (2024). Impacts of climate change and mitigation strategies for some abiotic and biotic constraints influencing fruit growth and quality. Plants, 13(14), Article 1942. https://doi.org/10.3390/plants13141942

Bal, S. K., Saha, S., Fand, B. B., Singh, N. P., Rane, J., & Minhas, P. S (Eds.). (2014). Hailstorms: Causes, damage and post-hail management in agriculture (Technical bulletin No. 5). National Institute of Abiotic Stress Management. https://doi.org/10.13140/2.1.4841.7922

Baldock, J. A., Wheeler, I., McKenzie, N., & McBrateny, A. (2012). Soils and climate change: Potential impacts on carbon stocks and greenhouse gas emissions, and future research for Australian agriculture. Crop and Pasture Science, 63(3), 269–283. https://doi.org/10.1071/CP11170

Beddington, J. R., Asaduzzaman, M., Fernandez, A., Clark, M., Guillou, M., Jahn, M., Erda, L., Mamo, T., Bo, N. D., Nobre, C. A., Scholes, R., Sharma, R., & Wakhungu, J. (2011). Achieving food security in the face of climate change: Summary for policy makers from the Commission on Sustainable Agriculture and Climate Change. CGIAR Research Program on Climate Change, Agriculture and Food Security. https://hdl.handle.net/10568/10701

Below, T. B., Mutabazi, K. D., Kirschke, D., Franke, C., Sieber, S., Siebert, R., & Tscherning, K. (2012). Can farmers’ adaptation to climate change be explained by socio-economic household-level variables? Global Environmental Change, 22(1), 223–235. https://doi.org/10.1016/j.gloenvcha.2011.11.012

Bilgili, M., Tumse, S., & Nar, S. (2024). Comprehensive overview on the present state and evolution of global warming, climate change, greenhouse gases, and renewable energy. Arabian Journal for Science and Engineering, 49, 14503–14531. https://doi.org/10.1007/s13369-024-09390-y

Brglez Sever, M., Tojnko, S., & Unuk, T. (2015). Impact of various types of anti-hail nets on light exposure in orchards and quality parameters of apples: A review. Agricultura, 12(1/2), 25–31. https://www.researchgate.net/publication/309623554_Impact_of_various_types_of_anti-hail_nets_on_light_exposure_in_orchards_and_quality_parameters_of_apples-_a_rewiev DOI: https://doi.org/10.1515/agricultura-2016-0004

Calzadilla, A., Zhu, T., Rehdanz, K., Tol, R. S. J., & Ringler, C. (2014). Climate change and agriculture: Impacts and adaptation options in South Africa. Water Resources and Economics, 5, 24–48. https://doi.org/10.1016/j.wre.2014.03.001

Campoy, J. A., Ruiz, D., & Egea, J. (2011). Dormancy in temperate fruit trees in a global warming context: A review. Scientia Horticulturae, 130(2), 357–372. https://doi.org/10.1016/j.scienta.2011.07.011

Chapman, S. C., Chakraborty, S., Dreccer, M. F., & Howden, S. M. (2012). Plant adaptation to climate change − Opportunities and priorities in breeding. Crop and Pasture Science, 63(3), 251–268. https://doi.org/10.1071/CP11303

Chawla, R., Sheokand, A., Rai, M. R., & Sadawarti, R. K. (2011). Impact of climate change on fruit production and various approaches to mitigate these impacts. The Pharma Innovation, 10(3), 564–571. https://www.thepharmajournal.com/archives/2021/vol10issue3/PartH/10-2-96-689.pdf

Davis, K., Nkonya, E., Kato, E., Mekonnen, D. A., Odendo, M., Miiro, R., & Nkuba, J. (2012). Impact of farmer field schools on agricultural productivity and poverty in East Africa. World Development, 40(2), 402–413. https://doi.org/10.1016/j.worlddev.2011.05.019

Del Pozo, A., Brunel-Saldias, N., Engler, A., Ortega-Farias, S., Acevedo-Opazo, C., Lobos, G. A., Jara-Rojas, R., & Molina-Montenegro, M. A. (2019). Climate change impacts and adaptation strategies of agriculture in Mediterranean-climate regions (MCRs). Sustainability, 11(10), Article 2769. https://doi.org/10.3390/su11102769

Doelman, J. C., Stehfest, E., van Vuuren, D. P., Tabeau, A., Hof, A. F., Braakhekke, M. C., Gernaat, D. E. H. J., van den Berg, M., van Zeist, W.-J., Daioglou, V., van Meijl, H., & Lucas, P. L. (2020). Afforestation for climate change mitigation: Potentials, risks and trade‐offs. Global Change Biology, 26(3), 1576–1591. https://doi.org/10.1111/gcb.14887

El Jaouhari, N., Abouabdillah, A., Bouabid, R., Bourioug, M., Aleya, L., & Chaoui, M. (2018). Assessment of sustainable deficit irrigation in a Moroccan apple orchard as a climate change adaptation strategy. Science of the Total Environment, 642, 574–581. https://doi.org/10.1016/j.scitotenv.2018.06.108

El Yaacoubi, A., Malagi, G., Oukabli, A., Hafidi, M., & Legave, J.-M. (2014). Global warming impact on floral phenology of fruit tree species in Mediterranean region. Scientia Horticulturae, 180, 243–253. https://doi.org/10.1016/j.scienta.2014.10.041

Fadón, E., Herrera, S., Guerrero, B. I., Guerra, M. E., & Rodrigo, J. (2020). Chilling and heat requirements of temperate stone fruit trees (Prunus sp.). Agronomy, 10(3), Article 409. https://doi.org/10.3390/agronomy10030409

Fares, A., Bayabil, H. K., Zekri, M., Mattos-Jr, D., & Awal, R. (2017). Potential climate change impacts on citrus water requirement across major producing areas in the world. Journal of Water and Climate Change, 8(4), 576–592. https://doi.org/10.2166/wcc.2017.182

Fischer, G., Ramírez, F., & Casierra-Posada, F. (2016). Ecophysiological aspects of fruit crops in the era of climate change: A review. Agronomía Colombiana, 34(2), 190–199. https://doi.org/10.15446/agron.colomb.v34n2.56799

Flórez-Velasco, N., Fischer, G., & Balaguera-López, H. E. (2024). Photosynthesis in fruit crops of the high tropical Andes: A systematic review. Agronomía Colombiana, 42(2), 1–18. https://doi.org/10.15446/agron.colomb.v42n2.113887

Forrest, J. R. K. (2015). Plant–pollinator interactions and phenological change: What can we learn about climate impacts from experiments and observations? Oikos, 124(1), 4–13. https://doi.org/10.1111/oik.01386

Fu, Y. S., Prevéy, J. S., & Vitasse, Y. (2022). Plant phenology shifts and their ecological and climatic consequences. Frontiers in Plant Science, 13, Article 1071266. https://doi.org/10.3389/fpls.2022.1071266

Fujisawa, M., & Kobayashi, K. (2010). Apple (Malus pumila var. domestica) phenology is advancing due to rising air temperature in northern Japan. Global Change Biology, 16(10), 2651–2660. https://doi.org/10.1111/j.1365-2486.2009.02126.x

Funes, I., Aranda, X., Biel, C., Carbó, J., Camps, F., Molina, A. J., de Herralde, F., & Grau, B. (2016). Future climate change impacts on apple flowering date in a Mediterranean subbasin. Agricultural Water Management, 164, 19–27. https://doi.org/10.1016/j.agwat.2015.06.013

Ghale, B., Mitra, E., Sodhi, H. S., Verma, A. K., & Kumar, S. (2022). Carbon sequestration potential of agroforestry systems and its potential in climate change mitigation. Water, Air, & Soil Pollution, 233(7), Article 228. https://doi.org/10.1007/s11270-022-05689-4

Ghini, R., Bettiol, W., & Hamada, E. (2011). Diseases in tropical and plantation crops as affected by climate changes: Current knowledge and perspectives. Plant Pathology, 60(1), 122–132. https://doi.org/10.1111/j.1365-3059.2010.02403.x

Gogorcena, Y., Sánchez, G., Moreno-Vázquez, S., Pérez, S., & Ksouri, N. (2020). Genomic-based breeding for climate-smart peach varieties. In C. Kole (Ed.), Genomic designing of climate-smart fruit crops (pp. 271–331). Springer Cham. https://doi.org/10.1007/978-3-319-97946-5_8

González-Martínez, E., Munné-Bosch, S., & Lordan, J. (2025). Chilling and heat requirements of apple cultivars: Future perspectives in a global climate change context. Scientia Horticulturae, 345, Article 114134. https://doi.org/10.1016/j.scienta.2025.114134

Gruda, N., Bisbis, M., & Tanny, J. (2019). Influence of climate change on protected cultivation: Impacts and sustainable adaptation strategies – A review. Journal of Cleaner Production, 225, 481–495. https://doi.org/10.1016/j.jclepro.2019.03.210

Gvozdenac, S., Dedić, B., Mikić, S., Ovuka, J., & Miladinović, D. (2022). Impact of climate change on integrated pest management strategies. In N. Benkeblia (Ed.), Climate change and agriculture: Perspectives, sustainability and resilience (pp. 311–372). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781119789789.ch14

Haokip, S. W., Shankar, K., & Lalrinngheta, J. (2020). Climate change and its impact on fruit crops. Journal of Pharmacognosy and Phytochemistry, 9(1), 435–438. https://www.phytojournal.com/archives/2020/vol9issue1/PartG/8-6-492-960.pdf

Harvell, C. D., Mitchell, C. E., Ward, J. R., Altizer, S., Dobson, A. P., Ostfeld, R. S., & Samuel, M. D. (2002). Climate warming and disease risks for terrestrial and marine biota. Science, 296(5570), 2158–2162. https://doi.org/10.1126/science.1063699

Head, L., Adams, M., McGregor, H. V., & Toole, S. (2014). Climate change and Australia. WIREs Climate Change, 5(2), 175–197. https://doi.org/10.1002/wcc.255

IPCC. (2021). Climate change 2021: The physical science basis. Cambridge University Press. https://doi.org/10.1017/9781009157896

Jayasooriya, L. S. H., Kwack, Y. B., Shin, M. H., Wijethunga, W. M. U. D., Kim, G. H., Moon, Y. J., Kim, S. H., Cho, J. G., & Kim, J. G. (2025). Assessing the impact of elevated day and night temperatures on flesh red coloration and diminished quality in peaches. Horticultural Science and Technology, 43(2), 165–181. https://doi.org/10.7235/HORT.20250015

Jones, R. A. C., & Barbetti, M. J. (2012). Influence of climate change on plant disease infections and epidemics caused by viruses and bacteria. CABI Reviews, 2012, 1–33. https://doi.org/10.1079/PAVSNNR20127022

Kalcsits, L., Musacchi, S., Layne, D. R., Schmidt, T., Mupambi, G., Serra, S., Mendoza, M., Asteggiano, L., Jarolmasjed, S., Sankaran, S., Khot, L. R., & Zúñiga Espinoza, C. (2017). Above and below-ground environmental changes associated with the use of photoselective protective netting to reduce sunburn in apple. Agricultural and Forest Meteorology, 237–238, 9–17. https://doi.org/10.1016/j.agrformet.2017.01.016

Karagatiya, F. P., Patel, S., Parasana, J. S., Vasava, H. V., Chaudhari, T. M., Kanzaria, D. R., & Paramar, V. (2023). Adapting fruit crops to climate change: Strengthening resilience and implementing adaptation measures in fruit crops. The Pharma Innovation Journal, 12(7), 3159–3164. https://www.thepharmajournal.com/archives/?year=2023&vol=12&issue=7&ArticleId=21776

Kaye, J. P., & Quemada, M. (2017). Using cover crops to mitigate and adapt to climate change: A review. Agronomy for Sustainable Development, 37, Article 4. https://doi.org/10.1007/s13593-016-0410-x

Kourgialas, N. N., & Karatzas, G. P. (2016). A flood risk decision making approach for Mediterranean tree crops using GIS; climate change effects and flood-tolerant species. Environmental Science & Policy, 63, 132–142. https://doi.org/10.1016/j.envsci.2016.05.020

Kumar, R., Berwal, M. K., & Saroj, P. L. (2019). Morphological, physiological, biochemical and molecular facet of drought stress in horticultural crops. International Journal of Bio-resource and Stress Management, 10(5), 545–560. https://www.researchgate.net/publication/337982716_Morphological_Physiological_Biochemical_and_Molecular_Facet_of_Drought_Stress_in_Horticultural_Crops DOI: https://doi.org/10.23910/IJBSM/2019.10.5.2031

Lamichhane, J. R. (2021). Rising risks of late-spring frosts in a changing climate. Nature Climate Change, 11(7), 554–555. https://doi.org/10.1038/s41558-021-01090-x

Lee, D. R., Edmeades, S., De Nys, E., McDonald, A., & Janssen, W. (2014). Developing local adaptation strategies for climate change in agriculture: A priority-setting approach with application to Latin America. Global Environmental Change, 29, 78–91. https://doi.org/10.1016/j.gloenvcha.2014.08.002

Li, Z., & Fang, H. (2016). Impacts of climate change on water erosion: A review. Earth-Science Reviews, 163, 94–117. https://doi.org/10.1016/j.earscirev.2016.10.004

Luedeling, E. (2012). Climate change impacts on winter chill for temperate fruit and nut production: A review. Scientia Horticulturae, 144, 218–229. https://doi.org/10.1016/j.scienta.2012.07.011

Luedeling, E., Girvetz, E. H., Semenov, M. A., & Brown, P. H. (2011). Climate change affects winter chill for temperate fruit and nut trees. PLoS ONE, 6(5), Article e20155. https://doi.org/10.1371/journal.pone.0020155

Malhi, G. S., Kaur, M., & Kaushik, P. (2021). Impact of climate change on agriculture and its mitigation strategies: A review. Sustainability, 13(3), Article 1318. https://doi.org/10.3390/su13031318

Malhotra, S. K. (2017). Horticultural crops and climate change: A review. The Indian Journal of Agricultural Sciences, 87(1), 12–22. https://doi.org/10.56093/ijas.v87i1.67138

Manos, B., Partalidou, M., Fantozzi, F., Arampatzis, S., & Papadopoulou, O. (2014). Agro-energy districts contributing to environmental and social sustainability in rural areas: Evaluation of a local public–private partnership scheme in Greece. Renewable and Sustainable Energy Reviews, 29, 85–95. https://doi.org/10.1016/j.rser.2013.08.080

Mârza, B., Angelescu, C., & Tindeche, C. (2015). Agricultural insurances and food security. The new climate change challenges. Procedia Economics and Finance, 27, 594–599. https://doi.org/10.1016/S2212-5671(15)01038-2

McGee, T., Schaffer, B., Shahid, M. A., Chaparro, J. X., & Sarkhosh, A. (2022). Carbon and nitrogen metabolism in peach trees on different Prunus rootstocks in response to flooding. Plant and Soil, 475(1–2), 427–441. https://doi.org/10.1007/s11104-022-05377-6

Millard, J., Outhwaite, C. L., Ceaușu, S., Carvalheiro, L. G., Silva e Silva, F. D., Dicks, L. V., Ollerton, J., & Newbold, T. (2023). Key tropical crops at risk from pollinator loss due to climate change and land use. Science Advances, 9(41), Article eadh0756. https://doi.org/10.1126/sciadv.adh0756

Moinina, A., Lahlali, R., & Boulif, M. (2019). Important pests, diseases and weather conditions affecting apple production in Morocco: Current state and perspectives. Revue Marocaine des Sciences Agronomiques et Vétérinaires, 7(1), 71–87. https://www.agrimaroc.org/index.php/Actes_IAVH2/article/view/669 DOI: https://doi.org/10.19182/remvt.31290

Montanaro, G., Xiloyannis, C., Nuzzo, V., & Dichio, B. (2017). Orchard management, soil organic carbon and ecosystem services in Mediterranean fruit tree crops. Scientia Horticulturae, 217, 92–101. https://doi.org/10.1016/j.scienta.2017.01.012

Moretti, C. L., Mattos, L. M., Calbo, A. G., & Sargent, S. A. (2010). Climate changes and potential impacts on postharvest quality of fruit and vegetable crops: A review. Food Research International, 43(7), 1824–1832. https://doi.org/10.1016/j.foodres.2009.10.013

Muller, A., Schader, C., El-Hage Scialabba, N., Brüggemann, J., Isensee, A., Erb, K.-H., Smirh, P., Klocke, P., Leiber, F., Stolze, M., & Niggli, U. (2017). Strategies for feeding the world more sustainably with organic agriculture. Nature Communications, 8(1), Article 1290. https://doi.org/10.1038/s41467-017-01410-w

Muranty, H., Jorge, V., Bastien, C., Lepoittevin, C., Bouffier, L., & Sanchez, L. (2014). Potential for marker-assisted selection for forest tree breeding: Lessons from 20 years of MAS in crops. Tree Genetics & Genomes, 10(6), 1491–1510. https://doi.org/10.1007/s11295-014-0790-5

Nath, V., Kumar, G., Pandey, S. D., & Pandey, S. (2018). Impact of climate change on tropical fruit production systems and its mitigation strategies. In S. Sheraz Mahdi (Ed.), Climate change and agriculture in India: Impact and adaptation (pp. 129–146). Springer, Cham. https://doi.org/10.1007/978-3-319-90086-5_11

Nawaz, R., Abbasi, N. A., Hafiz, I. A., & Khalid, A. (2020). Increasing level of abiotic and biotic stress on Kinnow fruit quality at different ecological zones in climate change scenario. Environmental and Experimental Botany, 171, Article 103936. https://doi.org/10.1016/j.envexpbot.2019.103936

Ndudzo, A., Makuvise, A. S., Moyo, S., & Bobo, E. D. (2024). CRISPR–Cas9 genome editing in crop breeding for climate change resilience: Implications for smallholder farmers in Africa. Journal of Agriculture and Food Research, 16, Article 101132. https://doi.org/10.1016/j.jafr.2024.101132

Nezhadahmadi, A., Faruq, G., & Rashid, K. (2015). The impact of drought stress on morphological and physiological parameters of three strawberry varieties in different growing conditions. Pakistan Journal of Agricultural Sciences, 52(1), 79–92. https://www.cabidigitallibrary.org/doi/full/10.5555/20153183022

Noorazar, H., Kalcsits, L., Jones, V. P., Jones, M. S., & Rajagopalan, K. (2022). Climate change and chill accumulation: Implications for tree fruit production in cold-winter regions. Climatic Change, 171(1), Article 34. https://doi.org/10.1007/s10584-022-03339-6

Normand, F., Lauri, P.-E., & Legave, J. M. (2013). Climate change and its probable effects on mango production and cultivation. Acta Horticulturae, 1075, 21–23. https://doi.org/10.17660/ActaHortic.2015.1075.1

Osorio-Marín, J., Fernandez, E., Vieli, L., Ribera, A., Luedeling, E., & Cobo, N. (2024). Climate change impacts on temperate fruit and nut production: A systematic review. Frontiers in Plant Science, 15, Article 1352169. https://doi.org/10.3389/fpls.2024.1352169

Pathak, T. B., Maskey, M. L., Dahlberg, J. A., Kearns, F., Bali, K. M., & Zaccaria, D. (2018). Climate change trends and impacts on California agriculture: A detailed review. Agronomy, 8(3), Article 25. https://doi.org/10.3390/agronomy8030025

Peng, X., Chen, D., Zhen, J., Wang, Y., & Hu, X. (2024). Greenhouse gas emissions and drivers of the global warming potential of vineyards under different irrigation and fertilizer management practices. Science of The Total Environment, 950, Article 175447. https://doi.org/10.1016/j.scitotenv.2024.175447

Piñeiro, V., Arias, J., Dürr, J., Elverdin, P., Ibáñez, A. M., Kinengyere, A., Morales Opazo, C., Owoo, N., Page, J. R., Prager, S. D., & Torero, M. (2020). A scoping review on incentives for adoption of sustainable agricultural practices and their outcomes. Nature Sustainability, 3(10), 809–820. https://doi.org/10.1038/s41893-020-00617-y

Powlson, D. S., Stirling, C. M., Jat, M. L., Gerard, B. G., Palm, C. A., Sanchez, P. A., & Cassman, K. G. (2014). Limited potential of no-till agriculture for climate change mitigation. Nature Climate Change, 4(8), 678–683. https://doi.org/10.1038/nclimate2292

Powlson, D. S., Whitmore, A. P., & Goulding, K. W. (2011). Soil carbon sequestration to mitigate climate change: A critical re-examination to identify the true and the false. European Journal of Soil Science, 62(1), 42–55. https://doi.org/10.1111/j.1365-2389.2010.01342.x

Prasad, Y. G., & Bambawale, O. M. (2010). Effects of climate change on natural control of insect pests. Indian Journal of Dryland Agricultural Research and Development, 25(2), 1–12. https://www.indianjournals.com/ijor.aspx?target=ijor:ijdard&volume=25&issue=2&article=001

Raju, C., Pazhanivelan, S., Perianadar, I. V., Kaliaperumal, R., Sathyamoorthy, N. K., & Sendhilvel, V. (2024). Climate change as an existential threat to tropical fruit crop production – A review. Agriculture, 14(11), Article 2018. https://doi.org/10.3390/agriculture14112018

Ramírez, F., & Kallarackal, J. (2015). Climate change and chilling requirements. In F. Ramírez, & J. Kallarackal (Eds.), Responses of fruit trees to global climate change (pp. 31–34). Springer, Cham. https://doi.org/10.1007/978-3-319-14200-5_9

Reisch, L. A., Sunstein, C. R., Andor, M. A., Doebbe, F. C., Meier, J., & Haddaway, N. R. (2021). Mitigating climate change via food consumption and food waste: A systematic map of behavioral interventions. Journal of Cleaner Production, 279, Article 123717. https://doi.org/10.1016/j.jclepro.2020.123717

Reyes-García, V., García-del-Amo, D., Benyei, P., Fernández-Llamazares, Á., Gravani, K., Junqueira, A. B., Labeyrie, V., Li, X., Matias, D. M. S., McAlvay, A., Mortyn, P. G., Porcuna-Ferrer, A., Schlingmann, A., & Soleymani-Fard, R. (2019). A collaborative approach to bring insights from local observations of climate change impacts into global climate change research. Current Opinion in Environmental Sustainability, 39, 1–8. https://doi.org/10.1016/j.cosust.2019.04.007

Ricome, A., Affholder, F., Gérard, F., Muller, B., Poeydebat, C., Quirion, P., & Sall, M. (2017). Are subsidies to weather-index insurance the best use of public funds? A bio-economic farm model applied to the Senegalese groundnut basin. Agricultural Systems, 156, 149–176. https://doi.org/10.1016/j.agsy.2017.05.015

Rodríguez, A., Pérez-López, D., Centeno, A., & Ruiz-Ramos, M. (2021). Viability of temperate fruit tree varieties in Spain under climate change according to chilling accumulation. Agricultural Systems, 186, Article 102961. https://doi.org/10.1016/j.agsy.2020.102961

Romero, P., García, J., & Botía, P. (2006). Cost–benefit analysis of a regulated deficit-irrigated almond orchard under subsurface drip irrigation conditions in Southeastern Spain. Irrigation Science, 24(3), 175–184. https://doi.org/10.1007/s00271-005-0008-6

Ryu, S., Han, H.-H., Jeong, J. H., Kwon, Y., Han, J. H., Do, G. R., Choi, I.-M., & Lee, H. J. (2017). Night temperatures affect fruit coloration and expressions of anthocyanin biosynthetic genes in ‘Hongro’ apple (Malus domestica) fruit skins. European Journal of Horticultural Science, 82(5), 232–238. https://doi.org/10.17660/eJHS.2017/82.5.2

Salama, A.-M., Ezzat, A., El-Ramady, H., Alam-Eldein, S. M., Okba, S. K., Elmenofy, H. M., Hassan, I. F., Illés, A., & Holb, I. J. (2021). Temperate fruit trees under climate change: Challenges for dormancy and chilling requirements in warm winter regions. Horticulturae, 7(4), Article 86. https://doi.org/10.3390/horticulturae7040086

Sangiorgio, D., Cellini, A., Donati, I., Pastore, C., Onofrietti, C., & Spinelli, F. (2020). Facing climate change: Application of microbial biostimulants to mitigate stress in horticultural crops. Agronomy, 10(6), Article 794. https://doi.org/10.3390/agronomy10060794

Sayyad-Amin, P. (2022). A review on breeding fruit trees against climate changes. Erwerbs-Obstbau, 64(4), 697–701. https://doi.org/10.1007/s10341-022-00737-z

Scavo, A., Fontanazza, S., Restuccia, A., Pesce, G. R., Abbate, C., & Mauromicale, G. (2022). The role of cover crops in improving soil fertility and plant nutritional status in temperate climates. A review. Agronomy for Sustainable Development, 42(5), Article 93. https://doi.org/10.1007/s13593-022-00825-0

Shakoor, A., & Ullah, Z. (2024). Review of agricultural water management techniques for drought resilience and water conservation. International Journal of Research and Advances in Agricultural Sciences, 3(1), 31–45.

Sharma, H. C. (2014). Climate change effects on insects; implications for crop protection and food security. Journal of Crop Improvement, 28(2), 229–259. https://doi.org/10.1080/15427528.2014.881205

Siddiqui, M. W., Patel, V. B., & Ahmad, M. S. (2015). Effect of climate change on postharvest quality of fruits. In M. L. Choudhary, V. B. Patel, M. W. Siddiqui, & S. Sheraz Mahdl (Eds.), Climate dynamics in horticultural science: Principles and applications (Vol. 1, pp. 313–326). Apple Academic Press. https://doi.org/10.1201/b18035

Sierra, C. A., Trumbore, S. E., Davidson, E. A., Vicca, S., & Janssens, I. (2015). Sensitivity of decomposition rates of soil organic matter with respect to simultaneous changes in temperature and moisture. Journal of Advances in Modeling Earth Systems, 7(1), 335–356. https://doi.org/10.1002/2014MS000358

Taleb, H. B., Brhadda, N., & Ziri, R. (2022). A study of the effect of replacing drip irrigation system by micro-sprinklers in avocado (Persea americana Mill.) in Morocco. Revista Electronica de Veterinaria, 23(3), 61–68. https://www.cabidigitallibrary.org/doi/full/10.5555/20220536619

Thapa, R., Chatterjee, A., Awale, R., McGranahan, D. A., & Daigh, A. (2016). Effect of enhanced efficiency fertilizers on nitrous oxide emissions and crop yields: A meta-analysis. Soil Science Society of America Journal, 80(5), 1121–1134. https://doi.org/10.2136/sssaj2016.06.0179

Thomson, L. J., Macfadyen, S., & Hoffmann, A. A. (2010). Predicting the effects of climate change on natural enemies of agricultural pests. Biological Control, 52(3), 296–306. https://doi.org/10.1016/j.biocontrol.2009.01.022

Van Asten, P. J. A., Fermont, A. M., & Taulya, G. (2011). Drought is a major yield loss factor for rainfed East African highland banana. Agricultural Water Management, 98(4), 541–552. https://doi.org/10.1016/j.agwat.2010.10.005

Vélez-Sánchez, J., Casierra-Posada, F., & Fischer, G. (2023). Effect of regulated deficit irrigation (RDI) on the growth and development of pear fruit (Pyrus communis L.), var. Triunfo de Viena. Sustainability, 15(18), Article 13392. https://doi.org/10.3390/su151813392

Veste, M., Littmann, T., Kunneke, A., du Toit, B., & Seifert, T. (2020). Windbreaks as part of climate smart landscapes reduce evapotranspiration in vineyards, Western Cape Province, South Africa. Plant, Soil and Environment, 66(3), 119–127. https://doi.org/10.17221/616/2019-PSE

Wang, B., Waters, C., Anwar, M. R., Cowie, A., Liu, D. L., Summers, D., Paul, K., & Feng, P. (2022). Future climate impacts on forest growth and implications for carbon sequestration through reforestation in southeast Australia. Journal of Environmental Management, 302(Part A), Article 113964. https://doi.org/10.1016/j.jenvman.2021.113964

Ward, F. A. (2014). Economic impacts on irrigated agriculture of water conservation programs in drought. Journal of Hydrology, 508, 114–127. https://doi.org/10.1016/j.jhydrol.2013.10.024

Wurms, K. V., Reglinski, T., Buissink, P., Ah Chee, A., Fehlmann, C., McDonald, S., Cooney, J., Jensen, D., Hedderley, D., McKenzie, C., & Rikkerink, E. H. A. (2023). Effects of drought and flooding on phytohormones and abscisic acid gene expression in kiwifruit. International Journal of Molecular Sciences, 24(8), 7580. https://doi.org/10.3390/ijms24087580

Yadav, S., Korat, J. R., Yadav, S., Mondal, K., Kumar, A., Homeshvari., & Kumar, S. (2023). Impacts of climate change on fruit crops: A comprehensive review of physiological, phenological, and pest-related responses. International Journal of Environment and Climate Change, 13(11), 363–371. https://doi.org/10.9734/ijecc/2023/v13i113179

Zhai, Z., Martínez, J. F., Beltran, V., & Martínez, N. L. (2020). Decision support systems for agriculture 4.0: Survey and challenges. Computers and Electronics in Agriculture, 170, Article 105256. https://doi.org/10.1016/j.compag.2020.105256

Zhang, D., Liu, X., & Hong, H. (2013). Assessing the effect of climate change on reference evapotranspiration in China. Stochastic Environmental Research and Risk Assessment, 27(6), 1871–1881. https://doi.org/10.1007/s00477-013-0723-0

Zhang, L., Hu, J., Li, Y., & Pradhan, N. S. (2018). Public-private partnership in enhancing farmers’ adaptation to drought: Insights from the Lujiang Flatland in the Nu River (Upper Salween) valley, China. Land Use Policy, 71, 138–145. https://doi.org/10.1016/j.landusepol.2017.11.034

Zhang, S., Dou, Z., He, P., Ju, X.-T., Powlson, D., Chadwick, D., Norse, D., Zhang, Y., Wu, L., Chen, X. P., Cassman, K. G., & Zhang, F.-S. (2013). New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proceedings of the National Academy of Sciences, 110(21), 8375–8380. https://doi.org/10.1073/pnas.1210447110

Zhang, S., Zhang, J., Jing, X., Wang, Y., Wang, Y., & Yue, T. (2018). Water saving efficiency and reliability of rainwater harvesting systems in the context of climate change. Journal of Cleaner Production, 196, 1341–1355. https://doi.org/10.1016/j.jclepro.2018.06.133

Zhang, S., Zhang, J., Yue, T., & Jing, X. (2019). Impacts of climate change on urban rainwater harvesting systems. Science of The Total Environment, 665, 262–274. https://doi.org/10.1016/j.scitotenv.2019.02.135

Zhang, W., Dou, Z., He, P., Ju, X.-T., Powlson, D., Chadwick, D., Norse, D., Zhang, Y., Wu, L., Chen, X.-P., Cassman, K. G., & Zhang, F.-S. (2013). New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China. Proceedings of the National Academy of Sciences, 110(21), 8375–8380. https://doi.org/10.1073/pnas.1210447110

Zhou, W., Arcot, Y., Medina, R. F., Bernal, J., Cisneros-Zevallos, L., & Akbulut, M. E. (2024). Integrated pest management: An update on the sustainability approach to crop protection. ACS Omega, 9(40), 41130–41147. https://doi.org/10.1021/acsomega.4c06628

How to Cite

APA

İkinci, A. (2025). The impact of global warming on fruit crops and mitigation strategies: A comprehensive review. Agronomía Colombiana, 43(2), e118860. https://doi.org/10.15446/agron.colomb.v43n2.118860

ACM

[1]
İkinci, A. 2025. The impact of global warming on fruit crops and mitigation strategies: A comprehensive review. Agronomía Colombiana. 43, 2 (May 2025), e118860. DOI:https://doi.org/10.15446/agron.colomb.v43n2.118860.

ACS

(1)
İkinci, A. The impact of global warming on fruit crops and mitigation strategies: A comprehensive review. Agron. Colomb. 2025, 43, e118860.

ABNT

İKINCI, A. The impact of global warming on fruit crops and mitigation strategies: A comprehensive review. Agronomía Colombiana, [S. l.], v. 43, n. 2, p. e118860, 2025. DOI: 10.15446/agron.colomb.v43n2.118860. Disponível em: https://revistas.unal.edu.co/index.php/agrocol/article/view/118860. Acesso em: 28 dec. 2025.

Chicago

İkinci, Ali. 2025. “The impact of global warming on fruit crops and mitigation strategies: A comprehensive review”. Agronomía Colombiana 43 (2):e118860. https://doi.org/10.15446/agron.colomb.v43n2.118860.

Harvard

İkinci, A. (2025) “The impact of global warming on fruit crops and mitigation strategies: A comprehensive review”, Agronomía Colombiana, 43(2), p. e118860. doi: 10.15446/agron.colomb.v43n2.118860.

IEEE

[1]
A. İkinci, “The impact of global warming on fruit crops and mitigation strategies: A comprehensive review”, Agron. Colomb., vol. 43, no. 2, p. e118860, May 2025.

MLA

İkinci, A. “The impact of global warming on fruit crops and mitigation strategies: A comprehensive review”. Agronomía Colombiana, vol. 43, no. 2, May 2025, p. e118860, doi:10.15446/agron.colomb.v43n2.118860.

Turabian

İkinci, Ali. “The impact of global warming on fruit crops and mitigation strategies: A comprehensive review”. Agronomía Colombiana 43, no. 2 (May 1, 2025): e118860. Accessed December 28, 2025. https://revistas.unal.edu.co/index.php/agrocol/article/view/118860.

Vancouver

1.
İkinci A. The impact of global warming on fruit crops and mitigation strategies: A comprehensive review. Agron. Colomb. [Internet]. 2025 May 1 [cited 2025 Dec. 28];43(2):e118860. Available from: https://revistas.unal.edu.co/index.php/agrocol/article/view/118860

Download Citation

CrossRef Cited-by

CrossRef citations0

Dimensions

PlumX

Article abstract page views

310

Downloads

Download data is not yet available.